Emerging themes in cohesin cancer biology

Nature

Emerging themes in cohesin cancer biology"


Play all audios:

Loading...

ABSTRACT Mutations of the cohesin complex in human cancer were first discovered ~10 years ago. Since then, researchers worldwide have demonstrated that cohesin is among the most commonly


mutated protein complexes in cancer. Inactivating mutations in genes encoding cohesin subunits are common in bladder cancers, paediatric sarcomas, leukaemias, brain tumours and other cancer


types. Also in those 10 years, the prevailing view of the functions of cohesin in cell biology has undergone a revolutionary transformation. Initially, the predominant view of cohesin was as


a ring that encircled and cohered replicated chromosomes until its cleavage triggered the metaphase-to-anaphase transition. As such, early studies focused on the role of tumour-derived


cohesin mutations in the fidelity of chromosome segregation and aneuploidy. However, over the past 5 years the cohesin field has shifted dramatically, and research now focuses on the primary


role of cohesin in generating, maintaining and regulating the intra-chromosomal DNA looping events that modulate 3D genome organization and gene expression. This Review focuses on recent


discoveries in the cohesin field that provide insight into the role of cohesin inactivation in cancer pathogenesis, and opportunities for exploiting these findings for the clinical benefit


of patients with cohesin-mutant cancers. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through


your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this


journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS EMERGING ROLES OF COHESIN-STAG2 IN CANCER Article 29 November 2024 COHESIN MUTATIONS IN ACUTE MYELOID LEUKEMIA Article 09 September 2024


COHESIN MAINTAINS REPLICATION TIMING TO SUPPRESS DNA DAMAGE ON CANCER GENES Article 27 July 2023 REFERENCES * Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that


prevent premature separation of sister chromatids. _Cell_ 91, 35–45 (1997). CAS  PubMed  Google Scholar  * Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister


chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in _S. cerevisiae_. _Cell_ 91, 47–57 (1997). TOGETHER WITH MICHAELIS ET AL. (1997), THIS PAPER REPORTS


THE INITIAL DISCOVERY OF THE COHESIN COMPLEX IN YEAST. CAS  PubMed  PubMed Central  Google Scholar  * Losada, A., Hirano, M. & Hirano, T. Identification of _Xenopus_ SMC protein


complexes required for sister chromatid cohesion. _Genes. Dev._ 12, 1986–1997 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Peters, J. M. & Nishiyama, T. Sister chromatid


cohesion. _Cold Spring Harb. Perspect. Biol_ 4, a011130 (2012). PubMed  PubMed Central  Google Scholar  * Haarhuis, J. H., Elbatsh, A. M. & Rowland, B. D. Cohesin and its regulation: on


the logic of X-shaped chromosomes. _Dev. Cell_ 31, 7–18 (2014). CAS  PubMed  Google Scholar  * Barber, T. D. et al. Chromatid cohesion defects may underlie chromosome instability in human


colorectal cancers. _Proc. Natl Acad. Sci. USA_ 105, 3443–3448 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Rocquain, J. et al. Alteration of cohesin genes in myeloid diseases.


_Am. J. Hematol._ 85, 717–719 (2010). CAS  PubMed  Google Scholar  * Solomon, D. A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. _Science_ 333, 1039–1043


(2011). THIS PAPER IS THE FIRST TO REPORT _STAG2_ MUTATIONS IN HUMAN CANCER. CAS  PubMed  PubMed Central  Google Scholar  * Krantz, I. D. et al. Cornelia de Lange syndrome is caused by


mutations in NIPBL, the human homolog of _Drosophila melanogaster_ Nipped-B. _Nat. Genet._ 36, 631–635 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Tonkin, E. T., Wang, T. J.,


Lisgo, S., Bamshad, M. J. & Strachan, T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome.


_Nat. Genet._ 36, 636–641 (2004). CAS  PubMed  Google Scholar  * Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. _Science_ 297, 559–565 (2002). CAS 


PubMed  Google Scholar  * Zhang, N. et al. Overexpression of Separase induces aneuploidy and mammary tumorigenesis. _Proc. Natl Acad. Sci. USA_ 105, 13033–13038 (2008). CAS  PubMed  PubMed


Central  Google Scholar  * Remeseiro, S. et al. Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. _EMBO J._ 31, 2076–2089 (2012).


