Distinct organization of adaptive immunity in the long-lived rodent spalax galili

Nature

Distinct organization of adaptive immunity in the long-lived rodent spalax galili"


Play all audios:

Loading...

ABSTRACT A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long-lived blind mole-rat (_Spalax_ spp.) adaptive immune system, relative


to humans and mice. The T-cell repertoire remains diverse throughout the _Spalax_ lifespan, suggesting a paucity of large long-lived clones of effector-memory T cells. Expression of master


transcription factors of T-cell differentiation, as well as checkpoint and cytotoxicity genes, remains low as _Spalax_ ages. The thymus shrinks as in mice and humans, while interleukin-7 and


interleukin-7 receptor expression remains high, potentially reflecting the sustained homeostasis of naive T cells. With aging, immunoglobulin hypermutation level does not increase and the


immunoglobulin-M repertoire remains diverse, suggesting shorter B-cell memory and sustained homeostasis of innate-like B cells. The _Spalax_ adaptive immune system thus appears biased


towards sustained functional and receptor diversity over specialized, long-lived effector-memory clones—a unique organizational strategy that potentially underlies this animal’s


extraordinary longevity and healthy aging. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to


this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HALLMARKS OF T CELL AGING Article 13 May 2021 FUNCTIONAL T CELLS ARE CAPABLE OF SUPERNUMERARY CELL DIVISION AND LONGEVITY


Article 18 January 2023 ASYMMETRIC CELL DIVISION SHAPES NAIVE AND VIRTUAL MEMORY T-CELL IMMUNITY DURING AGEING Article Open access 11 May 2021 DATA AVAILABILITY TCR and IGH profiling and


RNA-seq raw sequencing data were deposited in GenBank under BioProjects PRJNA432350 and PRJNA643223. _Spalax_ TCR and IGH gene references are available at


https://doi.org/10.5281/zenodo.4473340. Extracted TCR clonesets, gene expression data and cloneset metrics are available in figshare:


https://figshare.com/projects/Distinct_organization_of_adaptive_immunity_in_long-lived_rodent_Spalax_Galili/28773. CODE AVAILABILITY See Supplementary Note 2 for the de novo transcriptome


assembly pipeline. MiXCR software is available from MiLaboratory LLC: https://milaboratory.com/. REFERENCES * Jameson, S. C. & Masopust, D. Understanding subset diversity in T cell


memory. _Immunity_ 48, 214–226 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gasper, D. J., Tejera, M. M. & Suresh, M. CD4 T-cell memory generation and maintenance.


_Crit. Rev. Immunol._ 34, 121–146 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kurosaki, T., Kometani, K. & Ise, W. Memory B cells. _Nat. Rev. Immunol._ 15, 149–159


(2015). Article  CAS  PubMed  Google Scholar  * McHeyzer-Williams, M., Okitsu, S., Wang, N. & McHeyzer-Williams, L. Molecular programming of B cell memory. _Nat. Rev. Immunol._ 12, 24–34


(2011). Article  PubMed  PubMed Central  CAS  Google Scholar  * Grimsholm, O. et al. The interplay between CD27(dull) and CD27(bright) B cells ensures the flexibility, stability, and


resilience of human B cell memory. _Cell Rep._ 30, 2963–2977 (2020). Article  CAS  PubMed  Google Scholar  * Britanova, O. V. et al. Dynamics of individual T cell repertoires: from cord


blood to centenarians. _J. Immunol._ 196, 5005–5013 (2016). Article  CAS  PubMed  Google Scholar  * Rose, N. R. Infection, mimics, and autoimmune disease. _J. Clin. Invest._ 107, 943–944


(2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kivity, S., Agmon-Levin, N., Blank, M. & Shoenfeld, Y. Infections and autoimmunity—friends or foes? _Trends Immunol._ 30,


409–414 (2009). Article  CAS  PubMed  Google Scholar  * Van Den Berg, H. A., Molina-Paris, C. & Sewell, A. K. Specific T-cell activation in an unspecific T-cell repertoire. _Sci. Prog._


94, 245–264 (2011). Article  CAS  Google Scholar  * Goronzy, J. J. & Weyand, C. M. Successful and maladaptive T cell aging. _Immunity_ 46, 364–378 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Minato, N., Hattori, M. & Hamazaki, Y. Physiology and pathology of T-cell aging. _Int. Immunol._ 32, 223–231 (2020). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Turner, D. L. & Farber, D. L. Mucosal resident memory CD4 T cells in protection and immunopathology. _Front. Immunol._ 5, 331 (2014). Article  PubMed  PubMed Central 


