Transkingdom network analysis (tkna): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions

Nature

Transkingdom network analysis (tkna): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions"


Play all audios:

Loading...

ABSTRACT We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple


cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host–microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA


reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible


patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive


metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network’s topological features, TkNA identifies


nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network


reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing


causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal


installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/. KEY POINTS * Transkingdom Network Analysis (TkNA) is a unique


analytical framework for inferring causal factors underlying host–microbiota and other multi-omic interactions, by integrating data from multiple cohorts and diverse omics types. * Unlike


most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data, which it achieves without


requiring huge sample sizes. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal


Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS META-ANALYSIS OF MICROBIOME ASSOCIATION NETWORKS REVEAL PATTERNS OF DYSBIOSIS IN DISEASED MICROBIOMES Article Open access 19 October 2022 CAUSAL


EFFECTS IN MICROBIOMES USING INTERVENTIONAL CALCULUS Article Open access 11 March 2021 OPEN CHALLENGES FOR MICROBIAL NETWORK CONSTRUCTION AND ANALYSIS Article Open access 09 June 2021 DATA


AVAILABILITY Raw data used for the analysis that generated Fig. 3 and Supplementary Fig. 2 are available in the supporting primary research article, ref. 3. A graphical user interface


version of TkNA is also available at https://bioinfo-abcc.ncifcrf.gov/TkNA. CODE AVAILABILITY The TkNA pipeline is publicly available at https://github.com/CAnBioNet/TkNA. The code in this


protocol has been peer reviewed. REFERENCES * Morgun, A. et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. _Gut_ 64, 1732–1743 (2015).


Article  CAS  PubMed  Google Scholar  * Rodrigues, R. R. et al. Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. _Front.


Microbiol._ 8, 2306 (2017). Article  PubMed  PubMed Central  Google Scholar  * Rodrigues, R. R. et al. Transkingdom interactions between _Lactobacilli_ and hepatic mitochondria attenuate


western diet-induced diabetes. _Nat. Commun._ 12, 101 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shulzhenko, N. et al. CVID enteropathy is characterized by exceeding low


mucosal IgA levels and interferon-driven inflammation possibly related to the presence of a pathobiont. _Clin. Immunol._ 197, 139–153 (2018). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. _Science_ 371, 595–602 (2021). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. _Cell_ 184, 5338–5356.e21 (2021). Article  CAS 


PubMed  PubMed Central  Google Scholar  * McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with


anti-PD-1. _Nat. Med._ 28, 545–556 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and


melanoma immunotherapy response. _Science_ 374, 1632–1640 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lam, K. C. et al. Transkingdom network reveals bacterial players


associated with cervical cancer gene expression program. _PeerJ_ 6, e5590 (2018). Article  PubMed  PubMed Central  Google Scholar  * Yambartsev, A. et al. Unexpected links reflect the noise


in networks. _Biol. Direct_ 11, 1–12 (2016). Article  Google Scholar  * Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks.


_Genome Res._ 13, 2498–2504 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities


in large networks. _J. Stat. Mech._ 2008, P10008 (2008). Article  Google Scholar  * Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. _Eur. Phys. J. Spec. Top._ 178, 13–23


(2009). Article  Google Scholar  * Padiadpu, J. et al. Multi-omic network analysis identified betacellulin as a novel target of omega-3 fatty acid attenuation of western diet-induced


nonalcoholic steatohepatitis. _EMBO Mol. Med._ 15, e18367 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Newman, M. E. Assortative mixing in networks. _Phys. Rev. Lett._ 89,


208701 (2002). Article  CAS  PubMed  Google Scholar  * Borgatti, S. P. _The Key Player Problem_. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1149843 (2003). * Freeman,


L. C. in _Social Networks_: _Critical Concepts in Sociology_ (ed. Scott, J.) 238–263 (Routledge, 2002). * Dong, X. et al. Reverse enGENEering of regulatory networks from big data: a roadmap


for biologists. _Bioinform. Biol. Insights_ 9, 61–74 (2015). Article  PubMed  PubMed Central  Google Scholar  * Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E.