CAS  PubMed  PubMed Central  Google Scholar  * Schubert, V. et al. Cohesin gene defects may impair sister chromatid alignment and genome stability in _Arabidopsis thaliana_. _Chromosoma_


118, 591–605 (2009). CAS  PubMed  Google Scholar  * Covo, S., Puccia, C. M., Argueso, J. L., Gordenin, D. A. & Resnick, M. A. The sister chromatid cohesion pathway suppresses multiple


chromosome gain and chromosome amplification. _Genetics_ 196, 373–384 (2014). CAS  PubMed  Google Scholar  * Hodges, C. A., Revenkova, E., Jessberger, R., Hassold, T. J. & Hunt, P. A.


SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. _Nat. Genet._ 37, 1351–1355 (2005). CAS  PubMed  Google Scholar  * Chiang, T.,


Duncan, F. E., Schindler, K., Schultz, R. M. & Lampson, M. A. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. _Curr. Biol._ 20,


1522–1528 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Kleyman, M., Kabeche, L. & Compton, D. A. STAG2 promotes error correction in mitosis by regulating


kinetochore-microtubule attachments. _J. Cell Sci._ 127, 4225–4233 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Li, X. et al. Loss of STAG2 causes aneuploidy in normal human


bladder cells. _Genet. Mol. Res._ 14, 2638–2646 (2015). CAS  PubMed  Google Scholar  * Balbás-Martínez, C. et al. Recurrent inactivation of STAG2 in bladder cancer is not associated with


aneuploidy. _Nat. Genet._ 45, 1464–1469 (2013). PubMed  PubMed Central  Google Scholar  * Kon, A. et al. Recurrent mutations in multiple components of the cohesin complex in myeloid


neoplasms. _Nat. Genet._ 45, 1232–1237 (2013). THIS PAPER IS THE FIRST TO DEMONSTRATE THAT GENES ENCODING COHESIN SUBUNITS ARE COMMONLY INACTIVATED BY MUTATIONS IN MYELOID LEUKAEMIA. CAS 


PubMed  Google Scholar  * Yoshida, K. et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. _Nat. Genet._ 45, 1293–1299 (2013). CAS  PubMed  Google Scholar  *


Crompton, B. D. et al. The genomic landscape of pediatric Ewing sarcoma. _Cancer Discov._ 4, 1326–1341 (2014). CAS  PubMed  Google Scholar  * Brohl, A. S. et al. The genomic landscape of


the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. _PLOS Genet._ 10, e1004475 (2014). PubMed  PubMed Central  Google Scholar  * Tirode, F. et al. Genomic landscape of Ewing


sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. _Cancer Discov._ 4, 1342–1353 (2014). TOGETHER WITH CROMPTON ET AL. (2014) AND BROHL ET AL. (2014),


THIS PAPER DEMONSTRATES THAT _STAG2_ IS THE MOST COMMONLY MUTATED GENE IN EWING SARCOMA OTHER THAN THE TUMOUR-DEFINING EWS–FLI TRANSLOCATION. CAS  PubMed  PubMed Central  Google Scholar  *


Castronovo, P. et al. Premature chromatid separation is not a useful diagnostic marker for Cornelia de Lange syndrome. _Chromosome Res._ 17, 763–771 (2009). CAS  PubMed  Google Scholar  *


Kim, J. S. et al. Intact cohesion, anaphase, and chromosome segregation in human cells harboring tumor-derived mutations in STAG2. _PLOS Genet._ 12, e1005865 (2016). PubMed  PubMed Central 


Google Scholar  * DeMare, L. E. et al. The genomic landscape of cohesin-associated chromatin interactions. _Genome Res._ 23, 1224–1234 (2013). CAS  PubMed  PubMed Central  Google Scholar  *


Lee, B. K. & Iyer, V. R. Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation. _J. Biol. Chem._ 287, 30906–30913 (2012).


CAS  PubMed  PubMed Central  Google Scholar  * Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.