CAS  Google Scholar  * Tacutu, R. et al. Human ageing genomic resources: new and updated databases. _Nucleic Acids Res._ 46, D1083–D1090 (2018). Article  CAS  PubMed  Google Scholar  * Ruby,


J. G., Smith, M. & Buffenstein, R. Naked mole-rat mortality rates defy gompertzian laws by not increasing with age. _eLife_ 7, e31157 (2018). Article  PubMed  PubMed Central  Google


Scholar  * Edrey, Y. H., Hanes, M., Pinto, M., Mele, J. & Buffenstein, R. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for


biogerontology and biomedical research. _ILAR J._ 52, 41–53 (2011). Article  CAS  PubMed  Google Scholar  * Gorbunova, V. et al. Cancer resistance in the blind mole rat is mediated by


concerted necrotic cell death mechanism. _Proc. Natl Acad. Sci. USA_ 109, 19392–19396 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tian, X. et al. High-molecular-mass


hyaluronan mediates the cancer resistance of the naked mole rat. _Nature_ 499, 346–349 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Manov, I. et al. Pronounced cancer


resistance in a subterranean rodent, the blind mole-rat, _Spalax_: in vivo and in vitro evidence. _BMC Biol._ 11, 91 (2013). Article  PubMed  PubMed Central  Google Scholar  * Gorbunova, V.,


Seluanov, A., Zhang, Z., Gladyshev, V. N. & Vijg, J. Comparative genetics of longevity and cancer: insights from long-lived rodents. _Nat. Rev. Genet._ 15, 531–540 (2014). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Schmidt, H. et al. Hypoxia tolerance, longevity and cancer-resistance in the mole rat _Spalax_—a liver transcriptomics approach. _Sci. Rep._ 7,


14348 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Altwasser, R. et al. The transcriptome landscape of the carcinogenic treatment response in the blind mole rat: insights


into cancer resistance mechanisms. _BMC Genomics_ 20, 17 (2019). Article  PubMed  PubMed Central  Google Scholar  * Fang, X. et al. Genome-wide adaptive complexes to underground stresses in


blind mole rats _Spalax_. _Nat. Commun._ 5, 3966 (2014). Article  CAS  PubMed  Google Scholar  * Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. _Nat.


Methods_ 12, 380–381 (2015). Article  CAS  PubMed  Google Scholar  * Lanning, D. K., Esteves, P. J. & Knight, K. L. The remnant of the European rabbit (_Oryctolagus cuniculus_) IgD gene.


_PLoS ONE_ 12, e0182029 (2017). Article  PubMed  PubMed Central  Google Scholar  * Izraelson, M. et al. Comparative analysis of murine T-cell receptor repertoires. _Immunology_ 153, 133–144


(2018). Article  CAS  PubMed  Google Scholar  * Posnett, D. N., Sinha, R., Kabak, S. & Russo, C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign


monoclonal gammapathy”. _J. Exp. Med._ 179, 609–618 (1994). Article  CAS  PubMed  Google Scholar  * Messaoudi, I., Lemaoult, J., Guevara-Patino, J. A., Metzner, B. M. & Nikolich-Zugich,


J. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. _J. Exp. Med._ 200, 1347–1358 (2004). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging.


_Immunity_ 54, 99–115 (2020). Article  CAS  PubMed  Google Scholar  * Franckaert, D. et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. _Eur. J.


Immunol._ 45, 1535–1547 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gui, J., Mustachio, L. M., Su, D. M. & Craig, R. W. Thymus size and age-related thymic


involution: early programming, sexual dimorphism, progenitors and stroma. _Aging Dis._ 3, 280–290 (2012). PubMed  PubMed Central  Google Scholar  * Bonati, A. et al. T-cell receptor


beta-chain gene rearrangement and expression during human thymic ontogenesis. _Blood_ 79, 1472–1483 (1992). Article  CAS  PubMed  Google Scholar  * Murugan, A., Mora, T., Walczak, A. M.