Evidence for hubs in human functional brain networks. _Neuron_ 79, 798–813 (2013). Article  CAS  PubMed  Google Scholar  * Li, Z. et al. Microbiota and adipocyte mitochondrial damage in type


2 diabetes are linked by Mmp12+ macrophages. _J. Exp. Med._ 219, e20220017 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shulzhenko, N. et al. Crosstalk between B


lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. _Nat. Med._ 17, 1585–1593 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Mine, K. L. et al. Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. _Nat. Commun._ 4, 1806 (2013). Article  PubMed  Google Scholar  *


Greer, R. L. et al. _Akkermansia muciniphila_ mediates negative effects of IFNgamma on glucose metabolism. _Nat. Commun._ 7, 13329 (2016). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Kahalehili, H. M. et al. Dietary indole-3-carbinol activates AhR in the gut, alters Th17-microbe interactions, and exacerbates insulitis in NOD mice. _Front. Immunol._ 11, 606441


(2021). Article  PubMed  PubMed Central  Google Scholar  * Balduzzi, S., Rücker, G. & Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. _BMJ Ment. Health_ 22,


153–160 (2019). Google Scholar  * Schwarzer, G., Carpenter, J. R. & Rücker, G. _Meta-analysis with R_ (Springer, 2015). * Sera, F., Armstrong, B., Blangiardo, M. & Gasparrini, A. An


extended mixed‐effects framework for meta‐analysis. _Stat. Med._ 38, 5429–5444 (2019). Article  PubMed  Google Scholar  * Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an


R package for ‘omics feature selection and multiple data integration. _PLoS Comput. Biol._ 13, e1005752 (2017). Article  PubMed  PubMed Central  Google Scholar  * Argelaguet, R. et al.


MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. _Genome Biol._ 21, 1–17 (2020). Article  Google Scholar  * Argelaguet, R. et al. Multi‐Omics


Factor Analysis—a framework for unsupervised integration of multi‐omics data sets. _Mol. Syst. Biol._ 14, e8124 (2018). Article  PubMed  PubMed Central  Google Scholar  * Mo, Q. & Shen,


R. iClusterPlus: integrative clustering of multiple genomic data sets. R package version 1.38.0 https://bioconductor.org/packages/iClusterPlus (2023). * Mo, Q. et al. Pattern discovery and


cancer gene identification in integrated cancer genomic data. _Proc. Natl Acad. Sci. USA_ 110, 4245–4250 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Davey Smith, G. &


Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. _Hum. Mol. Genet._ 23, R89–R98 (2014). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Davey Smith, G. & Ebrahim, S. in _Biosocial Surveys_ (National Academies Press, 2008). * Yang, Q., Lin, S. L., Kwok, M. K., Leung, G. M. & Schooling, C. M. The roles of 27


genera of human gut microbiota in ischemic heart disease, type 2 diabetes mellitus, and their risk factors: a Mendelian randomization study. _Am. J. Epidemiol._ 187, 1916–1922 (2018).


Article  PubMed  Google Scholar  * Liu, X. et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. _Nat. Genet._ 54, 52–61


(2022). Article  CAS  PubMed  Google Scholar  * Wang, C., Hu, J., Blaser, M. J. & Li, H. Estimating and testing the microbial causal mediation effect with high-dimensional and


compositional microbiome data. _Bioinformatics_ 36, 347–355 (2020). Article  PubMed  Google Scholar  * Cheung, M. W.-L. A guide to conducting a meta-analysis with non-independent effect


sizes. _Neuropsychol. Rev._ 29, 387–396 (2019). Article  PubMed  PubMed Central  Google Scholar  * VanderWeele, T. J. Mediation analysis: a practitioner’s guide. _Annu. Rev. Public Health_