_EMBO J._ 36, 3573–3599 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. _Nature_


544, 503–507 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Viny, A. D. et al. Cohesin members Stag1 and Stag2 display distinct roles in chromatin accessibility and topological


control of HSC self-renewal and differentiation. _Cell Stem Cell_ 25, 682–696 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Casa, V. et al. Redundant and specific roles of cohesin


STAG subunits in chromatin looping and transcription control. _Genome Res._ 30, 515–527 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Rao, S. S. P. et al. Cohesin loss eliminates


all loop domains. _Cell_ 171, 305–320 (2017). THIS PAPER IS AMONG THE FIRST TO DEMONSTRATE THAT COHESIN IS REQUIRED TO DEMARCATE AND ANCHOR THE BOUNDARIES OF SELF-INTERACTING CONTIGUOUS


REGIONS OF CHROMOSOMES KNOWN AS TADS. CAS  PubMed  PubMed Central  Google Scholar  * Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal.


_Nature_ 551, 51–56 (2017). PubMed  PubMed Central  Google Scholar  * Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. _Cell_ 169, 693–707


(2017). CAS  PubMed  PubMed Central  Google Scholar  * Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. _Science_ 366, 1345–1349


(2019). CAS  PubMed  PubMed Central  Google Scholar  * Davidson, I. F. et al. DNA loop extrusion by human cohesin. _Science_ 366, 1338–1345 (2019). TOGETHER WITH KIM ET AL. (_SCIENCE_,


2019), THIS PAPER IS THE FIRST TO DEMONSTRATE THAT PURIFIED HUMAN COHESIN FUNCTIONS AS A CATALYTIC ENGINE FOR LOOP EXTRUSION IN VITRO. CAS  PubMed  Google Scholar  * Kojic, A. et al.


Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. _Nat. Struct. Mol. Biol._ 25, 496–504 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Cuadrado, A. et al.


Specific contributions of cohesin-SA1 and cohesin-SA2 to TADs and polycomb domains in embryonic stem cells. _Cell Rep._ 27, 3500–3510 (2019). CAS  PubMed  PubMed Central  Google Scholar  *


Wutz, G. et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. _eLife_ 9, e52091 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Lu, L.,


et al. (2019) Robust Hi-C chromatin loop maps in human neurogenesis and brain tissues at high-resolution. _bioRxiv_ https://doi.org/10.1101/744540 (2019). * Xiao, T., Wallace, J. &


Felsenfeld, G. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. _Mol. Cell. Biol._


31, 2174–2183 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Ghirlando, R. & Felsenfeld, G. CTCF: making the right connections. _Genes. Dev._ 30, 881–891 (2016). CAS  PubMed 


PubMed Central  Google Scholar  * Ding, L. W. et al. Mutational landscape of pediatric acute lymphoblastic leukemia. _Cancer Res._ 77, 390–400 (2017). CAS  PubMed  Google Scholar  *


Marshall, A. D. et al. CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic. _Oncogene_ 36, 4100–4110 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Kemp, C. J. et


al. CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer. _Cell Rep._ 7, 1020–1029 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Katainen, R. et al.


CTCF/cohesin-binding sites are frequently mutated in cancer. _Nat. Genet._ 47, 818–821 (2015). THIS PAPER IS THE FIRST TO DEMONSTRATE THAT COHESIN/CTCF DNA BINDING SITES ARE MUTATED IN


CANCER CELLS MORE FREQUENTLY THAN WOULD BE EXPECTED BY CHANCE ALONE, EMPHASIZING THAT ALTERATIONS IN COHESIN-MEDIATED 3D GENOME ORGANIZATION MAY BE A FUNDAMENTAL FEATURE OF DIVERSE CANCER


TYPES. CAS  PubMed  Google Scholar  * Guo, Y. A. et al. Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers. _Nat. Commun._ 9, 1520 (2018).


PubMed  PubMed Central  Google Scholar  * Liu, E. M. et al. Identification of cancer drivers at CTCF insulators in 1,962 whole genomes. _Cell Syst._ 8, 446–455 (2019). CAS  PubMed  PubMed


Central  Google Scholar  * Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. _Nature_ 467, 430–435 (2010). CAS  PubMed  PubMed Central  Google


Scholar  * Mondal, G., Stevers, M., Goode, B., Ashworth, A. & Solomon, D. A. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in


cohesin-mutant cancers. _Nat. Commun._ 10, 1686 (2019). PubMed  PubMed Central  Google Scholar  * Mullenders, J. et al. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading


to myeloproliferative neoplasms. _J. Exp. Med._ 212, 1833–1850 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Mazumdar, C. et al. Leukemia-associated cohesin mutants dominantly


enforce stem cell programs and impair human hematopoietic progenitor differentiation. _Cell Stem Cell_ 17, 675–688 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Viny, A. D. et al.


Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. _J. Exp. Med._ 212, 1819–1832 (2015). TOGETHER WITH MULLENDERS ET AL. (2015) AND MAZUMDAR ET AL. (2015),


THIS PAPER IS THE FIRST TO DEMONSTRATE THAT INACTIVATION OF COHESIN DRAMATICALLY ALTERS THE STEMNESS AND PLURIPOTENTIALITY OF STEM CELLS, IDENTIFYING A PRIMARY ROLE FOR COHESIN IN THE


REGULATION OF CELLULAR DIFFERENTIATION. CAS  PubMed  PubMed Central  Google Scholar  * Galeev, R. et al. Genome-wide RNAi screen identifies cohesin genes as modifiers of renewal and


differentiation in human HSCs. _Cell Rep._ 14, 2988–3000 (2016). CAS  PubMed  Google Scholar  * Tothova, Z. et al. Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem


cells models clonal hematopoiesis and myeloid neoplasia. _Cell Stem Cell_ 21, 547–555 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Cuartero, S. et al. Control of inducible gene


expression links cohesin to hematopoietic progenitor self-renewal and differentiation. _Nat. Immunol._ 19, 932–941 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Sasca, D. et al.


Cohesin-dependent regulation of gene expression during differentiation is lost in cohesin-mutated myeloid malignancies. _Blood_ 134, 2195–2208 (2019). PubMed  PubMed Central  Google Scholar


  * Lavagnolli, T. et al. Initiation and maintenance of pluripotency gene expression in the absence of cohesin. _Genes. Dev._ 29, 23–38 (2015). PubMed  PubMed Central  Google Scholar  *


Chen, Z. et al. Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation. _J. Exp. Med._ 216, 152–175 (2019). CAS  PubMed  PubMed Central 


Google Scholar  * Yun, J. et al. Dynamic cohesin-mediated chromatin architecture controls epithelial–mesenchymal plasticity in cancer. _EMBO Rep._ 17, 1343–1359 (2016). CAS  PubMed  PubMed


Central  Google Scholar  * O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. _Nat. Rev. Genet._ 18, 613–623 (2017). PubMed  Google Scholar  * Canudas, S. &


Smith, S. Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. _J. Cell Biol._ 187, 165–173 (2009). CAS  PubMed 


PubMed Central  Google Scholar  * van der Lelij, P. et al. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. _eLife_ 6, e26980 (2017). PubMed 


PubMed Central  Google Scholar  * Benedetti, L., Cereda, M., Monteverde, L., Desai, N. & Ciccarelli, F. D. Synthetic lethal interaction between the tumour suppressor STAG2 and its


paralog STAG1. _Oncotarget_ 8, 37619–37632 (2017). TOGETHER WITH VAN DER LELIJ ET AL. (2017), THIS PAPER IS THE FIRST TO DEMONSTRATE THAT INACTIVATION OF _STAG2_ GENERATES AN ABSOLUTE


CELLULAR DEPENDENCY ON ITS ORTHOLOGUE STAG1. PubMed  PubMed Central  Google Scholar  * Liu, Y. et al. Somatic mutation of the cohesin complex subunit confers therapeutic vulnerabilities in


cancer. _J. Clin. Invest._ 128, 2951–2965 (2018). PubMed  PubMed Central  Google Scholar  * Bai, P. Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance. _Mol. Cell._


58, 947–958 (2015). CAS  PubMed  Google Scholar  * McLellan, J. L. et al. Synthetic lethality of cohesins with PARPs and replication fork mediators. _PLOS Genet._ 8, e1002574 (2012). CAS 


PubMed  PubMed Central  Google Scholar  * Bailey, M. L. et al. Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition. _Mol. Cancer Ther._


13, 724–732 (2014). CAS  PubMed  Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT03974217 (2019). * Solomon, D. A. et al.