& Callan, C. G. Jr. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. _Proc. Natl Acad. Sci. USA_ 109, 16161–16166 (2012). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Venturi, V. et al. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. _J. Immunol._ 186, 4285–4294


(2011). Article  CAS  PubMed  Google Scholar  * Quigley, M. F. et al. Convergent recombination shapes the clonotypic landscape of the naive T-cell repertoire. _Proc. Natl Acad. Sci. USA_


107, 19414–19419 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nizetic, D. et al. Major histocompatibility complex of the mole-rat. I. Serological and biochemical analysis.


_Immunogenetics_ 20, 443–451 (1984). Article  CAS  PubMed  Google Scholar  * Krishna, C., Chowell, D., Gonen, M., Elhanati, Y. & Chan, T. A. Genetic and environmental determinants of


human TCR repertoire diversity. _Immun. Ageing_ 17, 26 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zvyagin, I. V. et al. Distinctive properties of identical twins’ TCR


repertoires revealed by high-throughput sequencing. _Proc. Natl Acad. Sci. USA_ 111, 5980–5985 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tanno, H. et al. Determinants


governing T cell receptor alpha/beta-chain pairing in repertoire formation of identical twins. _Proc. Natl Acad. Sci. USA_ 117, 532–540 (2020). Article  CAS  PubMed  Google Scholar  *


Logunova, N. N. et al. MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naive CD4+ T cells. _Proc. Natl Acad. Sci. USA_ 117, 13659–13669 (2020). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Egorov, E. S. et al. The changing landscape of naive T cell receptor repertoire with human aging. _Front. Immunol._ 9, 1618 (2018). Article  PubMed 


PubMed Central  CAS  Google Scholar  * Garner, L. C., Klenerman, P. & Provine, N. M. Insights into mucosal-associated invariant T cell biology from studies of invariant natural killer T


cells. _Front. Immunol._ 9, 1478 (2018). Article  PubMed  PubMed Central  CAS  Google Scholar  * Howson, L. J. et al. MAIT cell clonal expansion and TCR repertoire shaping in human


volunteers challenged with _Salmonella_ Paratyphi A. _Nat. Commun._ 9, 253 (2018). Article  PubMed  PubMed Central  CAS  Google Scholar  * Reantragoon, R. et al. Antigen-loaded MR1 tetramers


define T cell receptor heterogeneity in mucosal-associated invariant T cells. _J. Exp. Med._ 210, 2305–2320 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Madi, A. et al. T


cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. _eLife_ 6, e22057 (2017). Article  PubMed  PubMed Central  Google


Scholar  * Shugay, M. E. A. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. _Nucleic Acids Res._ 46, D419–D427 (2017). Article  PubMed Central  CAS 


Google Scholar  * Bedel, R. et al. Effective functional maturation of invariant natural killer T cells is constrained by negative selection and T-cell antigen receptor affinity. _Proc. Natl


Acad. Sci. USA_ 111, E119–E128 (2014). Article  CAS  PubMed  Google Scholar  * Koay, H. F. et al. Diverse MR1-restricted T cells in mice and humans. _Nat. Commun._ 10, 2243 (2019). Article 


PubMed  PubMed Central  CAS  Google Scholar  * DeWitt, W. S. 3rd et al. Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity. _eLife_


7, e38358 (2018). Article  PubMed  PubMed Central  Google Scholar  * Pieren, D. K. J., Smits, N. A. M., van de Garde, M. D. B. & Guichelaar, T. Response kinetics reveal novel features


of ageing in murine T cells. _Sci. Rep._ 9, 5587 (2019). Article  PubMed  PubMed Central  CAS  Google Scholar  * Fang, D. & Zhu, J. Dynamic balance between master transcription factors


determines the fates and functions of CD4 T cell and innate lymphoid cell subsets. _J. Exp. Med._ 214, 1861–1876 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Elyahu, Y. et


al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. _Sci. Adv._ 5, eaaw8330 (2019). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. _Nat. Commun._ 6, 8570 (2015). Article  CAS  PubMed  Google Scholar  * Marquez, E. J. et al.


Sexual-dimorphism in human immune system aging. _Nat. Commun._ 11, 751 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Eberl, G. et al. An essential function for the nuclear


receptor RORγt in the generation of fetal lymphoid tissue inducer cells. _Nat. Immunol._ 5, 64–73 (2004). Article  CAS  PubMed  Google Scholar  * Garg, S. K. et al. Aging is associated with


increased regulatory T-cell function. _Aging Cell_ 13, 441–448 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Channappanavar, R., Twardy, B. S., Krishna, P. & Suvas, S.


