Brain–body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis

Nature

Brain–body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis"


Play all audios:

Loading...

ABSTRACT Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons,


leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3–5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure


or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals.


However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease


and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS


arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male


and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease. KEY POINTS *


The molecular mechanisms that underlie sex differences in amyotrophic lateral sclerosis (ALS), in particular the higher prevalence and earlier onset in male over female individuals, are


poorly understood. * The disease mechanisms are modulated by age, genetics and environmental factors that interact to produce a wide range of ALS phenotypes with differences in symptom


presentation and disease onset and duration. * Interactions between the nervous systems and peripheral organs and systems that are strikingly different between sexes in terms of molecular


signature and physiology are key to our understanding of sexual dimorphism in ALS. * Harnessing brain–body interactions could allow the identification of biomarkers and offer new avenues for


the treatment of ALS. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12


print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be


subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR


CONTENT BEING VIEWED BY OTHERS DISSOCIATION OF DISEASE ONSET, PROGRESSION AND SEX DIFFERENCES FROM ANDROGEN RECEPTOR LEVELS IN A MOUSE MODEL OF AMYOTROPHIC LATERAL SCLEROSIS Article Open


access 29 April 2021 FEMALE SEX MITIGATES MOTOR AND BEHAVIOURAL PHENOTYPES IN TDP-43Q331K KNOCK-IN MICE Article Open access 05 November 2020 MULTIOMIC ALS SIGNATURES HIGHLIGHT SUBCLUSTERS


AND SEX DIFFERENCES SUGGESTING THE MAPK PATHWAY AS THERAPEUTIC TARGET Article Open access 07 June 2024 REFERENCES * Gorelick, P. B. & Alter, M. (eds.) _Handbook of Neuroepidemiology_


(Marcel Dekker, 1994).  * McGuire, V., Longstreth, W. T., Koepsell, T. D. & van Belle, G. Incidence of amyotrophic lateral sclerosis in three counties in Western Washington state.


_Neurology_ 47, 571–573 (1996). CAS  PubMed  Google Scholar  * Abhinav, K. et al. Amyotrophic lateral sclerosis in South-East England: a population-based study. _Neuroepidemiology_ 29, 44–48


(2007). CAS  PubMed  Google Scholar  * Chio, A. et al. Epidemiology of ALS in Italy: a 10-year prospective population-based study. _Neurology_ 72, 725–731 (2009). CAS  PubMed  Google


Scholar  * Vázquez, M. C. et al. Incidence and prevalence of amyotrophic lateral sclerosis in Uruguay: a population-based study. _Neuroepidemiology_ 30, 105–111 (2008). PubMed  Google


Scholar  * Mehta, P. et al. Prevalence of amyotrophic lateral sclerosis — United States, 2015. _MMWR Morb. Mortal. Wkly. Rep._ 67, 1285–1289 (2018). PubMed  PubMed Central  Google Scholar  *


Traynor, B. J. et al. Incidence and prevalence of ALS in Ireland, 1995-1997: a population-based study. _Neurology_ 52, 504 (1999). CAS  PubMed  Google Scholar  * Atsuta, N. et al. Age at


onset influences on wide-ranged clinical features of sporadic amyotrophic lateral sclerosis. _J. Neurol. Sci._ 276, 163–169 (2009). PubMed  Google Scholar  * Nalini, A., Thennarasu, K.,


Gourie-Devi, M., Shenoy, S. & Kulshreshtha, D. Clinical characteristics and survival pattern of 1153 patients with amyotrophic lateral sclerosis: experience over 30 years from India. _J.


Neurol. Sci._ 272, 60–70 (2008). CAS  PubMed  Google Scholar  * Masrori, P. & Van Damme, P. Amyotrophic lateral sclerosis: a clinical review. _Eur. J. Neurol._ 27, 1918–1929 (2020). CAS


  PubMed  Google Scholar  * Turner, M. R. et al. The diagnostic pathway and prognosis in bulbar-onset amyotrophic lateral sclerosis. _J. Neurol. Sci._ 294, 81–85 (2010). PubMed  Google


Scholar  * Zhang, H., Chen, L., Tian, J. & Fan, D. Disease duration of progression is helpful in identifying isolated bulbar palsy of amyotrophic lateral sclerosis. _BMC Neurol._ 21, 405


(2021). CAS  PubMed  PubMed Central  Google Scholar  * Kiernan, M. C. et al. Amyotrophic lateral sclerosis. _Lancet_ 377, 942–955 (2011). CAS  PubMed  Google Scholar  * Strong, M. J. et al.


Amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. _Amyotroph. Lateral Scler. Front. Degener._ 18, 153–174 (2017). Google Scholar  *


Chio, A., Calvo, A., Moglia, C., Mazzini, L. & Mora, G. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. _J. Neurol. Neurosurg. Psychiatry_ 82,


740–746 (2011). PubMed  Google Scholar  * Eisen, A. & Krieger, C. _Amyotrophic Lateral Sclerosis: a Synthesis of Research and Clinical Practice_ (Cambridge Univ. Press, 1998). * McCombe,


P. A. & Henderson, R. D. Effects of gender in amyotrophic lateral sclerosis. _Gend. Med._ 7, 557–570 (2010). PubMed  Google Scholar  * Vlassoff, C. Gender differences in determinants


and consequences of health and illness. _J. Health Popul. Nutr._ 25, 47–61 (2007). PubMed  PubMed Central  Google Scholar  * Taylor, J. P., Brown, R. H. & Cleveland, D. W. Decoding ALS:


from genes to mechanism. _Nature_ 539, 197–206 (2016). PubMed  PubMed Central  Google Scholar  * Pape, J. A. & Grose, J. H. The effects of diet and sex in amyotrophic lateral sclerosis.


_Rev. Neurol._ 176, 301–315 (2020). CAS  PubMed  Google Scholar  * Trojsi, F., D’Alvano, G., Bonavita, S. & Tedeschi, G. Genetics and sex in the pathogenesis of amyotrophic lateral


sclerosis (ALS): is there a link? _Int. J. Mol. Sci._ 21, 3647 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Mehta, P. et al. Incidence of amyotrophic lateral sclerosis in the


United States, 2014-2016. _Amyotroph. Lateral Scler. Frontotemporal Degener._ 23, 378–382 (2022). PubMed  Google Scholar  * Jun, K. Y. et al. Epidemiology of ALS in Korea using nationwide


big data. _J. Neurol. Neurosurg. Psychiatry_ 90, 395–403 (2019). PubMed  Google Scholar  * Shahrizaila, N. et al. Amyotrophic lateral sclerosis and motor neuron syndromes in Asia. _J.


Neurol. Neurosurg. Psychiatry_ 87, 821–830 (2016). CAS  PubMed  Google Scholar  * Manjaly, Z. R. et al. The sex ratio in amyotrophic lateral sclerosis: a population based study. _Amyotroph.


Lateral Scler._ 11, 439–442 (2010). PubMed  PubMed Central  Google Scholar  * Marin, B., Gil, J., Preux, P. M., Funalot, B. & Couratier, P. Incidence of amyotrophic lateral sclerosis in


the Limousin region of France, 1997–2007. _Amyotroph. Lateral Scler._ 10, 216–220 (2009). PubMed  Google Scholar  * Wolfson, C., Gauvin, D. E., Ishola, F. & Oskoui, M. Global prevalence


and incidence of amyotrophic lateral sclerosis: a systematic review. _Neurology_ 101, e613–e623 (2023). PubMed  Google Scholar  * Brown, C. A., Lally, C., Kupelian, V. & Flanders, W. D.


Estimated prevalence and incidence of amyotrophic lateral sclerosis and SOD1 and C9orf72 genetic variants. _Neuroepidemiology_ 55, 342–353 (2021). PubMed  Google Scholar  * Chiò, A. et al.


Secular trends of amyotrophic lateral sclerosis: the Piemonte and Valle d’Aosta Register. _JAMA Neurol._ 74, 1097–1104 (2017). PubMed  PubMed Central  Google Scholar  * Newell, M. E.,


Adhikari, S. & Halden, R. U. Systematic and state-of the science review of the role of environmental factors in amyotrophic lateral sclerosis (ALS) or Lou Gehrig’s disease. _Sci. Total


Environ._ 817, 152504 (2022). CAS  PubMed  Google Scholar  * Andrew, A. S. et al. Risk factors for amyotrophic lateral sclerosis: a regional United States case-control study. _Muscle Nerve_


63, 52–59 (2021). PubMed  Google Scholar  * Goutman, S. A. et al. Avocational exposure associations with ALS risk, survival, and phenotype: a Michigan-based case-control study. _J. Neurol.


Sci._ 457, 122899 (2024). PubMed  Google Scholar  * Walhout, R., Verstraete, E., van den Heuvel, M. P., Veldink, J. H. & van den Berg, L. H. Patterns of symptom development in patients


with motor neuron disease. _Amyotroph. Lateral Scler. Frontotemporal Degener._ 19, 21–28 (2018). PubMed  Google Scholar  * Feldman, E. L. et al. Amyotrophic lateral sclerosis. _Lancet_ 400,


1363–1380 (2022). CAS  PubMed  PubMed Central  Google Scholar  * Swinnen, B. & Robberecht, W. The phenotypic variability of amyotrophic lateral sclerosis. _Nat. Rev. Neurol._ 10, 661–670


(2014). PubMed  Google Scholar  * Zhang, H. G., Chen, L., Tang, L., Zhang, N. & Fan, D. S. Clinical features of isolated bulbar palsy of amyotrophic lateral sclerosis in Chinese


population. _Chin. Med. J._ 130, 1768–1772 (2017). PubMed  PubMed Central  Google Scholar  * Burrell, J. R., Vucic, S. & Kiernan, M. C. Isolated bulbar phenotype of amyotrophic lateral


sclerosis. _Amyotroph. Lateral Scler._ 12, 283–289 (2011). PubMed  Google Scholar  * Raymond, J., Mehta, P., Larson, T., Pioro, E. P. & Horton, D. K. Reproductive history and age of


onset for women diagnosed with amyotrophic lateral sclerosis: data from the National ALS Registry: 2010–2018. _Neuroepidemiology_ 55, 416–424 (2021). PubMed  Google Scholar  * Grassano, M.


et al. Sex differences in amyotrophic lateral sclerosis survival and progression: a multidimensional analysis. _Ann. Neurol_. https://doi.org/10.1002/ana.26933 (2024). * Pinto, S., Gromicho,


M., Oliveira Santos, M. O., Swash, M. & De Carvalho, M. Respiratory onset in amyotrophic lateral sclerosis: clinical features and spreading pattern. _Amyotroph. Lateral Scler.