Frequent truncating mutations of STAG2 in bladder cancer. _Nat. Genet._ 45, 1428–1430 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Guo, G. et al. Whole-genome and whole-exome


sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. _Nat. Genet._ 45, 1459–1463 (2013). TOGETHER WITH BALBÁS-MARTÍNEZ


ET AL. (2013) AND SOLOMON ET AL. (2013), THIS PAPER DEMONSTRATES THAT COHESIN GENE MUTATIONS ARE AMONG THE MOST COMMON GENETIC EVENTS IN THE PATHOGENESIS OF EARLY-STAGE BLADDER CANCERS. CAS


  PubMed  PubMed Central  Google Scholar  * Taylor, C. F., Platt, F. M., Hurst, C. D., Thygesen, H. H. & Knowles, M. A. Frequent inactivating mutations of STAG2 in bladder cancer are


associated with low tumour grade and stage and inversely related to chromosomal copy number changes. _Hum. Mol. Genet._ 23, 1964–1974 (2014). CAS  PubMed  Google Scholar  * Lelo, A. et al.


STAG2 Is a biomarker for prediction of recurrence and progression in papillary non-muscle-invasive bladder cancer. _Clin. Cancer Res._ 24, 4145–4153 (2018). CAS  PubMed  PubMed Central 


Google Scholar  * Qiao, Y., Zhu, X., Li, A., Yang, S. & Zhang, J. Complete loss of STAG2 expression is an indicator of good prognosis in patients with bladder cancer. _Tumour Biol._ 37,


10279–10286 (2016). CAS  PubMed  Google Scholar  * Tsai, C. H. et al. Prognostic impacts and dynamic changes of cohesin complex gene mutations in de novo acute myeloid leukemia. _Blood


Cancer J._ 7, 663 (2017). PubMed  PubMed Central  Google Scholar  * Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. _N. Engl. J. Med._ 374, 2209–2221


(2016). CAS  PubMed  PubMed Central  Google Scholar  * Thol, F. et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. _Blood_ 123, 914–920


(2014). CAS  PubMed  Google Scholar  * Shen, C. H. et al. Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma. _Nat. Med._ 22, 1056–1061


(2016). CAS  PubMed  PubMed Central  Google Scholar  * Sundaramoorthy, S., Vázquez-Novelle, M. D., Lekomtsev, S., Howell, M. & Petronczki, M. Functional genomics identifies a requirement


of pre-mRNA splicing factors for sister chromatid cohesion. _EMBO J._ 33, 2623–2642 (2014). CAS  PubMed  PubMed Central  Google Scholar  * van der Lelij, P. et al. SNW1 enables sister


chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs. _EMBO J._ 33, 2643–2658 (2014). PubMed  PubMed Central  Google Scholar  * Watrin, E., Demidova, M., Watrin, T.,


Hu, Z. & Prigent, C. Sororin pre-mRNA splicing is required for proper sister chromatid cohesion in human cells. _EMBO Rep._ 15, 948–955 (2014). CAS  PubMed  PubMed Central  Google


Scholar  * Oka, Y. et al. UBL5 is essential for pre-mRNA splicing and sister chromatid cohesion in human cells. _EMBO Rep._ 15, 956–964 (2014). CAS  PubMed  PubMed Central  Google Scholar  *


Kim, J. S. et al. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression. _J. Biol.


Chem._ 294, 8760–8772 (2019). PubMed  PubMed Central  Google Scholar  * McCracken, S. et al. Proteomic analysis of SRm160-containing complexes reveals a conserved association with cohesin.


_J. Biol. Chem._ 280, 42227–42236 (2005). CAS  PubMed  Google Scholar  * Meisenberg, C. et al. Repression of transcription at DNA breaks requires cohesin throughout interphase and prevents


genome instability. _Mol. Cell._ 73, 212–223 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Takahashi, T. S., Yiu, P., Chou, M. F., Gygi, S. & Walter, J. C. Recruitment of


_Xenopus_ Scc2 and cohesin to chromatin requires the pre-replication complex. _Nat. Cell Biol._ 6, 991–996 (2004). CAS  PubMed  Google Scholar  * Gillespie, P. J. & Hirano, T. Scc2


couples replication licensing to sister chromatid cohesion in _Xenopus_ egg extracts. _Curr. Biol._ 14, 1598–1603 (2004). CAS  PubMed  Google Scholar  * Zheng, G., Kanchwala, M., Xing, C.