Advancing age leads to predominance of inhibitory receptor expressing CD4 T cells. _Mech. Ageing Dev._ 130, 709–712 (2009). Article  CAS  PubMed  Google Scholar  * Burchill, M. A., Yang, J.,


Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. _J. Immunol._ 178, 280–290


(2007). Article  CAS  PubMed  Google Scholar  * Williams, M. A., Tyznik, A. J. & Bevan, M. J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T


cells. _Nature_ 441, 890–893 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Leonard, W. J. & Wan, C. K. IL-21 signaling in immunity. _F1000Res_ 5, 224 (2016). Article 


Google Scholar  * Skak, K., Frederiksen, K. S. & Lundsgaard, D. Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. _Immunology_ 123,


575–583 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. _Immunity_ 29, 848–862 (2008). Article  CAS 


PubMed  Google Scholar  * Lynch, E. A., Heijens, C. A., Horst, N. F., Center, D. M. & Cruikshank, W. W. Cutting edge: IL-16/CD4 preferentially induces Th1 cell migration: requirement of


CCR5. _J. Immunol._ 171, 4965–4968 (2003). Article  CAS  PubMed  Google Scholar  * Skundric, D. S., Cai, J., Cruikshank, W. W. & Gveric, D. Production of IL-16 correlates with CD4+ Th1


inflammation and phosphorylation of axonal cytoskeleton in multiple sclerosis lesions. _J. Neuroinflammation_ 3, 13 (2006). Article  PubMed  PubMed Central  CAS  Google Scholar  *


Fiorentino, D. F., Bond, M. W. & Mosmann, T. R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. _J. Exp. Med._ 170,


2081–2095 (1989). Article  CAS  PubMed  Google Scholar  * Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O’Garra, A. Interleukin-10 and the interleukin-10 receptor. _Annu. Rev.


Immunol._ 19, 683–765 (2001). Article  CAS  PubMed  Google Scholar  * Bagnasco, D., Ferrando, M., Varricchi, G., Passalacqua, G. & Canonica, G. W. A critical evaluation of anti-IL-13 and


anti-IL-4 strategies in severe asthma. _Int. Arch. Allergy Immunol._ 170, 122–131 (2016). Article  CAS  PubMed  Google Scholar  * Park, H. et al. A distinct lineage of CD4 T cells regulates


tissue inflammation by producing interleukin 17. _Nat. Immunol._ 6, 1133–1141 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ivanov, I. I. et al. The orphan nuclear


receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. _Cell_ 126, 1121–1133 (2006). Article  CAS  PubMed  Google Scholar  * Soares, M. V. et al.


IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. _J. Immunol._ 161, 5909–5917 (1998). CAS  PubMed  Google Scholar  * Nguyen, V.,


Mendelsohn, A. & Larrick, J. W. Interleukin-7 and immunosenescence. _J. Immunol. Res._ 2017, 4807853 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Passtoors, W. M. et


al. IL7R gene expression network associates with human healthy ageing. _Immun. Ageing_ 12, 21 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Horns, F. et al. Lineage tracing


of human B cells reveals the in vivo landscape of human antibody class switching. _eLife_ 5, e16578 (2016). Article  PubMed  PubMed Central  Google Scholar  * Ventura, M. T., Casciaro, M.,


Gangemi, S. & Buquicchio, R. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. _Clin. Mol. Allergy_ 15, 21 (2017). Article  PubMed  PubMed Central 


CAS  Google Scholar  * Paganelli, R. et al. Changes in circulating B cells and immunoglobulin classes and subclasses in a healthy aged population. _Clin. Exp. Immunol._ 90, 351–354 (1992).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Rogosch, T. et al. IgA response in preterm neonates shows little evidence of antigen-driven selection. _J. Immunol._ 189, 5449–5456