Frontotemporal Degener._ 24, 40–44 (2023). CAS  PubMed  Google Scholar  * Fayemendy, P. et al. Hypermetabolism is a reality in amyotrophic lateral sclerosis compared to healthy subjects. _J.


Neurol. Sci._ 420, 117257 (2021). PubMed  Google Scholar  * Steyn, F. J. et al. Hypermetabolism in ALS is associated with greater functional decline and shorter survival. _J. Neurol.


Neurosurg. Psychiatry_ 89, 1016–1023 (2018). PubMed  Google Scholar  * Ferri, A. & Coccurello, R. What is ‘hyper’ in the ALS hypermetabolism? _Mediators Inflamm._ 2017, 7821672 (2017).


PubMed  PubMed Central  Google Scholar  * Funalot, B., Desport, J. C., Sturtz, F., Camu, W. & Couratier, P. High metabolic level in patients with familial amyotrophic lateral sclerosis.


_Amyotroph. Lateral Scler._ 10, 113–117 (2009). CAS  PubMed  Google Scholar  * Rosenfeld, J. & Strong, M. J. Challenges in the understanding and treatment of amyotrophic lateral


sclerosis/motor neuron disease. _Neurotherapeutics_ 12, 317–325 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are


associated with familial amyotrophic lateral sclerosis. _Nature_ 362, 59–62 (1993). CAS  PubMed  Google Scholar  * Corson, L. B., Strain, J. J., Culotta, V. C. & Cleveland, D. W.


Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. _Proc. Natl Acad. Sci. USA_ 95,


6361–6366 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Smeyers, J., Banchi, E. G. & Latouche, M. C9ORF72: what it is, what it does, and why it matters. _Front. Cell. Neurosci._


15, 661447 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Balendra, R. & Isaacs, A. M. C9orf72-mediated ALS and FTD: multiple pathways to disease. _Nat. Rev. Neurol._ 14,


544–558 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Suk, T. R. & Rousseaux, M. W. C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. _Mol. Neurodegener._


15, 45 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A. & Patel, B. K. Molecular mechanisms of TDP-43 misfolding and pathology


in amyotrophic lateral sclerosis. _Front. Mol. Neurosci._ 12, 25 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Chio, A. et al. Extensive genetics of ALS: a population-based study


in Italy. _Neurology_ 79, 1983–1989 (2012). PubMed  PubMed Central  Google Scholar  * Salmon, K. et al. The importance of offering early genetic testing in everyone with amyotrophic lateral


sclerosis. _Brain_ 145, 1207–1210 (2022). PubMed  PubMed Central  Google Scholar  * Berdyński, M. et al. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant


severity. _Sci. Rep._ 12, 103 (2022). PubMed  PubMed Central  Google Scholar  * Bunton-Stasyshyn, R. K. A., Saccon, R. A., Fratta, P. & Fisher, E. M. C. SOD1 function and its


implications for amyotrophic lateral sclerosis pathology: new and renascent themes. _Neuroscientist_ 21, 519–529 (2015). CAS  PubMed  Google Scholar  * Saccon, R. A., Bunton-Stasyshyn, R. K.


A., Fisher, E. M. C. & Fratta, P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? _Brain_ 136, 2342–2358 (2013). PubMed  PubMed Central  Google Scholar  * Kim, G.,


Gautier, O., Tassoni-Tsuchida, E., Ma, X. R. & Gitler, A. D. ALS genetics: gains, losses, and implications for future therapies. _Neuron_ 108, 822–842 (2020). CAS  PubMed  PubMed Central


  Google Scholar  * Yim, M. B. et al. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a


decrease in Km for hydrogen peroxide. _Proc. Natl Acad. Sci. USA_ 93, 5709–5714 (1996). CAS  PubMed  PubMed Central  Google Scholar  * DeJesus-Hernandez, M. et al. Expanded GGGGCC


hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. _Neuron_ 72, 245–256 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Renton, A. E. et al.


A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. _Neuron_ 72, 257–268 (2011). CAS  PubMed  PubMed Central  Google Scholar  * van Blitterswijk,


M., DeJesus-Hernandez, M. & Rademakers, R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia. _Curr. Opin. Neurol._ 25, 689–700 (2012).


PubMed  PubMed Central  Google Scholar  * Curtis, A. F. et al. Sex differences in the prevalence of genetic mutations in FTD and ALS. _Neurology_ 89, 1633–1642 (2017). PubMed  PubMed Central


  Google Scholar  * Esselin, F. et al. Clinical phenotype and inheritance in patients with C9ORF72 hexanucleotide repeat expansion: results from a large French cohort. _Front. Neurosci._ 14,


316 (2020). PubMed  PubMed Central  Google Scholar  * Wiesenfarth, M. et al. Clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations. _Brain Commun._


5, fcad087 (2023). PubMed  PubMed Central  Google Scholar  * Laaksovirta, H. et al. ALS in Finland: major genetic variants and clinical characteristics of patients with and without the


C9orf72 hexanucleotide repeat expansion. _Neurol. Genet._ 8, e665 (2022). PubMed  PubMed Central  Google Scholar  * Yusipov, I. et al. Age-related DNA methylation changes are sex-specific: a


comprehensive assessment. _Aging_ 12, 24057–24080 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Kovtun, I. V., Therneau, T. M. & McMurray, C. T. Gender of the embryo


contributes to CAG instability in transgenic mice containing a Huntington’s disease gene. _Hum. Mol. Genet._ 9, 2767–2775 (2000). CAS  PubMed  Google Scholar  * Trojsi, F. et al. Comparative


analysis of C9orf72 and sporadic disease in a large multicenter ALS population: the effect of male sex on survival of C9orf72 positive patients. _Front. Neurosci._ 13, 485 (2019). PubMed 


PubMed Central  Google Scholar  * Rooney, J. et al. C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. _J. Neurol. Neurosurg. Psychiatry_ 88, 281


(2017). PubMed  Google Scholar  * Murphy, N. A. et al. Age-related penetrance of the C9orf72 repeat expansion. _Sci. Rep._ 7, 2116 (2017). PubMed  PubMed Central  Google Scholar  *


Burberry, A. et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. _Nature_ 582, 89–94 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Burberry, A. et


al. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. _Sci. Transl. Med._ 8, 347ra93 (2016). PubMed  PubMed Central  Google Scholar  * Ugolino, J. et


al. Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB signaling. _PLoS Genet._ 12, e1006443 (2016). PubMed  PubMed Central  Google Scholar  * Koppers, M. et al.


C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. _Ann. Neurol._ 78, 426–438 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Cook, C. N. et al.


C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy. _Sci. Transl. Med._ 12, eabb3774 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Verdone, B. M. et al. A mouse model with


widespread expression of the C9orf72-linked glycine–arginine dipeptide displays non-lethal ALS/FTD-like phenotypes. _Sci. Rep._ 12, 5644 (2022). CAS  PubMed  PubMed Central  Google Scholar 


* Liu, Y. et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. _Neuron_ 90, 521–534 (2016). CAS  PubMed  Google Scholar  * Podcasy, J. L. &


Epperson, C. N. Considering sex and gender in Alzheimer disease and other dementias. _Dialogues Clin. Neurosci._ 18, 437–446 (2016). PubMed  PubMed Central  Google Scholar  * Pengo, M. et


al. Sex influences clinical phenotype in frontotemporal dementia. _Neurol. Sci._ 43, 5281–5287 (2022). PubMed  PubMed Central  Google Scholar  * McDonald, K. K. et al. TAR DNA-binding


protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. _Hum. Mol. Genet._ 20, 1400–1410 (2011). CAS  PubMed  Google Scholar  * Buratti, E.


Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. _EMBO J._ 20, 1774–1784 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Junttila, A. et al.


Cerebrospinal fluid TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis patients with and without the C9ORF72 hexanucleotide expansion. _Dement. Geriatr. Cogn. Dis.


Extra_ 6, 142–149 (2016). PubMed  PubMed Central  Google Scholar  * Lombardi, M. et al. Variability in clinical phenotype in TARDBP mutations: amyotrophic lateral sclerosis case description


and literature review. _Genes_ 14, 2309 (2023). Google Scholar  * Wegorzewska, I., Bell, S., Cairns, N. J., Miller, T. M. & Baloh, R. H. TDP-43 mutant transgenic mice develop features


of ALS and frontotemporal lobar degeneration. _Proc. Natl Acad. Sci. USA_ 106, 18809–18814 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Watkins, J. et al. Female sex mitigates


motor and behavioural phenotypes in TDP-43Q331K knock-in mice. _Sci. Rep._ 10, 19220 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Martin, S., Battistini, C. & Sun, J. A gut


feeling in amyotrophic lateral sclerosis: microbiome of mice and men. _Front. Cell. Infect. Microbiol._ 12, 839526 (2022). CAS  PubMed  PubMed Central  Google Scholar  * Guo, Y. et al. HO-1


induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. _Brain Res._ 1460, 88–95 (2012). CAS  PubMed  Google Scholar  * Esmaeili, M. A., Panahi, M., Yadav, S.,


Hennings, L. & Kiaei, M. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral


sclerosis. _Int. J. Exp. Pathol._ 94, 56–64 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Coughlan, K. S., Halang, L., Woods, I. & Prehn, J. H. M. A high-fat jelly diet


restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice. _Dis. Model. Mech._ 9,


1029–1037 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Khymenets, O. et al. Role of sex and time of blood sampling in SOD1 and SOD2 expression variability. _Clin. Biochem._ 41,


1348–1354 (2008). CAS  PubMed  Google Scholar  * Tang, L., Ma, Y., Liu, X., Chen, L. & Fan, D. Better survival in female SOD1-mutant patients with ALS: a study of SOD1-related natural


history. _Transl. Neurodegener._ 8, 2 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Chiò, A. et al. ALS phenotype is influenced by age, sex, and genetics. _Neurology_ 94, e802–e810


(2020). PubMed  Google Scholar  * Cervetto, C., Frattaroli, D., Maura, G. & Marcoli, M. Motor neuron dysfunction in a mouse model of ALS: gender-dependent effect of P2X7 antagonism.