37, 17–32 (2016). Article  PubMed  Google Scholar  * Baiocchi, M., Cheng, J. & Small, D. S. Instrumental variable methods for causal inference. _Stat. Med._ 33, 2297–2340 (2014). Article


  PubMed  PubMed Central  Google Scholar  * Skinner, J. et al. Construct and compare gene coexpression networks with DAPfinder and DAPview. _BMC Bioinforma._ 12, 1–8 (2011). Article  Google


Scholar  * Thomas, L. D., Vyshenska, D., Shulzhenko, N., Yambartsev, A. & Morgun, A. Differentially correlated genes in co-expression networks control phenotype transitions. _F1000Res._


5, 2740 (2016). Article  PubMed  PubMed Central  Google Scholar  * Braun, R., Cope, L. & Parmigiani, G. Identifying differential correlation in gene/pathway combinations. _BMC


Bioinforma._ 9, 1–17 (2008). Article  Google Scholar  * Chunikhina, E. et al. The C-SHIFT algorithm for normalizing covariances. _IEEE/ACM Trans. Comput. Biol. Bioinform._ 20, 720–730


(2022). Article  Google Scholar  * Välikangas, T., Suomi, T. & Elo, L. L. A systematic evaluation of normalization methods in quantitative label-free proteomics. _Brief. Bioinform._ 19,


1–11 (2018). PubMed  Google Scholar  * Zhang, Y. et al. Improvements in metabolic syndrome by xanthohumol derivatives are linked to altered gut microbiota and bile acid metabolism. _Mol.


Nutr. Food Res._ 64, e1900789 (2020). Article  PubMed  Google Scholar  * Padiadpu, J. et al. Early transcriptome changes associated with western diet induced NASH in Ldlr−/− mice points to


activation of hepatic macrophages and an acute phase response. _Front. Nutr._ 10, 1147602 (2023). Article  PubMed  PubMed Central  Google Scholar  * Danelishvili, L. et al. Mycobacterium


tuberculosis proteome response to antituberculosis compounds reveals metabolic “escape” pathways that prolong bacterial survival. _Antimicrob. Agents Chemother._ 61, e00430-17 (2017).


Article  PubMed  PubMed Central  Google Scholar  * Newman, N. et al. Reducing gut microbiome-driven adipose tissue inflammation alleviates metabolic syndrome. _Microbiome_ 11, 208 (2023).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Bader, G. D. & Hogue, C. W. An automated method for finding molecular complexes in large protein interaction networks. _BMC


Bioinforma._ 4, 1–27 (2003). Article  Google Scholar  * Wang, J. et al. ClusterViz: a cytoscape APP for cluster analysis of biological network. _IEEE/ACM Trans. Comput. Biol. Bioinform._ 12,


815–822 (2014). Article  Google Scholar  * Newman, M. _Networks_ (Oxford University Press, 2018). * Zhao, Y. et al. TPM, FPKM, or normalized counts? A comparative study of quantification


measures for the analysis of RNA-seq data from the NCI patient-derived models repository. _J. Transl. Med._ 19, 1–15 (2021). Article  CAS  Google Scholar  * Mortazavi, A., Williams, B. A.,


McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. _Nat. Methods_ 5, 621–628 (2008). Article  CAS  PubMed  Google Scholar  * Trapnell, C. et


al. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. _Nat. Biotechnol._ 28, 511–515 (2010). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Bolstad, B. M., Irizarry, R. A., Åstrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on


variance and bias. _Bioinformatics_ 19, 185–193 (2003). Article  CAS  PubMed  Google Scholar  * Yang, Y. H., Dudoit, S., Luu, P. & Speed, T. P. Normalization for cDNA microarry data. In


_Microarrays: Optical Technologies and Informatics_ Vol. 4266, 141–152 (SPIE, 2001). * Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis


of RNA-seq data. _Genome Biol._ 11, 1–9 (2010). Article  Google Scholar  * Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with


DESeq2. _Genome Biol._ 15, 1–21 (2014). Article  Google Scholar  * Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy—analysis of Affymetrix GeneChip data at the probe level.