(2012). Article  CAS  PubMed  Google Scholar  * de Jong, B. G. et al. Human IgG2- and IgG4-expressing memory B cells display enhanced molecular and phenotypic signs of maturity and


accumulate with age. _Immunol. Cell Biol._ 95, 744–752 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Ghraichy, M. et al. Maturation of the human immunoglobulin heavy chain


repertoire with age. _Front. Immunol._ 11, 1734 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Choi, Y. S., Dieter, J. A., Rothaeusler, K., Luo, Z. & Baumgarth, N. B-1


cells in the bone marrow are a significant source of natural IgM. _Eur. J. Immunol._ 42, 120–129 (2012). Article  CAS  PubMed  Google Scholar  * Baumgarth, N. A Hard(y) look at B-1 cell


development and function. _J. Immunol._ 199, 3387–3394 (2017). Article  CAS  PubMed  Google Scholar  * Holodick, N. E. & Rothstein, T. L. B cells in the aging immune system: time to


consider B-1 cells. _Ann. N. Y. Acad. Sci._ 1362, 176–187 (2015). Article  PubMed  PubMed Central  Google Scholar  * Prohaska, T. A. et al. Massively parallel sequencing of peritoneal and


splenic B cell repertoires highlights unique properties of B-1 cell antibodies. _J. Immunol._ 200, 1702–1717 (2018). CAS  PubMed  Google Scholar  * Kosmrlj, A., Jha, A. K., Huseby, E. S.,


Kardar, M. & Chakraborty, A. K. How the thymus designs antigen-specific and self-tolerant T cell receptor sequences. _Proc. Natl Acad. Sci. USA_ 105, 16671–16676 (2008). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Kosmrlj, A. et al. Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. _Nature_ 465, 350–354


(2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stadinski, B. D. et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. _Nat. Immunol._ 17,


946–955 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tang, A. L. et al. CTLA4 expression is an indicator and regulator of steady-state CD4+ FoxP3+ T cell homeostasis. _J.


Immunol._ 181, 1806–1813 (2008). Article  CAS  PubMed  Google Scholar  * Klocke, K., Sakaguchi, S., Holmdahl, R. & Wing, K. Induction of autoimmune disease by deletion of CTLA-4 in mice


in adulthood. _Proc. Natl Acad. Sci. USA_ 113, E2383–E2392 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Walker, L. S. K. EFIS lecture: understanding the CTLA-4 checkpoint


in the maintenance of immune homeostasis. _Immunol. Lett._ 184, 43–50 (2017). Article  CAS  PubMed  Google Scholar  * den Braber, I. et al. Maintenance of peripheral naive T cells is


sustained by thymus output in mice but not humans. _Immunity_ 36, 288–297 (2012). Article  CAS  Google Scholar  * Kim, E. B. et al. Genome sequencing reveals insights into physiology and


longevity of the naked mole rat. _Nature_ 479, 223–227 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lewis, K. N. et al. Unraveling the message: insights into comparative


genomics of the naked mole-rat. _Mamm. Genome_ 27, 259–278 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Malik, A. et al. Genome maintenance and bioenergetics of the


long-lived hypoxia-tolerant and cancer-resistant blind mole rat, _Spalax_: a cross-species analysis of brain transcriptome. _Sci. Rep._ 6, 38624 (2016). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Matz, M. et al. Amplification of cDNA ends based on template-switching effect and step-out PCR. _Nucleic Acids Res._ 27, 1558–1560 (1999). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Egorov, E. S. et al. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers. _J. Immunol._ 194, 6155–6163


(2015). Article  CAS  PubMed  Google Scholar  * Turchaninova, M. A. et al. High-quality full-length immunoglobulin profiling with unique molecular barcoding. _Nat. Protoc._ 11, 1599–1616


(2016). Article  CAS  PubMed  Google Scholar  * Weber, J. et al. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. _Nat. Commun._ 10, 1415 (2019).


Article  PubMed  PubMed Central  CAS  Google Scholar  * Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. _Nat. Methods_ 9, 72–74 (2012). Article


  CAS  Google Scholar  * Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. _Bioinformatics_ 26, 589–595 (2010). Article  PubMed  PubMed Central 


CAS  Google Scholar  * Yu, Y. et al. A rat RNA-seq transcriptomic BodyMap across 11 organs and 4 developmental stages. _Nat. Commun._ 5, 3230 (2014). Article  PubMed  CAS  Google Scholar  *


Shugay, M. et al. Towards error-free profiling of immune repertoires. _Nat. Methods_ 11, 653–655 (2014). Article  CAS  PubMed  Google Scholar  * Shugay, M. et al. VDJtools: unifying


post-analysis of T cell receptor repertoires. _PLoS Comput. Biol._ 11, e1004503 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Tumeh, P. C. et al. PD-1 blockade induces


responses by inhibiting adaptive immune resistance. _Nature_ 515, 568–571 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bolotin, D. A. et al. Antigen receptor repertoire


profiling from RNA-seq data. _Nat. Biotechnol._ 35, 908–911 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B.