_Toxicology_ 311, 69–77 (2013). CAS  PubMed  Google Scholar  * Suzuki, M. et al. Sexual dimorphism in disease onset and progression of a rat model of ALS. _Amyotroph. Lateral Scler._ 8,


20–25 (2007). PubMed  Google Scholar  * Oliván, S. et al. Comparative study of behavioural tests in the SOD1G93A mouse model of amyotrophic lateral sclerosis. _Exp. Anim._ 64, 147–153


(2015). PubMed  Google Scholar  * Pfohl, S. R., Halicek, M. T. & Mitchell, C. S. Characterization of the contribution of genetic background and gender to disease progression in the SOD1


G93A mouse model of amyotrophic lateral sclerosis: a meta-analysis. _J. Neuromuscul. Dis._ 2, 137–150 (2015). PubMed  PubMed Central  Google Scholar  * Ohta, Y. et al. Sex-dependent effects


of chromogranin B P413L allelic variant as disease modifier in amyotrophic lateral sclerosis. _Hum. Mol. Genet._ 25, 4771–4786 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Stam, N.


C. et al. Sex-specific behavioural effects of environmental enrichment in a transgenic mouse model of amyotrophic lateral sclerosis. _Eur. J. Neurosci._ 28, 717–723 (2008). PubMed  Google


Scholar  * Heiman-Patterson, T. D. et al. Background and gender effects on survival in the TgN(SOD1-G93A)1Gur mouse model of ALS. _J. Neurol. Sci._ 236, 1–7 (2005). CAS  PubMed  Google


Scholar  * Urushitani, M. et al. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. _Nat. Neurosci._ 9, 108–118 (2006). CAS 


PubMed  Google Scholar  * Gros-Louis, F. et al. Chromogranin B P413L variant as risk factor and modifier of disease onset for amyotrophic lateral sclerosis. _Proc. Natl Acad. Sci. USA_ 106,


21777–21782 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Deng, H.-X. et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. _Nature_ 477,


211–215 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Renaud, L., Picher-Martel, V., Codron, P. & Julien, J. P. Key role of UBQLN2 in pathogenesis of amyotrophic lateral


sclerosis and frontotemporal dementia. _Acta Neuropathol. Commun._ 7, 103 (2019). PubMed  PubMed Central  Google Scholar  * Chua, J. P., De Calbiac, H., Kabashi, E. & Barmada, S. J.


Autophagy and ALS: mechanistic insights and therapeutic implications. _Autophagy_ 18, 254–282 (2022). CAS  PubMed  Google Scholar  * Lin, B. C., Higgins, N. R., Phung, T. H. & Monteiro,


M. J. UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD. _FEBS J._ 289, 6132–6153 (2022). CAS  PubMed  Google Scholar  * Higgins, N., Lin, B. & Monteiro, M. J. Lou


Gehrig’s disease (ALS): UBQLN2 mutations strike out of phase. _Structure_ 27, 879–881 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Vengoechea, J., David, M. P., Yaghi, S. R.,


Carpenter, L. & Rudnicki, S. A. Clinical variability and female penetrance in X-linked familial FTD/ALS caused by a P506S mutation in UBQLN2. _Amyotroph. Lateral Scler. Frontotemporal


Degener._ 14, 615–619 (2013). CAS  PubMed  Google Scholar  * Gkazi, S. A. et al. Striking phenotypic variation in a family with the P506S UBQLN2 mutation including amyotrophic lateral


sclerosis, spastic paraplegia, and frontotemporal dementia. _Neurobiol. Aging_ 73, 229.e5–229.e9 (2019). CAS  PubMed  Google Scholar  * Alexander, E. J. et al. Ubiquilin 2 modulates


ALS/FTD-linked FUS-RNA complex dynamics and stress granule formation. _Proc. Natl Acad. Sci. USA_ 115, E11485–E11494 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Dao, T. P. et al.


Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. _Mol. Cell_ 69, 965–978.e6 (2018). CAS  PubMed  PubMed Central  Google Scholar  *


Gilpin, K. M., Chang, L. & Monteiro, M. J. ALS-linked mutations in ubiquilin-2 or hnRNPA1 reduce interaction between ubiquilin-2 and hnRNPA1. _Hum. Mol. Genet._ 24, 2565–2577 (2015). CAS


  PubMed  Google Scholar  * Picher-Martel, V., Dutta, K., Phaneuf, D., Sobue, G. & Julien, J. P. Ubiquilin-2 drives NF-κB activity and cytosolic TDP-43 aggregation in neuronal cells.


_Mol. Brain_ 8, 71 (2015). PubMed  PubMed Central  Google Scholar  * Picher-Martel, V., Renaud, L., Bareil, C. & Julien, J. P. Neuronal expression of UBQLN2P497H exacerbates TDP-43


pathology in TDP-43G348C mice through interaction with ubiquitin. _Mol. Neurobiol._ 56, 4680–4696 (2019). CAS  PubMed  Google Scholar  * Malik, A. M. & Barmada, S. J. Matrin 3 in


neuromuscular disease: physiology and pathophysiology. _JCI Insight_ 6, e143948 (2021). PubMed  PubMed Central  Google Scholar  * Iradi, M. C. G. et al. Characterization of gene regulation


and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy. _Sci. Rep._ 8, 4049 (2018). PubMed  PubMed Central  Google Scholar  *


Johnson, J. O. et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. _Nat. Neurosci._ 17, 664–666 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Cassel,


J. A. & Reitz, A. B. Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: characterization of inhibition by nucleic


acids and 4-aminoquinolines. _Biochim. Biophys. Acta_ 1834, 964–971 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Strong, M. J. Revisiting the concept of amyotrophic lateral


sclerosis as a multisystems disorder of limited phenotypic expression. _Curr. Opin. Neurol._ 30, 599–607 (2017). PubMed  Google Scholar  * Oliva, M. et al. The impact of sex on gene


expression across human tissues. _Science_ 369, eaba3066 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Ruigrok, A. N. V. et al. A meta-analysis of sex differences in human brain


structure. _Neurosci. Biobehav. Rev._ 39, 34–50 (2014). PubMed  PubMed Central  Google Scholar  * Weis, S. et al. Sex classification by resting state brain connectivity. _Cereb. Cortex_ 30,


824–835 (2020). PubMed  Google Scholar  * Renga, V. Brain connectivity and network analysis in amyotrophic lateral sclerosis. _Neurol. Res. Int._ 2022, 1838682 (2022). PubMed  PubMed Central


  Google Scholar  * Bede, P., Elamin, M., Byrne, S. & Hardiman, O. Sexual dimorphism in ALS: exploring gender-specific neuroimaging signatures. _Amyotroph. Lateral Scler. Front.


Degener._ 15, 235–243 (2014). Google Scholar  * Pfefferbaum, A. et al. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor


imaging. _Magn. Reson. Med._ 44, 259–268 (2000). CAS  PubMed  Google Scholar  * Trojsi, F. et al. Between-sex variability of resting state functional brain networks in amyotrophic lateral


sclerosis (ALS). _J. Neural Transm._ 128, 1881–1897 (2021). PubMed  Google Scholar  * Workman, M. J. et al. Large-scale differentiation of iPSC-derived motor neurons from ALS and control


subjects. _Neuron_ 111, 1191–1204.e5 (2023). CAS  PubMed  PubMed Central  Google Scholar  * Stoklund Dittlau, K. & Freude, K. Astrocytes: the stars in neurodegeneration? _Biomolecules_


14, 289 (2024). CAS  PubMed  PubMed Central  Google Scholar  * Xie, M., Pallegar, P. N., Parusel, S., Nguyen, A. T. & Wu, L. J. Regulation of cortical hyperexcitability in amyotrophic


lateral sclerosis: focusing on glial mechanisms. _Mol. Neurodegener._ 18, 75 (2023). PubMed  PubMed Central  Google Scholar  * Yamanaka, K. et al. Astrocytes as determinants of disease


progression in inherited amyotrophic lateral sclerosis. _Nat. Neurosci._ 11, 251–253 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Boillée, S. et al. Onset and progression in


inherited ALS determined by motor neurons and microglia. _Science_ 312, 1389–1392 (2006). PubMed  Google Scholar  * Clement, A. M. et al. Wild-type nonneuronal cells extend survival of SOD1


mutant motor neurons in ALS mice. _Science_ 302, 113–117 (2003). CAS  PubMed  Google Scholar  * Yamanaka, K. et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes


accelerates onset of disease in ALS mice. _Proc. Natl Acad. Sci. USA_ 105, 7594–7599 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Amateau, S. K. & McCarthy, M. M. Sexual


differentiation of astrocyte morphology in the developing rat preoptic area. _J. Neuroendocrinol._ 14, 904–910 (2002). CAS  PubMed  Google Scholar  * Arias, C. et al. Sex and estrous


cycle-dependent differences in glial fibrillary acidic protein immunoreactivity in the adult rat hippocampus. _Horm. Behav._ 55, 257–263 (2009). CAS  PubMed  Google Scholar  * Collado, P.,


Beyer, C., Hutchison, J. B. & Holman, S. D. Hypothalamic distribution of astrocytes is gender-related in Mongolian gerbils. _Neurosci. Lett._ 184, 86–89 (1995). CAS  PubMed  Google


Scholar  * Conejo, N. M. et al. Influence of gonadal steroids on the glial fibrillary acidic protein‐immunoreactive astrocyte population in young rat hippocampus. _J. Neurosci. Res._ 79,