_Bioinformatics_ 20, 307–315 (2004). Article  CAS  PubMed  Google Scholar  * Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression


analysis of digital gene expression data. _Bioinformatics_ 26, 139–140 (2010). Article  CAS  PubMed  Google Scholar  * Sanders, H. L. Marine benthic diversity: a comparative study. _Am.


Nat._ 102, 243–282 (1968). Article  Google Scholar  * Joseph, N., Paulson, C., Corrada Bravo, H. & Pop, M. Robust methods for differential abundance analysis in marker gene surveys.


_Nat. Methods_ 10, 1200–1202 (2013). Article  Google Scholar  * Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. _Nat. Biotechnol._


37, 852–857 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Paulson, J. N., Pop, M. & Bravo, H. C. metagenomeSeq: statistical analysis for sparse high-throughput


sequencing. _Bioconductor Package 1_ https://www.cbcb.umd.edu/software/metagenomeSeq (2013). * Bijlsma, S. et al. Large-scale human metabolomics studies: a strategy for data (pre-)


processing and validation. _Anal. Chem._ 78, 567–574 (2006). Article  CAS  PubMed  Google Scholar  * Sysi-Aho, M., Katajamaa, M., Yetukuri, L. & Orešič, M. Normalization method for


metabolomics data using optimal selection of multiple internal standards. _BMC Bioinforma._ 8, 1–17 (2007). Article  Google Scholar  * Warrack, B. M. et al. Normalization strategies for


metabonomic analysis of urine samples. _J. Chromatogr. B Anal. Technol. Biomed. Life Sci._ 877, 547–552 (2009). Article  CAS  Google Scholar  * Saccenti, E. Correlation patterns in


experimental data are affected by normalization procedures: consequences for data analysis and network inference. _J. Proteome Res._ 16, 619–634 (2017). Article  CAS  PubMed  Google Scholar


  * Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H


NMR metabonomics. _Anal. Chem._ 78, 4281–4290 (2006). Article  CAS  PubMed  Google Scholar  * Wulff, J. E. & Mitchell, M. W. A comparison of various normalization methods for LC/MS


metabolomics data. _Adv. Biosci. Biotechnol._ 9, 339 (2018). Article  CAS  Google Scholar  * Karpievitch, Y. V. et al. Normalization of peak intensities in bottom-up MS-based proteomics


using singular value decomposition. _Bioinformatics_ 25, 2573–2580 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ernest, B., Gooding, J. R., Campagna, S. R., Saxton, A. M.


& Voy, B. H. MetabR: an R script for linear model analysis of quantitative metabolomic data. _BMC Res. notes_ 5, 1–10 (2012). Article  Google Scholar  * Karpievitch, Y., Stuart, T. &


Mohamed, S. ProteoMM: multi-dataset model-based differential expression proteomics analysis platform. _R package version 1_ https://bioconductor.org/packages/ProteoMM (2023). * Röst, H. L.


et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. _Nat. Methods_ 13, 741–748 (2016). Article  PubMed  Google Scholar  * Röst, H. L., Schmitt, U.,


Aebersold, R. & Malmström, L. pyOpenMS: a Python‐based interface to the OpenMS mass‐spectrometry algorithm library. _Proteomics_ 14, 74–77 (2014). Article  PubMed  Google Scholar  *