J. Counting the uncountable: statistical approaches to estimating microbial diversity. _Appl. Environ. Microbiol._ 67, 4399–4406 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Chiu, C. H. & Chao, A. Estimating and comparing microbial diversity in the presence of sequencing errors. _PeerJ_ 4, e1634 (2016). Article  PubMed  PubMed Central  CAS  Google


Scholar  * Shugay, M. et al. Huge overlap of individual TCR beta repertoires. _Front. Immunol._ 4, 466 (2013). Article  PubMed  PubMed Central  CAS  Google Scholar  * Mamrot, J. et al. De


novo transcriptome assembly for the spiny mouse (_Acomys cahirinus_). _Sci. Rep._ 7, 8996 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Bolger, A. M., Lohse, M. &


Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. _Bioinformatics_ 30, 2114–2120 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bushmanova, E., Antipov,


D., Lapidus, A. & Prjibelski, A. D. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-seq data. _Gigascience_ 8, giz100 (2019). Article  PubMed  PubMed Central 


CAS  Google Scholar  * Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. _Nat. Biotechnol._ 29, 644–652 (2011). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with


single-copy orthologs. _Bioinformatics_ 31, 3210–3212 (2015). Article  CAS  PubMed  Google Scholar  * Camacho, C. et al. BLAST+: architecture and applications. _BMC Bioinformatics_ 10, 421


(2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Finn, R. D. et al. Pfam: the protein families database. _Nucleic Acids Res._ 42, D222–D230 (2014). Article  CAS  PubMed 


Google Scholar  * Nielsen, H. Predicting secretory proteins with SignalP. _Methods Mol. Biol._ 1611, 59–73 (2017). Article  CAS  PubMed  Google Scholar  * Krogh, A., Larsson, B., von Heijne,


G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. _J. Mol. Biol._ 305, 567–580 (2001). Article  CAS  PubMed 


Google Scholar  * Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. _Nat. Methods_ 9, 357–359 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li,


B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. _BMC Bioinformatics_ 12, 323 (2011). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. _Nat.


Protoc._ 4, 1184–1191 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS We thank O. Schwartz and E. Suss-Toby, BCF Bioimaging Center, Faculty


of Medicine, Technion, for the MR imaging and image analysis. The work was supported by the Russian Science Foundation (grant no. 16-15-00149, to O.V.B.), the Ministry of Education and


Science of the Russian Federation (grant no. 14.W03.31.0005, to D.M.C., for part of mouse samples preparation) and the Israel Science Foundation (grant no. 1935/17, to I.S.). M.M. was


supported by the European Regional Development Fund–Project ‘MSCAfellow3@MUNI’ (grant no. CZ.02.2.69/0.0/0.0/19_074/0012727). AUTHOR INFORMATION Author notes * These authors contributed


equally: M. Izraelson, M. Metsger, A.N. Davydov. * These authors jointly supervised this work: I. Shams, O. V. Britanova, D. M. Chudakov. AUTHORS AND AFFILIATIONS * Shemyakin and Ovchinnikov


Institute of Bioorganic Chemistry, Moscow, Russia M. Izraelson, I. A. Shagina, A. S. Obraztsova, I. Z. Mamedov, T. O. Nakonechnaya, M. Shugay, D. A. Bolotin, D. B. Staroverov, G. V.


Sharonov, S. Lukyanov, O. V. Britanova & D. M. Chudakov * Privolzhsky Research Medical University, Nizhny Novgorod, Russia M. Izraelson, I. Z. Mamedov, L. N. Volchkova, T. O.


Nakonechnaya, M. Shugay, D. B. Staroverov, G. V. Sharonov, E. V. Zagaynova & D. M. Chudakov * Pirogov Russian National Research Medical University, Moscow, Russia M. Izraelson, I. A.