488–494 (2005). CAS  PubMed  Google Scholar  * Garcia-Segura, L. M., Dueñas, M., Busiguina, S., Naftolin, F. & Chowen, J. A. Gonadal hormone regulation of neuronal-glial interactions in


the developing neuroendocrine hypothalamus. _J. Steroid Biochem. Mol. Biol._ 53, 293–298 (1995). CAS  PubMed  Google Scholar  * Garcia-Segura, L. M. et al. The distribution of glial


fibrillary acidic protein in the adult rat brain is influenced by the neonatal levels of sex steroids. _Brain Res._ 456, 357–363 (1988). CAS  PubMed  Google Scholar  * Kuo, J., Hamid, N.,


Bondar, G., Prossnitz, E. R. & Micevych, P. Membrane estrogen receptors stimulate intracellular calcium release and progesterone synthesis in hypothalamic astrocytes. _J. Neurosci._ 30,


12950–12957 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Rasia-Filho, A. A., Xavier, L. L., dos Santos, P., Gehlen, G. & Achaval, M. Glial fibrillary acidic protein


immunodetection and immunoreactivity in the anterior and posterior medial amygdala of male and female rats. _Brain Res. Bull._ 58, 67–75 (2002). CAS  PubMed  Google Scholar  * Suárez, I.,


Bodega, G., Rubio, M. & Fernández, B. Sexual dimorphism in the hamster cerebellum demonstrated by glial fibrillary acidic protein (GFAP) and vimentin immunoreactivity. _Glia_ 5, 10–16


(1992). PubMed  Google Scholar  * Suárez, I., Bodega, G., Rubio, M. & Fernandez, B. Sexual dimorphism in the distribution of glial fibrillary acidic protein in the supraoptic nucleus of


the hamster. _J. Anat._ 178, 79–82 (1991). PubMed  PubMed Central  Google Scholar  * Dion-Albert, L. et al. Sex differences in the blood–brain barrier: implications for mental health.


_Front. Neuroendocrinol._ 65, 100989 (2022). CAS  PubMed  Google Scholar  * Weber, C. M. & Clyne, A. M. Sex differences in the blood–brain barrier and neurodegenerative diseases. _APL


Bioeng_. 5, 011509 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Liu, M., Hurn, P. D., Roselli, C. E. & Alkayed, N. J. Role of P450 aromatase in sex-specific astrocytic cell


death. _J. Cereb. Blood Flow Metab._ 27, 135–141 (2007). CAS  PubMed  Google Scholar  * Humphrey, J. et al. Integrative transcriptomic analysis of the amyotrophic lateral sclerosis spinal


cord implicates glial activation and suggests new risk genes. _Nat. Neurosci._ 26, 150–162 (2023). CAS  PubMed  Google Scholar  * Nave, K. A., Asadollahi, E. & Sasmita, A. Expanding the


function of oligodendrocytes to brain energy metabolism. _Curr. Opin. Neurobiol._ 83, 102782 (2023). CAS  PubMed  Google Scholar  * Yasuda, K. et al. Sex-specific differences in


transcriptomic profiles and cellular characteristics of oligodendrocyte precursor cells. _Stem Cell Res._ 46, 101866 (2020). CAS  PubMed  Google Scholar  * Villa, A., Della Torre, S. &


Maggi, A. Sexual differentiation of microglia. _Front. Neuroendocrinol._ 52, 156–164 (2019). PubMed  Google Scholar  * Kodama, L. & Gan, L. Do microglial sex differences contribute to


sex differences in neurodegenerative diseases? _Trends Mol. Med._ 25, 741–749 (2019). PubMed  Google Scholar  * Sala Frigerio, C. et al. The major risk factors for Alzheimer’s disease: age,


sex, and genes modulate the microglia response to Aβ plaques. _Cell Rep._ 27, 1293–1306.e6 (2019). CAS  PubMed  Google Scholar  * Gomes, L. C. et al. Multiomic ALS signatures highlight sex


differences and molecular subclusters and identify the MAPK pathway as therapeutic target. Preprint at _bioRxiv_ https://doi.org/10.1101/2023.08.14.553180 (2023). * Abbott, N. J.


Astrocyte–endothelial interactions and blood–brain barrier permeability. _J. Anat._ 200, 629–638 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Daneman, R. & Prat, A. The


blood–brain barrier. _Cold Spring Harb. Perspect. Biol._ 7, a020412 (2015). PubMed  PubMed Central  Google Scholar  * Muldoon, L. L. et al. Immunologic privilege in the central nervous


system and the blood–brain barrier. _J. Cereb. Blood Flow Metab._ 33, 13–21 (2013). CAS  PubMed  Google Scholar  * Prockop, L. D., Naidu, K. A., Binard, J. E. & Ransohoff, J. Selective


permeability of [3H]-D-mannitol and [14C]-carboxyl-inulin across the blood-brain barrier and blood-spinal cord barrier in the rabbit. _J. Spinal Cord Med._ 18, 221–226 (1995). CAS  PubMed 


Google Scholar  * Pan, W., Banks, W. A. & Kastin, A. J. Permeability of the blood-brain and blood-spinal cord barriers to interferons. _J. Neuroimmunol._ 76, 105–111 (1997). CAS  PubMed


  Google Scholar  * Winkler, E. A. et al. Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. _Proc. Natl Acad. Sci. USA_ 111, E1035–E1042


(2014). CAS  PubMed  PubMed Central  Google Scholar  * Yoon, H., Walters, G., Paulsen, A. R. & Scarisbrick, I. A. Astrocyte heterogeneity across the brain and spinal cord occurs


developmentally, in adulthood and in response to demyelination. _PLoS ONE_ 12, e0180697 (2017). PubMed  PubMed Central  Google Scholar  * Garbuzova-Davis, S. et al. Ultrastructure of


blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS. _Brain Res._ 1157, 126–137 (2007). CAS  PubMed  Google Scholar  * Zhong, Z. et al. ALS-causing SOD1 mutants


generate vascular changes prior to motor neuron degeneration. _Nat. Neurosci._ 11, 420–422 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Miyazaki, K. et al. Disruption of


neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. _J. Neurosci. Res._ 89, 718–728 (2011). CAS  PubMed  Google Scholar  * Steinruecke, M. et al.


Blood-CNS barrier dysfunction in amyotrophic lateral sclerosis: proposed mechanisms and clinical implications. _J. Cereb. Blood Flow Metab._ 43, 642–654 (2023). CAS  PubMed  PubMed Central 


Google Scholar  * Garbuzova-Davis, S. et al. Amyotrophic lateral sclerosis: a neurovascular disease. _Brain Res._ 1398, 113–25 (2011). CAS  PubMed  Google Scholar  * Donnenfeld, H., Kascsak,


R. J. & Bartfeld, H. Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. _J. Neuroimmunol._ 6, 51–57 (1984). CAS  PubMed  Google Scholar  * Henkel, J. S. et al.


Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. _Ann. Neurol._ 55, 221–235 (2004). CAS  PubMed  Google Scholar  *


Yamadera, M. et al. Microvascular disturbance with decreased pericyte coverage is prominent in the ventral horn of patients with amyotrophic lateral sclerosis. _Amyotroph. Lateral Scler.


Frontotemporal Degener._ 16, 393–401 (2015). PubMed  Google Scholar  * Garbuzova-Davis, S. et al. Impaired blood-brain/spinal cord barrier in ALS patients. _Brain Res._ 1469, 114–128 (2012).


CAS  PubMed  Google Scholar  * Dalla, C., Pavlidi, P., Sakelliadou, D. G., Grammatikopoulou, T. & Kokras, N. Sex differences in blood–brain barrier transport of psychotropic drugs.


_Front. Behav. Neurosci._ 16, 844916 (2022). CAS  PubMed  PubMed Central  Google Scholar  * Alarcan, H. et al. Implication of central nervous system barrier impairment in amyotrophic lateral


sclerosis: gender-related difference in patients. _Int. J. Mol. Sci._ 24, 11196 (2023). CAS  PubMed  PubMed Central  Google Scholar  * Hakim, M. A., Chum, P. P., Buchholz, J. N. &


Behringer, E. J. Aging alters cerebrovascular endothelial GPCR and K+ channel function: divergent role of biological sex. _J. Gerontol. A_ 75, 2064–2073 (2020). CAS  Google Scholar  *


Bauersachs, J. et al. Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. _Circulation_ 94, 3341–3347 (1996). CAS  PubMed  Google Scholar  * Min, J.


17β-Estradiol-stimulated eNOS gene transcriptional activation is regulated through the estrogen-responsive element in eNOS promoter. _Biotechnol. Bioprocess. Eng._ 12, 446–449 (2007). CAS 


Google Scholar  * Zhang, L., Papadopoulos, P. & Hamel, E. Endothelial TRPV4 channels mediate dilation of cerebral arteries: impairment and recovery in cerebrovascular pathologies related


to Alzheimer’s disease. _Br. J. Pharmacol._ 170, 661–670 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Marrelli, S. P., O’Neil, R. G., Brown, R. C. & Bryan, R. M. PLA 2 and


TRPV4 channels regulate endothelial calcium in cerebral arteries. _Am. J. Physiol. Circ. Physiol._ 292, H1390–H1397 (2007). CAS  Google Scholar  * Longden, T. A., Hill-Eubanks, D. C. &


Nelson, M. T. Ion channel networks in the control of cerebral blood flow. _J. Cereb. Blood Flow Metab._ 36, 492–512 (2016). CAS  PubMed  Google Scholar  * Stoica, R. et al. Ca2+ homeostasis


in brain microvascular endothelial cells. _Int. Rev. Cell Mol. Biol._ 362, 55–110 (2021). CAS  PubMed  Google Scholar  * Gur, R. C. et al. Sex differences in regional cerebral glucose


metabolism during a resting state. _Science_ 267, 528–531 (1995). CAS  PubMed  Google Scholar  * Lerskiatiphanich, T., Marallag, J. & Lee, J. Glucose metabolism in amyotrophic lateral


sclerosis: it is bitter-sweet. _Neural Regen. Res._ 17, 1975 (2022). CAS  PubMed  PubMed Central  Google Scholar  * Tefera, T. W., Steyn, F. J., Ngo, S. T. & Borges, K. CNS glucose


metabolism in amyotrophic lateral sclerosis: a therapeutic target? _Cell Biosci._ 11, 14 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Clyne, A. M. Endothelial response to glucose:


dysfunction, metabolism, and transport. _Biochem. Soc. Trans._ 49, 313–325 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Ahmed, R. M., Steyn, F. & Dupuis, L. Hypothalamus and


weight loss in amyotrophic lateral sclerosis. _Handb. Clin. Neurol._ 180, 327–338 (2021). PubMed  Google Scholar  * Kawachi, T. et al. Gender differences in cerebral glucose metabolism: a