Callister, S. J. et al. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. _J. Proteome Res._ 5, 277–286 (2006). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Huber, W., Von Heydebreck, A., Sültmann, H., Poustka, A. & Vingron, M. Variance stabilization applied to microarray data calibration and to


the quantification of differential expression. _Bioinformatics_ 18, S96–S104 (2002). Article  PubMed  Google Scholar  * Graw, S. et al. proteiNorm–a user-friendly tool for normalization and


analysis of TMT and label-free protein quantification. _ACS Omega_ 5, 25625–25633 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhou, Y. et al. Metascape provides a


biologist-oriented resource for the analysis of systems-level datasets. _Nat. Commun._ 10, 1523 (2019). Article  PubMed  PubMed Central  Google Scholar  * Lynn, D. J. et al. InnateDB:


facilitating systems‐level analyses of the mammalian innate immune response. _Mol. Syst. Biol._ 4, 218 (2008). Article  PubMed  PubMed Central  Google Scholar  * Subramanian, A. et al. Gene


set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. _Proc. Natl Acad. Sci._ 102, 15545–15550 (2005). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Gillespie, M. et al. The reactome pathway knowledgebase 2022. _Nucleic Acids Res._ 50, D687–D692 (2022). Article  CAS  PubMed  Google Scholar  * Szklarczyk, D. et al. The


STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. _Nucleic Acids Res._ 49, D605–D612 (2021). Article 


CAS  PubMed  Google Scholar  * Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. _Nucleic Acids Res._ 45,


W180–W188 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene


sequences. _Nat. Biotechnol._ 31, 814–821 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and


functional insights. _Nucleic Acids Res._ 49, W388–W396 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and


Genomes. _Nucleic Acids Res._ 28, 27–30 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS The funding that supports this work is AI157369 (to


A.M.), DK103761 (to N.S.), DK107603 (to A.M.) and BC011153 (to G.T.), NCI/NIH (Contract No. 75N91019D00024 (to J.S. and J.W.)). S.S.P. and M.S.M. were supported by summer fellowships from


the College of Pharmacy at Oregon State University. We thank Isaiah Shriver for aiding in testing the code. AUTHOR INFORMATION Author notes * These authors contributed equally: Nolan K.


Newman, Matthew S. Macovsky, Richard R. Rodrigues. * These authors jointly supervised this work: Giorgio Trinchieri, Kevin Brown, Andrey Morgun. AUTHORS AND AFFILIATIONS * College of


Pharmacy, Oregon State University, Corvallis, OR, USA Nolan K. Newman, Matthew S. Macovsky, Amanda M. Bruce, Jyothi Padiadpu, Sankalp S. Patil, Kevin Brown & Andrey Morgun * Basic


Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA Richard R. Rodrigues * Microbiome and Genetics Core, Laboratory of Integrative Cancer Immunology,


Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA Richard R. Rodrigues * Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA Jacob W.


Pederson & Natalia Shulzhenko * Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA Jigui Shan & Joshua Williams * Cancer


Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA Amiran K. Dzutsev & Giorgio Trinchieri


Authors * Nolan K. Newman View author publications You can also search for this author inPubMed Google Scholar * Matthew S. Macovsky View author publications You can also search for this


author inPubMed Google Scholar * Richard R. Rodrigues View author publications You can also search for this author inPubMed Google Scholar * Amanda M. Bruce View author publications You can


also search for this author inPubMed Google Scholar * Jacob W. Pederson View author publications You can also search for this author inPubMed Google Scholar * Jyothi Padiadpu View author


publications You can also search for this author inPubMed Google Scholar * Jigui Shan View author publications You can also search for this author inPubMed Google Scholar * Joshua Williams


View author publications You can also search for this author inPubMed Google Scholar * Sankalp S. Patil View author publications You can also search for this author inPubMed Google Scholar *


Amiran K. Dzutsev View author publications You can also search for this author inPubMed Google Scholar * Natalia Shulzhenko View author publications You can also search for this author


inPubMed Google Scholar * Giorgio Trinchieri View author publications You can also search for this author inPubMed Google Scholar * Kevin Brown View author publications You can also search


for this author inPubMed Google Scholar * Andrey Morgun View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS N.S. and A.M. conceived the


original version of TkNA. N.K.N., M.S.M., R.R.R., A.K.D., N.S., G.T., K.B. and A.M. designed the current TkNA framework. N.K.N. and M.S.M. implemented the coding part of the TkNA workflow.