Shagina, I. Z. Mamedov, T. O. Nakonechnaya, M. Shugay, D. A. Bolotin, D. B. Staroverov, G. V. Sharonov, S. Lukyanov & D. M. Chudakov * Central European Institute of Technology, Brno,


Czech Republic M. Metsger, A. N. Davydov, I. Z. Mamedov & D. M. Chudakov * Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa,


Israel M. A. Dronina, D. A. Miskevich & I. Shams * Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia E. Y. Kondratyuk Authors * M. Izraelson View author


publications You can also search for this author inPubMed Google Scholar * M. Metsger View author publications You can also search for this author inPubMed Google Scholar * A. N. Davydov


View author publications You can also search for this author inPubMed Google Scholar * I. A. Shagina View author publications You can also search for this author inPubMed Google Scholar * M.


A. Dronina View author publications You can also search for this author inPubMed Google Scholar * A. S. Obraztsova View author publications You can also search for this author inPubMed 


Google Scholar * D. A. Miskevich View author publications You can also search for this author inPubMed Google Scholar * I. Z. Mamedov View author publications You can also search for this


author inPubMed Google Scholar * L. N. Volchkova View author publications You can also search for this author inPubMed Google Scholar * T. O. Nakonechnaya View author publications You can


also search for this author inPubMed Google Scholar * M. Shugay View author publications You can also search for this author inPubMed Google Scholar * D. A. Bolotin View author publications


You can also search for this author inPubMed Google Scholar * D. B. Staroverov View author publications You can also search for this author inPubMed Google Scholar * G. V. Sharonov View


author publications You can also search for this author inPubMed Google Scholar * E. Y. Kondratyuk View author publications You can also search for this author inPubMed Google Scholar * E.


V. Zagaynova View author publications You can also search for this author inPubMed Google Scholar * S. Lukyanov View author publications You can also search for this author inPubMed Google


Scholar * I. Shams View author publications You can also search for this author inPubMed Google Scholar * O. V. Britanova View author publications You can also search for this author


inPubMed Google Scholar * D. M. Chudakov View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.I., I.A.S., M.A.D., D.A.M., I.Z.M., L.N.V.,


T.O.N., D.B.S., G.V.S., E.Y.K., I.S. and O.V.B. performed wet laboratory experiments. M.I., M.M., A.N.D., A.S.O., M.S., D.A.B. and O.V.B. performed data analysis. E.V.Z., S.L., I.S., O.V.B.


and D.M.C. designed and supervised the project, designed experiments and worked on the manuscript. I.S., O.V.B. and D.M.C. are the co-senior authors. CORRESPONDING AUTHORS Correspondence to


O. V. Britanova or D. M. Chudakov. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Aging_ thanks


Vera Gorbunova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional


claims in published maps and institutional affiliations. EXTENDED DATA EXTENDED DATA FIG. 1 PHYLOGENETIC TREE OF NUCLEOTIDE SEQUENCES OF IGVH SEGMENTS. The gene segments are highlighted in


blue for mouse, orange for _Spalax_, and green for rat. Number after asterisk corresponds to the allele name. Only functional alleles are shown. The neighbour-joining trees were constructed


with the evolutionary distances computed using the Maximum Composite Likelihood method, with a bootstrap of 1,000 replicates. EXTENDED DATA FIG. 2 PHYLOGENETIC TREE OF NUCLEOTIDE SEQUENCES


OF TRAV SEGMENTS. Gene segments are highlighted in blue for mouse, orange for _Spalax_, and green for rat. The neighbour-joining trees were constructed with the evolutionary distances


computed using the Maximum Composite Likelihood method, with a bootstrap of 1,000 replicates. The tree is drawn to scale, with branch lengths in the same units as the evolutionary distances


used to output the phylogenetic tree. Number after asterisk corresponds to the allele name. Only functional alleles are shown. EXTENDED DATA FIG. 3 ASSESSING THE SIZE OF THE THYMUS IN YOUNG


AND ADULT SPALAX. A. Histological verification of thymic tissue localization showing its connection to surrounding tissues. Paraffin-embedded tissue after PFA fixation. Hematoxylin and eosin


staining of section from young _Spalax_ (<3 years) at 20x magnification. H - heart (aorta), T - thymus. Staining was performed on two animals. A,B. Representative thymus MRI sequential


images for young (B) and old (C) _Spalax_ showing the sagittal sections. White arrows point to the thymic lobes. EXTENDED DATA FIG. 4 PHYSICOCHEMICAL CHARACTERISTICS OF TCR CDR3Β