PET study. _J. Neurol. Sci._ 199, 79–83 (2002). CAS  PubMed  Google Scholar  * Mukai, E., Fujimoto, S. & Inagaki, N. Role of reactive oxygen species in glucose metabolism disorder in


diabetic pancreatic β-cells. _Biomolecules_ 12, 1228 (2022). CAS  PubMed  PubMed Central  Google Scholar  * Ventura-Clapier, R. et al. Mitochondria: a central target for sex differences in


pathologies. _Clin. Sci._ 131, 803–822 (2017). CAS  Google Scholar  * Cacabelos, D. et al. Early and gender-specific differences in spinal cord mitochondrial function and oxidative stress


markers in a mouse model of ALS. _Acta Neuropathol. Commun._ 4, 3 (2016). PubMed  PubMed Central  Google Scholar  * Damiano, M. et al. Neural mitochondrial Ca2+ capacity impairment precedes


the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. _J. Neurochem._ 96, 1349–1361 (2006). CAS  PubMed  Google Scholar  * Lalancette-Hebert, M., Sharma, A.,


Lyashchenko, A. K. & Shneider, N. A. Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS. _Proc. Natl Acad. Sci. USA_ 113, E8316–E8325 (2016). CAS  PubMed 


PubMed Central  Google Scholar  * Yadav, A. et al. A cellular taxonomy of the adult human spinal cord. _Neuron_ 111, 328–344.e7 (2023). CAS  PubMed  PubMed Central  Google Scholar  *


Pontifex, C. S., Zaman, M., Fanganiello, R. D., Shutt, T. E. & Pfeffer, G. Valosin-containing protein (VCP): a review of its diverse molecular functions and clinical phenotypes. _Int. J.


Mol. Sci._ 25, 5633 (2024). CAS  PubMed  PubMed Central  Google Scholar  * Inglis, J. G. & Gabriel, D. A. Sex differences in the modulation of the motor unit discharge rate leads to


reduced force steadiness. _Appl. Physiol. Nutr. Metab._ 46, 1065–1072 (2021). CAS  PubMed  Google Scholar  * Taylor, C. A., Kopicko, B. H., Negro, F. & Thompson, C. K. Sex differences in


the detection of motor unit action potentials identified using high-density surface electromyography. _J. Electromyogr. Kinesiol._ 65, 102675 (2022). PubMed  PubMed Central  Google Scholar


  * Fishman, R. B. & Breedlove, S. M. Local perineal implants of anti-androgen block masculinization of the spinal nucleus of the bulbocavernosus. _Brain Res. Dev. Brain Res._ 70,


283–286 (1992). CAS  PubMed  Google Scholar  * Omar, A., Marwaha, K. & Bollu, P. C. _Physiology, Neuromuscular Junction_ (StatPearls, 2024). * Verma, S. et al. Neuromuscular junction


dysfunction in amyotrophic lateral sclerosis. _Mol. Neurobiol._ 59, 1502–1527 (2022). CAS  PubMed  Google Scholar  * Armon, C. & Brandstater, M. E. Motor unit number estimate-based rates


of progression of ALS predict patient survival. _Muscle Nerve_ 22, 1571–1575 (1999). CAS  PubMed  Google Scholar  * Martineau, É., Di Polo, A., Vande Velde, C. & Robitaille, R.


Sex-specific differences in motor-unit remodeling in a mouse model of ALS. _eNeuro_ 7, https://doi.org/10.1523/ENEURO.0388-19.2020 (2020). * Shefner, J. M. et al. Skeletal muscle in


amyotrophic lateral sclerosis. _Brain_ 146, 4425–4436 (2023). PubMed  PubMed Central  Google Scholar  * Badu-Mensah, A., Guo, X., Nimbalkar, S., Cai, Y. & Hickman, J. J. ALS mutations in


both human skeletal muscle and motoneurons differentially affects neuromuscular junction integrity and function. _Biomaterials_ 289, 121752 (2022). CAS  PubMed  Google Scholar  *


Dobrowolny, G. et al. Muscle expression of SOD1G93A triggers the dismantlement of neuromuscular junction via PKC-theta. _Antioxid. Redox Signal._ 28, 1105–1119 (2018). CAS  PubMed  Google


Scholar  * Steyn, F. J. et al. Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis. _Brain Commun._ 2, fcaa154 (2020). PubMed  PubMed Central  Google Scholar  *


Palamiuc, L. et al. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. _EMBO Mol. Med._ 7, 526–546


(2015). CAS  PubMed  PubMed Central  Google Scholar  * Haizlip, K. M., Harrison, B. C. & Leinwand, L. A. Sex-based differences in skeletal muscle kinetics and fiber-type composition.


_Physiology_ 30, 30–39 (2015). CAS  PubMed  PubMed Central  Google Scholar  * van Wessel, T., de Haan, A., van der Laarse, W. J. & Jaspers, R. T. The muscle fiber type–fiber size


paradox: hypertrophy or oxidative metabolism? _Eur. J. Appl. Physiol._ 110, 665–694 (2010). PubMed  PubMed Central  Google Scholar  * Anderson, E. J. & Neufer, P. D. Type II skeletal


myofibers possess unique properties that potentiate mitochondrial H2O2 generation. _Am. J. Physiol. Cell Physiol._ 290, C844–C851 (2006). CAS  PubMed  Google Scholar  * Pegoraro, V., Merico,


A. & Angelini, C. Micro-RNAs in ALS muscle: differences in gender, age at onset and disease duration. _J. Neurol. Sci._ 380, 58–63 (2017). CAS  PubMed  PubMed Central  Google Scholar  *


Gomes, B. C. et al. Differential expression of miRNAs in amyotrophic lateral sclerosis patients. _Mol. Neurobiol._ 60, 7104–7117 (2023). CAS  PubMed  PubMed Central  Google Scholar  *


Zhang, Z., Jin, A. & Yan, D. MicroRNA-206 contributes to the progression of steroid-induced avascular necrosis of the femoral head by inducing osteoblast apoptosis by suppressing


programmed cell death 4. _Mol. Med. Rep._ 17, 801–808 (2018). CAS  PubMed  Google Scholar  * Casola, I. et al. Circulating myomiRs in muscle denervation: from surgical to ALS pathological


condition. _Cells_ 10, 2043 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Abdelhak, A. et al. In vivo assessment of retinal vessel pathology in amyotrophic lateral sclerosis. _J.


Neurol._ 265, 949–953 (2018). CAS  PubMed  Google Scholar  * Kolde, G., Bachus, R. & Ludolph, A. Skin involvement in amyotrophic lateral sclerosis. _Lancet_ 347, 1226–1227 (1996). CAS 


PubMed  Google Scholar  * Buckley, A. F. & Bossen, E. H. Skeletal muscle microvasculature in the diagnosis of neuromuscular disease. _J. Neuropathol. Exp. Neurol._ 72, 906–918 (2013).


PubMed  Google Scholar  * Saul, J. et al. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. _Acta Neuropathol. Commun._ 8, 92 (2020). CAS  PubMed 


PubMed Central  Google Scholar  * Iadecola, C. The pathobiology of vascular dementia. _Neuron_ 80, 844–866 (2013). CAS  PubMed  Google Scholar  * Iadecola, C. Neurovascular regulation in the


normal brain and in Alzheimer’s disease. _Nat. Rev. Neurosci._ 5, 347–360 (2004). CAS  PubMed  Google Scholar  * Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s


disease and other disorders. _Nat. Rev. Neurosci._ 12, 723–738 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Rosenbohm, A. et al. Cardiac findings in amyotrophic lateral sclerosis:


a magnetic resonance imaging study. _Front. Neurol._ 8, 479 (2017). PubMed  PubMed Central  Google Scholar  * Xu, K., Ji, H. & Hu, N. Cardiovascular comorbidities in amyotrophic lateral


sclerosis: a systematic review. _J. Clin. Neurosci._ 96, 43–49 (2022). PubMed  Google Scholar  * Hu, N. & Ji, H. Medications on hypertension, hyperlipidemia, diabetes, and risk of


amyotrophic lateral sclerosis: a systematic review and meta-analysis. _Neurol. Sci._ 43, 5189–5199 (2022). PubMed  Google Scholar  * St. Pierre, S. R., Peirlinck, M. & Kuhl, E. Sex


matters: a comprehensive comparison of female and male hearts. _Front. Physiol._ 13, 831179 (2022). Google Scholar  * Gur, R. C. et al. Sex and handedness differences in cerebral blood flow


during rest and cognitive activity. _Science_ 217, 659–661 (1982). CAS  PubMed  Google Scholar  * Rodriguez, G., Warkentin, S., Risberg, J. & Rosadini, G. Sex differences in regional


cerebral blood flow. _J. Cereb. Blood Flow Metab._ 8, 783–789 (1988). CAS  PubMed  Google Scholar  * Satterthwaite, T. D. et al. Impact of puberty on the evolution of cerebral perfusion


during adolescence. _Proc. Natl Acad. Sci. USA_ 111, 8643–8648 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Tontisirin, N. et al. Early childhood gender differences in anterior and


posterior cerebral blood flow velocity and autoregulation. _Pediatrics_ 119, e610–e615 (2007). PubMed  Google Scholar  * Monteiro, J. N. in _Essentials of Neuroanesthesia_ (ed. Prabhakar,