& Yu, H. MCM2-7-dependent cohesin loading during S phase promotes sister-chromatid cohesion. _eLife_ 7, e33920 (2018). PubMed  PubMed Central  Google Scholar  * Ivanov, M. P. et al. The


replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. _EMBO J._ 37, e97150 (2018). PubMed  PubMed Central  Google Scholar  *


Terret, M. E., Sherwood, R., Rahman, S., Qin, J. & Jallepalli, P. V. Cohesin acetylation speeds the replication fork. _Nature_ 462, 231–234 (2009). CAS  PubMed  PubMed Central  Google


Scholar  * Guillou, E. et al. Cohesin organizes chromatin loops at DNA replication factories. _Genes. Dev._ 24, 2812–2822 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Benedict, B.


et al. WAPL-dependent repair of damaged DNA replication forks underlies oncogene-induced loss of sister chromatid cohesion. _Dev. Cell_ 52, 683–698.e7 (2020). CAS  PubMed  Google Scholar  *


Loubiere, V., Martinez, A. M. & Cavalli, G. Cell fate and developmental regulation dynamics by polycomb proteins and 3D genome architecture. _Bioessays_ 41, e1800222 (2019). PubMed 


Google Scholar  * Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. _Nat. Genet._ 42, 181–185 (2010).


CAS  PubMed  PubMed Central  Google Scholar  * Jain, P. & Di Croce, L. Mutations and deletions of PRC2 in prostate cancer. _Bioessays_ 38, 446–454 (2016). CAS  PubMed  Google Scholar  *


Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. _Nat. Med._ 22, 128–134 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Cunningham, M. D. et al. Wapl antagonizes cohesin


binding and promotes Polycomb-group silencing in _Drosophila_. _Development_ 139, 4172–4179 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Schaaf, C. A. et al. Cohesin and polycomb


proteins functionally interact to control transcription at silenced and active genes. _PLOS Genet._ 9, e1003560 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Rhodes, J. D. P. et al.


Cohesin disrupts polycomb-dependent chromosome interactions in embryonic stem cells. _Cell Rep._ 30, 820–835.e10 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Du, Z. et al.


Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. _Mol. Cell_ 77, 825–839.e7 (2020). CAS  PubMed  Google Scholar  * Stelloh, C. et al. The


cohesin-associated protein Wapal is required for proper polycomb-mediated gene silencing. _Epigenetics Chromatin_ 9, 14 (2016). PubMed  PubMed Central  Google Scholar  * Sedeño Cacciatore,


Á. & Rowland, B. D. Loop formation by SMC complexes: turning heads, bending elbows, and fixed anchors. _Curr. Opin. Genet. Dev._ 55, 11–18 (2019). PubMed  Google Scholar  * Walter, M. J.


et al. Clonal architecture of secondary acute myeloid leukemia. _N. Engl. J. Med._ 366, 1090–1098 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Welch, J. S. et al. The origin and


evolution of mutations in acute myeloid leukemia. _Cell_ 150, 264–278 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Cancer Genome Atlas Research Network. et al. Genomic and


epigenomic landscapes of adult de novo acute myeloid leukemia. _N. Engl. J. Med._ 368, 2059–2074 (2013). Google Scholar  * Walter, M. J. et al. Clonal diversity of recurrently mutated genes


in myelodysplastic syndromes. _Leukemia_ 27, 1275–1282 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Thota, S. et al. Genetic alterations of the cohesin complex genes in myeloid


malignancies. _Blood_ 124, 1790–1798 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Cancer Genome Atlas Research Network. et al. Integrated genomic characterization of endometrial


carcinoma. _Nature_ 497, 67–73 (2013). Google Scholar  * Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. _Cell_ 155, 462–477 (2013). CAS  PubMed  PubMed Central  Google


Scholar  * Ceccarelli, M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. _Cell_ 164, 550–563 (2016). CAS  PubMed  PubMed


Central  Google Scholar  * Musio, A. et al. X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. _Nat. Genet._ 38, 528–530 (2006). CAS  PubMed  Google Scholar  * Deardorff, M. A.


et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation. _Am. J. Hum. Genet._ 80, 485–494 (2007).