R.R.R. and J.P. prepared parts of the TkNA workflow that require additional software. A.M.B., J.W.P. and S.S.P. performed the validation. N.K.N., R.R.R. and A.M.B. prepared the simulated


data. R.R.R. prepared the experimental data. N.K.N. and A.M.B. prepared the figures. J.S. and J.W. built the web tool version of TkNA. N.K.N., M.S.M., R.R.R., J.P. and K.B. wrote the paper.


A.M.B., J.W.P., S.S.P., J.P., A.K.D., N.S., G.T., K.B. and A.M. edited the paper. N.S., G.T., K.B. and A.M. supervised various aspects of this study. CORRESPONDING AUTHORS Correspondence to


Giorgio Trinchieri, Kevin Brown or Andrey Morgun. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Protocols_


thanks Nikita Agarwal, Torgeir Hvidsten and Jayadev Joshi for their contribution to the peer review process. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with


regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS KEY REFERENCES USING THIS PROTOCOL Morgun, A. et al. _Gut_ 64, 1732–1743 (2015):


https://doi.org/10.1136/gutjnl-2014-308820 Rodrigues, R. R. et al. _Nat. Commun_. 12, 101 (2021): https://doi.org/10.1038/s41467-020-20313-x Li, Z. et al. _J. Exp. Med_. 219, e20220017


(2022): https://doi.org/10.1084/jem.20220017 SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1 and 2 RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a


society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript


version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Newman, N.K., Macovsky,


M.S., Rodrigues, R.R. _et al._ Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions. _Nat


Protoc_ 19, 1750–1778 (2024). https://doi.org/10.1038/s41596-024-00960-w Download citation * Received: 13 March 2023 * Accepted: 29 November 2023 * Published: 12 March 2024 * Issue Date:


June 2024 * DOI: https://doi.org/10.1038/s41596-024-00960-w SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Central nervous system monoamine correlates of social dominance in cynomolgus monkeys (macaca fascicularis)

ABSTRACT Social dominance is a fundamental component of both human and nonhuman primate sociality. However, its neurobio...

Transient blocking of both b7. 1 (cd80) and b7. 2 (cd86) in addition to cd40–cd40l interaction fully abrogates the immune response following systemic

ABSTRACT Blockade of the CD40–CD40L and CD80/CD86–CD28 costimulatory pathways represents a strategy to inhibit the immun...

James hunter does it the hard way

Three discs into his career, James Hunter released his 2006 album _People Gonna Talk_ to an international audience, earn...

Homotypic and heterotypic interactions of ews, fli1 and their oncogenic fusion protein

ABSTRACT In Ewing's sarcoma family tumors, the ets transcription factor gene _FLI1_ is rearranged with one _EWS_ al...

A journey of compassion and dignity in life’s final moments | va orlando health care | veterans affairs

“In the tender and vulnerable moments of life’s closing chapter, solitude often looms for some of our nation’s finest he...

Latests News

Transkingdom network analysis (tkna): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions

ABSTRACT We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a h...

Yindjibarndi elder dies | The West Australian

REBECCA TRIGGERBroome Advertiser One of the oldest and highly respected elders of the Yindjibarndi people, who dedicated...

Metal concentrations in pregnant women and neonates from informal electronic waste recycling

ABSTRACT Electronic waste (e-waste) is the fastest growing solid waste stream worldwide and mostly ends up in developing...

The page you were looking for doesn't exist.

You may have mistyped the address or the page may have moved.By proceeding, you agree to our Terms & Conditions and our ...

Nature geoscience - volume 4 issue 1, january 2011

Continental rifting creates narrow ocean basins, where coastal ocean upwelling and enhanced silicate weathering remove c...

Top