H.) 815–825 (Elsevier, 2017). * Deegan, B. M. et al. Elderly women regulate brain blood flow better than men do. _Stroke_ 42, 1988–1993 (2011). PubMed  PubMed Central  Google Scholar  *


Vavilala, M. S. et al. Gender differences in cerebral blood flow velocity and autoregulation between the anterior and posterior circulations in healthy children. _Pediatr. Res._ 58, 574–578


(2005). PubMed  PubMed Central  Google Scholar  * Schreiber, S. et al. Brain vascular health in ALS is mediated through motor cortex microvascular integrity. _Cells_ 12, 957 (2023). CAS 


PubMed  PubMed Central  Google Scholar  * Chen, Y. et al. Difference in leukocyte composition between women before and after menopausal age, and distinct sexual dimorphism. _PLoS ONE_ 11,


e0162953 (2016). PubMed  PubMed Central  Google Scholar  * Murdock, B. J., Goutman, S. A., Boss, J., Kim, S. & Feldman, E. L. Amyotrophic lateral sclerosis survival associates with


neutrophils in a sex-specific manner. _Neurol. Neuroimmunol. Neuroinflamm__._ 8, e953 (2021). PubMed  PubMed Central  Google Scholar  * Lehman, H. K. & Segal, B. H. The role of


neutrophils in host defense and disease. _J. Allergy Clin. Immunol._ 145, 1535–1544 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Janeway, C. A. How the immune system protects the


host from infection. _Microbes Infect._ 3, 1167–1171 (2001). CAS  PubMed  Google Scholar  * Bongen, E. et al. Sex differences in the blood transcriptome identify robust changes in immune


cell proportions with aging and influenza infection. _Cell Rep._ 29, 1961–1973.e4 (2019). CAS  PubMed  PubMed Central  Google Scholar  * McCombe, P., Greer, J. & Mackay, I. Sexual


dimorphism in autoimmune disease. _Curr. Mol. Med._ 9, 1058–1079 (2009). CAS  PubMed  Google Scholar  * Santiago, J. A., Quinn, J. P. & Potashkin, J. A. Network analysis identifies


sex-specific gene expression changes in blood of amyotrophic lateral sclerosis patients. _Int. J. Mol. Sci._ 22, 7150 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Beers, D. R. et


al. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. _JCI Insight_ 2, e89530 (2017). PubMed  PubMed Central  Google Scholar


  * Beers, D. R. & Appel, S. H. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. _Lancet Neurol._ 18, 211–220 (2019). CAS  PubMed  Google Scholar


  * Zhao, W., Beers, D. R., Liao, B., Henkel, J. S. & Appel, S. H. Regulatory T lymphocytes from ALS mice suppress microglia and effector T lymphocytes through different


cytokine-mediated mechanisms. _Neurobiol. Dis._ 48, 418–428 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Beckmann, L. et al. Regulatory T cells contribute to sexual dimorphism in


neonatal hypoxic-ischemic brain injury. _Stroke_ 53, 381–390 (2022). CAS  PubMed  PubMed Central  Google Scholar  * US National Library of Medicine_._ _ClinicalTrials.gov_


https://classic.clinicaltrials.gov/ct2/show/NCT03241784 (2018). * US National Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT04055623 (2021). * Boddy, S. L.


et al. The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). _BMC Med._ 19, 13 (2021). PubMed  PubMed Central  Google Scholar  * Sun, J., Huang, T.,


Debelius, J. W. & Fang, F. Gut microbiome and amyotrophic lateral sclerosis: a systematic review of current evidence. _J. Intern. Med._ 290, 758–788 (2021). PubMed  Google Scholar  *


Mercedes Prudencio. The effects of ALS on the digestive system. _Target ALS_ https://www.targetals.org/2022/08/25/the-effects-of-als-on-the-digestive-system/ (2015). * Toepfer, C.,


Folwaczny, A., Klauser & RL, M. Gastrointestinal dysfunction in amyotrophic lateral sclerosis. _Amyotroph. Lateral Scler. Other Mot. Neuron Disord._ 1, 15–19 (2000). Google Scholar  *


Kim, Y. S., Unno, T., Kim, B. Y. & Park, M. S. Sex differences in gut microbiota. _World J. Mens Health_ 38, 48 (2020). PubMed  Google Scholar  * Schroeder, B. O. & Bäckhed, F.


Signals from the gut microbiota to distant organs in physiology and disease. _Nat. Med._ 22, 1079–1089 (2016). CAS  PubMed  Google Scholar  * Martin, C. R., Osadchiy, V., Kalani, A. &


Mayer, E. A. The brain-gut-microbiome axis. _Cell. Mol. Gastroenterol. Hepatol._ 6, 133–148 (2018). PubMed  PubMed Central  Google Scholar  * Thaiss, C. A., Zmora, N., Levy, M. & Elinav,


E. The microbiome and innate immunity. _Nature_ 535, 65–74 (2016). CAS  PubMed  Google Scholar  * Wang, J., Zhu, N., Su, X., Gao, Y. & Yang, R. Gut-microbiota-derived metabolites


maintain gut and systemic immune homeostasis. _Cells_ 12, 793 (2023). CAS  PubMed  PubMed Central  Google Scholar  * Cryan, J. F. et al. The microbiota-gut-brain axis. _Physiol. Rev._ 99,


1877–2013 (2019). CAS  PubMed  Google Scholar  * Rizzetto, L., Fava, F., Tuohy, K. M. & Selmi, C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: the


role of sex. _J. Autoimmun._ 92, 12–34 (2018). CAS  PubMed  Google Scholar  * Loh, J. S. et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases.


_Signal Transduct. Target. Ther._ 9, 37 (2024). PubMed  PubMed Central  Google Scholar  * Aburto, M. R. & Cryan, J. F. Gastrointestinal and brain barriers: unlocking gates of


communication across the microbiota-gut-brain axis. _Nat. Rev. Gastroenterol. Hepatol._ 21, 222–247 (2024). PubMed  Google Scholar  * Mazzini, L. et al. Potential role of gut microbiota in


ALS pathogenesis and possible novel therapeutic strategies. _J. Clin. Gastroenterol._ 52, S68–S70 (2018). CAS  PubMed  Google Scholar  * Kim, H. S. et al. Gut- and oral-dysbiosis


differentially impact spinal- and bulbar-onset ALS, predicting ALS severity and potentially determining the location of disease onset. _BMC Neurol._ 22, 62 (2022). CAS  PubMed  PubMed


Central  Google Scholar  * Rowin, J., Xia, Y., Jung, B. & Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. _Physiol. Rep._ 5, e13443 (2017). PubMed  PubMed Central 


Google Scholar  * Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. _Nature_ 572, 474–480 (2019). CAS  PubMed  Google Scholar  * Wu, S., Yi, J.,


Zhang, Y., Zhou, J. & Sun, J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. _Physiol. Rep._ 3, e12356 (2015). PubMed  PubMed Central  Google


Scholar  * Zhang, Y. et al. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. _Clin. Ther._ 39, 322–336 (2017). CAS  PubMed  PubMed Central 


Google Scholar  * Hatzipetros, T. et al. C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of


ALS. _Brain Res._ 1584, 59–72 (2014). CAS  PubMed  Google Scholar  * Guo, K. et al. Gut microbiome correlates with plasma lipids in amyotrophic lateral sclerosis. _Brain_ 147, 665–679


(2023). Google Scholar  * Popat, R. A. et al. Effect of reproductive factors and postmenopausal hormone use on the risk of amyotrophic lateral sclerosis. _Neuroepidemiology_ 27, 117–121


(2006). PubMed  Google Scholar  * Choi, C. I. et al. Effects of estrogen on lifespan and motor functions in female hSOD1 G93A transgenic mice. _J. Neurol. Sci._ 268, 40–47 (2008). CAS 


PubMed  Google Scholar  * Gargiulo-Monachelli, G. et al. Circulating gonadal and adrenal steroids in amyotrophic lateral sclerosis: possible markers of susceptibility and outcome. _Horm.


Metab. Res._ 46, 433–439 (2014). CAS  PubMed  Google Scholar  * Militello, A. et al. The serum level of free testosterone is reduced in amyotrophic lateral sclerosis. _J. Neurol. Sci._ 195,


67–70 (2002). CAS  PubMed  Google Scholar  * Kim, H. J., Magranè, J., Starkov, A. A. & Manfredi, G. The mitochondrial calcium regulator cyclophilin D is an essential component of


oestrogen-mediated neuroprotection in amyotrophic lateral sclerosis. _Brain_ 135, 2865–2874 (2012). PubMed  PubMed Central  Google Scholar  * Groeneveld, G. J. et al. Ovariectomy and


17β-estradiol modulate disease progression of a mouse model of ALS. _Brain Res._ 1021, 128–131 (2004). CAS  PubMed  Google Scholar  * Yoo, Y. E. & Ko, C. P. Dihydrotestosterone


ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice. _PLoS ONE_ 7, e37258 (2012). CAS  PubMed  PubMed Central 


Google Scholar  * McLeod, V. M. et al. Androgen receptor antagonism accelerates disease onset in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. _Br. J. Pharmacol._ 176,


2111–2130 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Aggarwal, T. et al. Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral


sclerosis. _Neurobiol. Aging_ 35, 1929–1938 (2014). CAS  PubMed  Google Scholar  * Brannvall, K. Estrogen-receptor-dependent regulation of neural stem cell proliferation and differentiation.