REPERTOIRES. Mean characteristics of the five amino acid residues in the center of CDR3β are shown for the four age groups in human, mouse, and _Spalax_. The measured parameters are A,


normalized strength (strongly interacting amino acids), B, normalized volume (bulky amino acids), and C, normalized hydrophobicity (based on inverted Kidera factor 4). P-values were


calculated using two-sided Welch’s t-test. * < 0.05, ** < 0.01, *** - < 0.001, ****<0.0001. n = 19 mice and 17 _Spalax_ animals. EXTENDED DATA FIG. 5 EXPRESSION OF T-CELL-RELATED


GENES IN MOUSE AND SPALAX SPLEEN ACROSS AGE GROUPS. Expression of A, T cell transcription factors, B, checkpoint molecules, and C, naive/homeostatic genes, presented as non-normalized TPM


values (corresponding to data shown in Fig. 4b–d). A-C. P-values represent one-way ANOVA with Tukey’s test, * < 0.05, ** < 0.01, *** - < 0.001. The boxplots visualize the median,


hinges representing the 25th and 75th percentiles, and whiskers extending to the values that are no further than 1.5 × IQR from the upper or the lower hinge. n = 12 mice and 12 _Spalax_ (3


animals per age group) were used for the analysis. D,E. Expression levels of (D) basic cytokines and (E) receptors (non z-scaled data corresponding to data shown in Fig. 4e,f). The P-value


and Log-transformed fold changes (Log2FC) shown on the left represent the differential gene expression analysis results calculated between species (9 animals for each species excluding


newborn, 3 animals per age group) according to the procedure described in the Methods section. EXTENDED DATA FIG. 6 BUSCO ANALYSIS OF TRANSCRIPTOME COMPLETENESS. Cumulative percentage of


orthologues calculated using BUSCO with --auto-lineage-euk option against four transcriptome assemblies prepared by different tools (Shannon, SPAdes with kmer size of 55 and 75, Trinity).


The Final_assembly represents the result of EvidentialGene pipeline applied to the merged data from 4 different assemblies. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary


Notes 1 and 2 and Tables 1, 3 and 4. REPORTING SUMMARY SUPPLEMENTARY TABLE Supplementary Table 2. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Izraelson, M., Metsger, M., Davydov, A.N. _et al._ Distinct organization of adaptive immunity in the long-lived rodent _Spalax galili_. _Nat Aging_ 1, 179–189 (2021).


https://doi.org/10.1038/s43587-021-00029-3 Download citation * Received: 24 July 2020 * Accepted: 08 January 2021 * Published: 08 February 2021 * Issue Date: February 2021 * DOI:


https://doi.org/10.1038/s43587-021-00029-3 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Summit of the americas, one hundred days of war in ukraine, and more

Carolyn Kissane, academic director and clinical professor at the Center for Global Affairs at New York University, leads...

Estimation of ammonia volatilized from soils

ABSTRACT ALTHOUGH it has been recognized that a part of the nitrogen in the soil system may be lost in the form of ammon...

Farmers fear chancellor will target defra with spending cuts - farmers weekly

© PA Images/Alamy Stock Photo Industry leaders and environmental groups are sending a joint message to government that s...

Day x — from now on everything will change

I have decided to open up an anonymous Medium account in order to help myself move forward with my life, fully commit to...

History of the english parliament

ABSTRACT IT is announced that H.M. Stationery Office will publishat an early date a volume, the first to be issued, of t...

Latests News

Distinct organization of adaptive immunity in the long-lived rodent spalax galili

ABSTRACT A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long...

Altered isgylation drives aberrant macrophage-dependent immune responses during sars-cov-2 infection

ABSTRACT Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced durin...

Designer supramolecular polymers with specific molecular recognitions

ABSTRACT Supramolecular polymers are members of an emergent class of polymer materials that exhibit designability and fl...

Inhibitors targeting bruton’s tyrosine kinase in cancers: drug development advances

ABSTRACT Bruton’s tyrosine kinase (BTK) inhibitor is a promising novel agent that has potential efficiency in B-cell mal...

Experimental ebola drugs face tough test in war zone

* NEWS * 31 August 2018 Researchers are devising a clinical-trial protocol to test three medicines in Africa’s latest ou...

Top