CAS  PubMed  PubMed Central  Google Scholar  * Deardorff, M. A. et al. RAD21 mutations cause a human cohesinopathy. _Am. J. Hum. Genet._ 90, 1014–1027 (2012). CAS  PubMed  PubMed Central 


Google Scholar  * Yuan, B. et al. Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. _Genet. Med._ 21, 663–675 (2019). CAS  PubMed  Google


Scholar  * Zakari, M., Yuen, K. & Gerton, J. L. Etiology and pathogenesis of the cohesinopathies. _Wiley Interdiscip. Rev. Dev. Biol._ 4, 489–504 (2015). CAS  PubMed  PubMed Central 


Google Scholar  * Ronan, J. L., Wu, W. & Crabtree, G. R. From neural development to cognition: unexpected roles for chromatin. _Nat. Rev. Genet._ 14, 347–359 (2013). CAS  PubMed  PubMed


Central  Google Scholar  * Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. _Nat. Genet._ 45, 592–601


(2013). CAS  PubMed  PubMed Central  Google Scholar  * Tsurusaki, Y. et al. Mutations affecting components of the SWI/SNF complex cause Coffin–Siris syndrome. _Nat. Genet._ 44, 376–378


(2012). CAS  PubMed  Google Scholar  * Bögershausen, N. & Wollnik, B. Mutational landscapes and phenotypic spectrum of SWI/SNF-related intellectual disability disorders. _Front. Mol.


Neurosci._ 11, 252 (2018). PubMed  PubMed Central  Google Scholar  * Hoischen, A., Krumm, N. & Eichler, E. E. Prioritization of neurodevelopmental disease genes by discovery of new


mutations. _Nat. Neurosci._ 17, 764–772 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Muñoz, S., Minamino, M., Casas-Delucchi, C. S., Patel, H. & Uhlmann, F. A role for


chromatin remodeling in cohesin loading onto chromosomes. _Mol. Cell_ 74, 664–673.e5 (2019). PubMed  PubMed Central  Google Scholar  * Lieberman-Aiden, E. et al. Comprehensive mapping of


long-range interactions reveals folding principles of the human genome. _Science_ 326, 289–293 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Dekker, J., Marti-Renom, M. A. &


Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. _Nat. Rev. Genet._ 14, 390–403 (2013). CAS  PubMed  PubMed Central  Google


Scholar  * Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. _Nat. Rev. Genet._ 19, 789–800 (2018). CAS  PubMed  Google Scholar  * Mirny, L. A., Imakaev,


M. & Abdennur, N. Two major mechanisms of chromosome organization. _Curr. Opin. Cell. Biol._ 58, 142–152 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Szabo, Q., Bantignies, F.


& Cavalli, G. Principles of genome folding into topologically associating domains. _Sci. Adv._ 5, eaaw1668 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Hassler, M., Shaltiel,


I. A. & Haering, C. H. Towards a unified model of SMC complex function. _Curr. Biol._ 28, R1266–R1281 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Dixon, J. R. et al. Chromatin


architecture reorganization during stem cell differentiation. _Nature_ 518, 331–336 (2015). CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS Cohesin cancer


biology research in the T.W. laboratory is funded by NIH/National Cancer Institute (NCI) grant R01CA169345 and the Hyundai Hope on Wheels Foundation. The Lombardi Comprehensive Cancer Center


is funded by NIH/NCI Cancer Center Support Grant P30CA051008. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown


University School of Medicine, Washington, DC, USA Todd Waldman Authors * Todd Waldman View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING


AUTHOR Correspondence to Todd Waldman. ETHICS DECLARATIONS COMPETING INTERESTS The author declares no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews


Cancer_ thanks F. X. Real, A. Viny and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard


to jurisdictional claims in published maps and institutional affiliations. GLOSSARY * Chromosomal instability The condition when cells have an abnormally high rate of mis-segregation of


replicated chromosomes to daughter cells in mitosis. Results in aneuploidy. * Aneuploidy The presence of an abnormal number of chromosomes in a cell, generally due to aberrant segregation of


replicated chromosomes to daughter cells in mitosis. * Chromatin immunoprecipitation-sequencing A technique that combines chromatin immunoprecipitation (ChIP) with next-generation DNA


sequencing to comprehensively identify, in an unbiased way, all of the genomic binding sites of chromatin-associated proteins. Often referred to as ChIP-seq. * Haematopoietic stem and


progenitor cells (HSPCs). Multipotent, self-renewing adult stem cells that give rise to all types of differentiated blood cells in the lymphoid and myeloid lineages. HSPCs are found


primarily in the bone marrow of adults, but are also found in umbilical cord blood and in peripheral blood. * Auxin-inducible degron A 68-amino-acid tag that, when added to an endogenous


protein via gene editing, makes it possible to rapidly and completely degrade the tagged protein by adding auxin to the culture medium. * Hi-C (High-throughput chromosome conformation


capture). A next-generation DNA sequencing-based technique that makes it possible to comprehensively identify, in an unbiased way, regions of the genome that tend to co-localize in the 3D


space comprising the interior of the nucleus. * 3D genome organization The 3D structure of chromosomes and their relative positioning in the nucleus. Sometimes also referred to as nuclear


organization. * Haploinsufficiency One of the two alleles of a gene is inactivated by mutation, resulting in a pathology such as cancer. Generally used to refer to tumour suppressor genes in


which inactivation of one allele produces cancer, whereas inactivation of both alleles is lethal to the cell. * Biomarkers Measurable biological substances, such as DNA, RNA or protein,


that provide predictive information about a patient’s likely clinical outcome. * Synthetic lethality The simultaneous inactivation of two gene products results in cell death, whereas


inactivation of only one of the gene products does not. When applied to anticancer drug discovery, one of the inactivated proteins is encoded by a mutated tumour suppressor gene and the


other protein is inactivated via pharmacological inhibition. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Waldman, T. Emerging themes in cohesin


cancer biology. _Nat Rev Cancer_ 20, 504–515 (2020). https://doi.org/10.1038/s41568-020-0270-1 Download citation * Accepted: 29 April 2020 * Published: 08 June 2020 * Issue Date: September


2020 * DOI: https://doi.org/10.1038/s41568-020-0270-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on zno

ABSTRACT Since the successful demonstration of a blue light-emitting diode (LED)1, potential materials for making short-...

The greatest beer run ever review - fails to balance competing tones

To show his support for the Vietnam war, he vows to stuff a bag with “American beer”, hop on the next supply ship to Sai...

​how a tootsie roll may become a medical lifesaver​​

It may sound far-fetched but electrical engineers at Korea University in Seoul have turned Tootsie Rolls into a modern m...

Def leppard rick allen: how did drummer rick allen lose his arm?

“At first even walking was a trial, but I locked myself away in a room at my parents’ house in Dronfield and just played...

Mizo national front slams centre's move to implement ucc

Aizawl: Mizo National Front (MNF) Legislature party on Monday disapproved the Centre's move to implement Uniform Ci...

Latests News

Emerging themes in cohesin cancer biology

ABSTRACT Mutations of the cohesin complex in human cancer were first discovered ~10 years ago. Since then, researchers w...

Jay slater inquest abruptly ends after 'distressed' mum's request to coroner

THE CORONER HAS ADJOURNED THE INQUEST WHILE HE MAKES A FURTHER ATTEMPT TO FIND AYUB QASSIM AND STEVEN ROCCAS WHO WERE ST...

Four cardiomyopathy patients with a heterozygous dsg2 p. Arg119ter variant

ABSTRACT _DSG2_, encoding desmoglein-2, is one of the causative genes of arrhythmogenic cardiomyopathy. We previously id...

Prince harry 'set' for court hearing after trump said he 'wouldn't protect him'

AS PRINCE HARRY IS REPORTEDLY SET FOR ANOTHER COURT HEARING AMID HIS ONGOING VISA ROW, PRESIDENT DONALD TRUMP HAS MADE I...

‘the perfect scam' podcast: love online leads to international lockup — aarp

Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4  G...

Top