_Mol. Cell. Neurosci._ 21, 512–520 (2002). CAS  PubMed  Google Scholar  * Charalampopoulos, I., Remboutsika, E., Margioris, A. N. & Gravanis, A. Neurosteroids as modulators of


neurogenesis and neuronal survival. _Trends Endocrinol. Metab._ 19, 300–307 (2008). CAS  PubMed  Google Scholar  * Garcia-Segura, L. M. & Melcangi, R. C. Steroids and glial cell


function. _Glia_ 54, 485–498 (2006). PubMed  Google Scholar  * Garcia-Segura, L. M., Diz-Chaves, Y., Perez-Martin, M. & Darnaudéry, M. Estradiol, insulin-like growth factor-I and brain


aging. _Psychoneuroendocrinology_ 32, S57–S61 (2007). CAS  PubMed  Google Scholar  * Brann, D. W., Dhandapani, K., Wakade, C., Mahesh, V. B. & Khan, M. M. Neurotrophic and


neuroprotective actions of estrogen: basic mechanisms and clinical implications. _Steroids_ 72, 381–405 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Barron, A. M., Fuller, S. J.,


Verdile, G. & Martins, R. N. Reproductive hormones modulate oxidative stress in Alzheimer’s disease. _Antioxid. Redox Signal._ 8, 2047–2059 (2006). CAS  PubMed  Google Scholar  * Prokai,


L. & Simpkins, J. W. Structure–nongenomic neuroprotection relationship of estrogens and estrogen-derived compounds. _Pharmacol. Ther._ 114, 1–12 (2007). CAS  PubMed  PubMed Central 


Google Scholar  * Gayard, M. et al. AMPK alpha 1-induced RhoA phosphorylation mediates vasoprotective effect of estradiol. _Arterioscler. Thromb. Vasc. Biol._ 31, 2634–2642 (2011). CAS 


PubMed  Google Scholar  * Cunha-Oliveira, T. et al. Oxidative stress in amyotrophic lateral sclerosis: pathophysiology and opportunities for pharmacological intervention. _Oxid. Med. Cell.


Longev._ 2020, 5021694 (2020). PubMed  PubMed Central  Google Scholar  * Kakaroubas, N., Brennan, S., Keon, M. & Saksena, N. K. Pathomechanisms of blood-brain barrier disruption in ALS.


_Neurosci. J._ 2019, 2537698 (2019). PubMed  PubMed Central  Google Scholar  * Yan, L. et al. Effects of ovariectomy in an hSOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis


(ALS). _Med. Sci. Monit._ 24, 678–686 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Brinton, R. D., Yao, J., Yin, F., Mack, W. J. & Cadenas, E. Perimenopause as a neurological


transition state. _Nat. Rev. Endocrinol._ 11, 393–405 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Zhao, L., Mao, Z., Woody, S. K. & Brinton, R. D. Sex differences in metabolic


aging of the brain: insights into female susceptibility to Alzheimer’s disease. _Neurobiol. Aging_ 42, 69–79 (2016). PubMed  PubMed Central  Google Scholar  * Hammond, J. et al.


Testosterone-mediated neuroprotection through the androgen receptor in human primary neurons. _J. Neurochem._ 77, 1319–1326 (2001). CAS  PubMed  Google Scholar  * Byers, J. S. et al.


Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord injury. _J. Comp. Neurol._ 520, 2683–2696 (2012). CAS  PubMed  PubMed Central  Google


Scholar  * Hamson, D. K. et al. Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats. _Endocrinology_ 154,


3294–3304 (2013). CAS  PubMed  Google Scholar  * Hayes-Punzo, A. et al. Gonadectomy and dehydroepiandrosterone (DHEA) do not modulate disease progression in the G93A mutant SOD1 rat model of


amyotrophic lateral sclerosis. _Amyotroph. Lateral Scler._ 13, 311–314 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Baulieu, E. Neurosteroids: a novel function of the brain.


_Psychoneuroendocrinology_ 23, 963–987 (1998). CAS  PubMed  Google Scholar  * Lyraki, R. & Schedl, A. The sexually dimorphic adrenal cortex: implications for adrenal disease. _Int. J.


Mol. Sci._ 22, 4889 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Katsuno, M. et al. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and


bulbar muscular atrophy. _Neuron_ 35, 843–854 (2002). CAS  PubMed  Google Scholar  * Ishihara, H., Kanda, F., Nishio, H., Sumino, K. & Chihara, K. Clinical features and skewed


X-chromosome inactivation in female carriers of X-linked recessive spinal and bulbar muscular atrophy. _J. Neurol._ 248, 856–860 (2001). CAS  PubMed  Google Scholar  * Mariotti, C. et al.


Phenotypic manifestations associated with CAG-repeat expansion in the androgen receptor gene in male patients and heterozygous females: a clinical and molecular study of 30 families.


_Neuromuscul. Disord._ 10, 391–397 (2000). CAS  PubMed  Google Scholar  * Schmidt, B. J., Greenberg, C. R., Allingham-Hawkins, D. J. & Spriggs, E. L. Expression of X-linked bulbospinal


muscular atrophy (Kennedy disease) in two homozygous women. _Neurology_ 59, 770–772 (2002). PubMed  Google Scholar  * Hashizume, A. et al. Efficacy and safety of leuprorelin acetate for


subjects with spinal and bulbar muscular atrophy: pooled analyses of two randomized-controlled trials. _J. Neurol._ 266, 1211–1221 (2019). CAS  PubMed  Google Scholar  * Uhart, M., Chong,


R., Oswald, L., Lin, P. & Wand, G. Gender differences in hypothalamic–pituitary–adrenal (HPA) axis reactivity. _Psychoneuroendocrinology_ 31, 642–652 (2006). CAS  PubMed  Google Scholar


  * Heck, A. L. & Handa, R. J. Sex differences in the hypothalamic–pituitary–adrenal axis’ response to stress: an important role for gonadal hormones. _Neuropsychopharmacology_ 44, 45–58


(2019). CAS  PubMed  Google Scholar  * Patacchioli, F. R. et al. Adrenal dysregulation in amyotrophic lateral sclerosis. _J. Endocrinol. Invest._ 26, RC23–RC25 (2003). CAS  PubMed  Google


Scholar  * Feneberg, E. et al. Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. _Neurology_ 90, e22–e30 (2018). CAS  PubMed  Google Scholar  *


Skillbäck, T. et al. Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity. _Alzheimers Dement._ 13, e12141 (2021). Google Scholar  * Gaiani, A. et al.


Diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis. _JAMA Neurol._ 74, 525 (2017). PubMed  PubMed Central  Google Scholar  * Verde, F. et al. Phenotypic correlates of


serum neurofilament light chain levels in amyotrophic lateral sclerosis. _Front. Aging Neurosci._ 15, 1132808 (2023). CAS  PubMed  PubMed Central  Google Scholar  * Fenton, A. et al.


Glomerular filtration rate: new age- and gender-specific reference ranges and thresholds for living kidney donation. _BMC Nephrol._ 19, 336 (2018). PubMed  PubMed Central  Google Scholar  *


Boylan, K. et al. Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS


biomarker. _J. Neurochem._ 111, 1182–1191 (2009). CAS  PubMed  Google Scholar  * Frutiger, K., Lukas, T. J., Gorrie, G., Ajroud-Driss, S. & Siddique, T. Gender difference in levels of


Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. _Amyotroph. Lateral Scler._ 9, 184–187 (2008). CAS  PubMed  Google Scholar  * Zamani,


A. et al. Impaired glymphatic function in the early stages of disease in a TDP-43 mouse model of amyotrophic lateral sclerosis. _Transl. Neurodegener._ 11, 17 (2022). CAS  PubMed  PubMed


Central  Google Scholar  * Hirose, M. et al. Stagnation of glymphatic interstitial fluid flow and delay in waste clearance in the SOD1-G93A mouse model of ALS. _Neurosci. Res._ 171, 74–82


(2021). CAS  PubMed  Google Scholar  * Liu, S. et al. Glymphatic dysfunction in patients with early-stage amyotrophic lateral sclerosis. _Brain_ 147, 100–108 (2024). PubMed  Google Scholar 


* Shao, C. et al. Comprehensive analysis of individual variation in the urinary proteome revealed significant gender differences. _Mol. Cell. Proteom._ 18, 1110–1122 (2019). CAS  Google


Scholar  * Sharygin, D., Koniaris, L. G., Wells, C., Zimmers, T. A. & Hamidi, T. Role of CD14 in human disease. _Immunology_ 169, 260–270 (2023). CAS  PubMed  Google Scholar  * Shive, C.


L., Jiang, W., Anthony, D. D. & Lederman, M. M. Soluble CD14 is a nonspecific marker of monocyte activation. _AIDS_ 29, 1263–1265 (2015). CAS  PubMed  Google Scholar  * Rogers, M. L.,


Schultz, D. W., Karnaros, V. & Shepheard, S. R. Urinary biomarkers for amyotrophic lateral sclerosis: candidates, opportunities and considerations. _Brain Commun._ 5, fcad287 (2023).


PubMed  PubMed Central  Google Scholar  * Bogdanov, M. et al. Increased oxidative damage to DNA in ALS patients. _Free Radic. Biol. Med._ 29, 652–658 (2000). CAS  PubMed  Google Scholar  *


Saitoh, Y. & Takahashi, Y. Riluzole for the treatment of amyotrophic lateral sclerosis. _Neurodegener. Dis. Manag._ 10, 343–355 (2020). PubMed  Google Scholar  * Huang, C. S., Song, J.


H., Nagata, K., Yeh, J. Z. & Narahashi, T. Effects of the neuroprotective agent riluzole on the high voltage-activated calcium channels of rat dorsal root ganglion neurons. _J.


Pharmacol. Exp. Ther._ 282, 1280–1290 (1997). CAS  PubMed  Google Scholar  * Fang, T. et al. Stage at which riluzole treatment prolongs survival in patients with amyotrophic lateral


sclerosis: a retrospective analysis of data from a dose-ranging study. _Lancet Neurol._ 17, 416–422 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Chen, L., Liu, X., Tang, L., Zhang,


N. & Fan, D. Long-term use of riluzole could improve the prognosis of sporadic amyotrophic lateral sclerosis patients: a real-world cohort study in China. _Front. Aging Neurosci._ 8,


246 (2016). PubMed  PubMed Central  Google Scholar  * Sanderink, G. J., Bournique, B., Stevens, J., Petry, M. & Martinet, M. Involvement of human CYP1A isoenzymes in the metabolism and


drug interactions of riluzole in vitro. _J. Pharmacol. Exp. Ther._ 282, 1465–1472 (1997). CAS  PubMed  Google Scholar  * Ou‐Yang, D. et al. Phenotypic polymorphism and gender‐related


differences of CYP1A2 activity in a Chinese population. _Br. J. Clin. Pharmacol._ 49, 145–151 (2000). PubMed  PubMed Central  Google Scholar  * Guengerich, F. P. & Shimada, T. Oxidation


of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. _Chem. Res. Toxicol._ 4, 391–407 (1991). CAS  PubMed  Google Scholar  * Armon, C. Smoking may be considered an


established risk factor for sporadic ALS. _Neurology_ 73, 1693–1698 (2009). PubMed  PubMed Central  Google Scholar  * Higgins, S. T. et al. A literature review on prevalence of gender


differences and intersections with other vulnerabilities to tobacco use in the United States, 2004–2014. _Prev. Med._ 80, 89–100 (2015). PubMed  PubMed Central  Google Scholar  * Bruno, R.


et al. Population pharmacokinetics of riluzole in patients with amyotrophic lateral sclerosis. _Clin. Pharmacol. Ther._ 62, 518–526 (1997). CAS  PubMed  Google Scholar  * Miller, T. M. et


al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. _N. Engl. J. Med._ 387, 1099–1110 (2022). CAS  PubMed  Google Scholar  * Steinacker, P. et al. Neurofilaments in the diagnosis


of motoneuron diseases: a prospective study on 455 patients. _J. Neurol. Neurosurg. Psychiatry_ 87, 12–20 (2016). PubMed  Google Scholar  * Thompson, A. G. et al. Multicentre appraisal of


amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. _Brain Commun._ 4, fcac029 (2022). PubMed  PubMed Central  Google Scholar  * Benatar, M.


et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. _Neurology_ 95, e59–e69 (2020). CAS  PubMed  PubMed Central  Google Scholar  *


Abu-Rumeileh, S. et al. Diagnostic-prognostic value and electrophysiological correlates of CSF biomarkers of neurodegeneration and neuroinflammation in amyotrophic lateral sclerosis. _J.


Neurol._ 267, 1699–1708 (2020). CAS  PubMed  Google Scholar  * De Schaepdryver, M. et al. Neurofilament light chain and C reactive protein explored as predictors of survival in amyotrophic


lateral sclerosis. _J. Neurol. Neurosurg. Psychiatry_ 91, 436–437 (2020). PubMed  Google Scholar  * Lu, C. H. et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral


sclerosis. _Neurology_ 84, 2247–2257 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Verde, F. et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral


sclerosis. _J. Neurol. Neurosurg. Psychiatry_ 90, 157–164 (2019). PubMed  Google Scholar  * Poesen, K. & Van Damme, P. Diagnostic and prognostic performance of neurofilaments in ALS.


_Front. Neurol_. 9, 1167 (2019). PubMed  PubMed Central  Google Scholar  * Bali, T. et al. Defining SOD1 ALS natural history to guide therapeutic clinical trial design. _J. Neurol.


Neurosurg. Psychiatry_ 88, 99–105 (2017). PubMed  Google Scholar  * Shobeiri, P., Kalantari, A., Teixeira, A. L. & Rezaei, N. Shedding light on biological sex differences and


microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. _Biol. Sex Differ._ 13, 12 (2022). PubMed  PubMed Central  Google Scholar  * Stachenfeld, N. S.


& Mazure, C. M. Precision medicine requires understanding how both sex and gender influence health. _Cell_ 185, 1619–1622 (2022). CAS  PubMed  Google Scholar  * Bohr, T. et al. The


glymphatic system: current understanding and modeling. _iScience_ 25, 104987 (2022). PubMed  PubMed Central  Google Scholar  * Hablitz, L. M. & Nedergaard, M. The glymphatic system: a


novel component of fundamental neurobiology. _J. Neurosci._ 41, 7698–7711 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Yuan, A. & Nixon, R. A. Neurofilament proteins as


biomarkers to monitor neurological diseases and the efficacy of therapies. _Front. Neurosci._ 15, 689938 (2021). PubMed  PubMed Central  Google Scholar  * Beckman, K. B. & Ames, B. N.


Oxidative decay of DNA. _J. Biol. Chem._ 272, 19633–19636 (1997). CAS  PubMed  Google Scholar  * Carmeliet, P. Angiogenesis in life, disease and medicine. _Nature_ 438, 932–936 (2005). CAS 


PubMed  Google Scholar  * Lambrechts, D. & Carmeliet, P. VEGF at the neurovascular interface: therapeutic implications for motor neuron disease. _Biochim. Biophys. Acta Mol. Basis Dis._


1762, 1109–1121 (2006). CAS  Google Scholar  * Lambrechts, D. et al. Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility


in male carriers of the -2578AA genotype. _J. Med. Genet._ 46, 840–846 (2009). CAS  PubMed  Google Scholar  * Ohta, Y. et al. Enhanced oxidative stress and the treatment by edaravone in


mice model of amyotrophic lateral sclerosis. _J. Neurosci. Res._ 97, 607–619 (2019). CAS  PubMed  Google Scholar  * Canadian Agency for Drugs and Technologies in Health. _Sodium


Phenylbutyrate and Ursodoxicoltaurine (Albrioza)_ (CADTH, 2022). Download references ACKNOWLEDGEMENTS The authors are grateful to M. Bankole for the early discussions about this topic, and


to B. Belanger for designing the original figures. Original work in the laboratories of the authors is supported by grants from the Canadian Institutes of Health Research (CIHR, to K.A.S.


(FRN148380) and M.D.N. (FRN159591)), the K-Brain Project of the National Research Foundation (NRF, to S.H.K. (RS-2023-00265515)), the Krembil Foundation (to M.D.N.), the CIHR/International


Development Research Centre (CIHR/IDRC 109927 to G.P.), the ALS Society of Canada (to M.D.N. and G.P.), the Barry Barrett Foundation (to M.D.N. and G.P.) and the Rose Family Foundation (to


M.D.N. and G.P.). S.S.L. was a recipient of an Alberta Graduate Excellence Scholarship, a CIHR Master’s Scholarship, a Faculty of Graduate Studies Master’s Research Scholarship from the


University of Calgary, and a Donald Burns and Louise Berlin Graduate Award in Dementia from the Hotchkiss Brain Institute. S.M.J. was a recipient of an Alberta Graduate Excellence


Scholarship and Spinal Cord, Nerve Injury & Pain Scholarship from the University of Calgary Hotchkiss Brain Institute. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Hotchkiss Brain


Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Sarah M. Jacob, Sukyoung Lee, Keith A. Sharkey, Gerald Pfeffer & Minh Dang Nguyen * Department of


Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Sarah M. Jacob, Sukyoung Lee, Gerald Pfeffer & Minh Dang Nguyen * Department of Cell


Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Sukyoung Lee & Minh Dang Nguyen * Department of Biochemistry and Molecular Biology,


Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Sukyoung Lee & Minh Dang Nguyen * Department of Neurology, Hanyang University Hospital, Seoul, South Korea


Seung Hyun Kim * Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Keith A. Sharkey * Department of Physiology and


Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Keith A. Sharkey * Department of Medical Genetics, Cumming School of Medicine, University of


Calgary, Calgary, Alberta, Canada Gerald Pfeffer Authors * Sarah M. Jacob View author publications You can also search for this author inPubMed Google Scholar * Sukyoung Lee View author


publications You can also search for this author inPubMed Google Scholar * Seung Hyun Kim View author publications You can also search for this author inPubMed Google Scholar * Keith A.


Sharkey View author publications You can also search for this author inPubMed Google Scholar * Gerald Pfeffer View author publications You can also search for this author inPubMed Google


Scholar * Minh Dang Nguyen View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.M.J., S.S.L., G.P., S.H.K., K.A.S. and M.D.N. wrote the


manuscript. All authors critically reviewed the manuscript drafts and approved the final manuscript for submission. CORRESPONDING AUTHORS Correspondence to Gerald Pfeffer or Minh Dang


Nguyen. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Neurology_ thanks Pamela McCombe and the


other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional


claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under


a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such


publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Jacob, S.M., Lee, S., Kim, S.H. _et al._ Brain–body mechanisms contribute to sexual


dimorphism in amyotrophic lateral sclerosis. _Nat Rev Neurol_ 20, 475–494 (2024). https://doi.org/10.1038/s41582-024-00991-7 Download citation * Accepted: 07 June 2024 * Published: 04 July


2024 * Issue Date: August 2024 * DOI: https://doi.org/10.1038/s41582-024-00991-7 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable


link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Life's a beach on teesside as three towns scoop seaside awards

A trio of Teesside beaches will be flying the flag for the coastline this summer after scooping the Seaside Award 2025. ...

Jeff stelling resigns as takeover update puts hartlepool united future in doubt

Jeff Stelling has resigned from his role as honorary president of Hartlepool United after the latest takeover update cas...

Mum-of-two michelle's interior design firm busting fears of unleashing colour

A mum-of-two has taken the bold decision to give up her university day job and launch her own interior design company. M...

Brute dragged woman by hair and broke her nose in terrifying attack

A 'misogynistic' brute broke his victim's nose in a horrific attack as he punched and kicked her in the f...

Glamping burrows venture with views of iconic landmark granted planning permission by council

NewsGlamping burrows venture with views of iconic landmark granted planning permission by councilThe burrows will be bui...

Latests News

Brain–body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis

ABSTRACT Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized ...

Map: french property price variations in 2024 by region

ONLY ONE REGION SAW HOUSE PRICES INCREASE LAST YEAR Houses fared significantly worse than flats when it came to price dr...

Tar heel family explains why they support trump

WABE’s mission is simple: “Inform, inspire, reflect and empower our greater Atlanta community. ” We do that through the ...

Can shops in france refuse to take payments in cash?

THE QUESTION WAS SPARKED BY REPORTS OF SOME FRENCH SHOPS REFUSING TO ACCEPT NOTES AND COINS ON SUNDAYS All shops, festiv...

Is it possible to leave french second home to nephews and not spouse?

JOHN KITCHING, A DIRECTOR OF FRENCH LAW CONSULTANCY LIMITED, ANSWERS A READER QUERY Reader Question: I live in the UK an...

Top