The y chromosome may contribute to sex-specific ageing in drosophila

Nature

The y chromosome may contribute to sex-specific ageing in drosophila"


Play all audios:

Loading...

ABSTRACT Heterochromatin suppresses repetitive DNA, and a loss of heterochromatin has been observed in aged cells of several species, including humans and _Drosophila_. Males often contain


substantially more heterochromatic DNA than females, due to the presence of a large, repeat-rich Y chromosome, and male flies generally have a shorter average lifespan than females. Here we


show that repetitive DNA becomes de-repressed more rapidly in old male flies relative to females, and repeats on the Y chromosome are disproportionally mis-expressed during ageing. This is


associated with a loss of heterochromatin at repetitive elements during ageing in male flies, and a general loss of repressive chromatin in aged males away from pericentromeric regions and


the Y. By generating flies with different sex chromosome karyotypes (XXY females and X0 and XYY males), we show that repeat de-repression and average lifespan is correlated with the number


of Y chromosomes. This suggests that sex-specific chromatin differences may contribute to sex-specific ageing in flies. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS Y CHROMOSOME TOXICITY DOES NOT CONTRIBUTE


TO SEX-SPECIFIC DIFFERENCES IN LONGEVITY Article Open access 12 June 2023 EPIGENETIC CONFLICT ON A DEGENERATING Y CHROMOSOME INCREASES MUTATIONAL BURDEN IN DROSOPHILA MALES Article Open


access 02 November 2020 TRANSCRIPTIONAL AND MUTATIONAL SIGNATURES OF THE _DROSOPHILA_ AGEING GERMLINE Article 12 January 2023 DATA AVAILABILITY All RNA-seq and ChIP–seq reads are deposited


at NCBI under BioProject ID PRJNA594556. REFERENCES * O’Sullivan, R. J. & Karlseder, J. The great unravelling: chromatin as a modulator of the aging process. _Trends Biochem. Sci._ 37,


466–476 (2012). Article  PubMed  PubMed Central  CAS  Google Scholar  * Wood, J. G. et al. Chromatin remodeling in the ageing genome of _Drosophila_. _Aging Cell_ 9, 971–978 (2010). Article


  CAS  PubMed  Google Scholar  * Tsurumi, A. & Li, W. X. Global heterochromatin loss: a unifying theory of aging? _Epigenetics_ 7, 680–688 (2012). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Zhang, W. et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. _Science_ 348, 1160–1163 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Larson, K. et al. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. _PLoS Genet._ 8, e1002473


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Haithcock, E. et al. Age-related changes of nuclear architecture in _Caenorhabditis elegans_. _Proc. Natl Acad. Sci. USA_ 102,


16690–16695 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, W. et al. Activation of transposable elements during aging and neuronal decline in _Drosophila_. _Nat.


Neurosci._ 16, 529–531 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * De Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading


to gene silencing and activation of transposable elements. _Aging Cell_ 12, 247–256 (2013). Article  PubMed  CAS  Google Scholar  * De Cecco, M. et al. Transposable elements become active


and mobile in the genomes of ageing mammalian somatic tissues. _Aging_ 5, 867–883 (2013). Article  PubMed  PubMed Central  Google Scholar  * Wood, J. G. & Helfand, S. L. Chromatin


structure and transposable elements in organismal aging. _Front. Genet._ 4, 274 (2013). PubMed  PubMed Central  Google Scholar  * Wood, J. G. et al. Chromatin-modifying genetic interventions


suppress age-associated transposable element activation and extend life span in _Drosophila_. _Proc. Natl Acad. Sci. USA_ 113, 11277–11282 (2016). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Van Meter, M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. _Nat. Commun._ 5, 5011 (2014). Article 


PubMed  CAS  Google Scholar  * Elsner, D., Meusemann, K. & Korb, J. Longevity and transposon defense, the case of termite reproductives. _Proc. Natl Acad. Sci. USA_ 115, 5504–5509


(2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hoskins, R. A. et al. Heterochromatic sequences in a _Drosophila_ whole-genome shotgun assembly. _Genome Biol._ 3,


research0085.1 (2002). Article  Google Scholar  * Chang, C. H. & Larracuente, A. M. Heterochromatin-enriched assemblies reveal the sequence and organization of the _Drosophila


melanogaster_ Y chromosome. _Genetics_ 211, 333–348 (2019). Article  CAS  PubMed  Google Scholar  * Yoon, J. S., Gagen, K. P. & Zhu, D. L. Longevity of 68 species of _Drosophila_. _Ohio


J. Sci._ 90, 16–32 (1990). Google Scholar  * Tower, J. & Arbeitman, M. The genetics of gender and life span. _J. Biol._ 8, 38 (2009). Article  PubMed  PubMed Central  Google Scholar  *


Lehtovaara, A., Schielzeth, H., Flis, I. & Friberg, U. Heritability of life span is largely sex limited in _Drosophila_. _Am. Nat._ 182, 653–665 (2013). Article  PubMed  Google Scholar 


* Pipoly, I. et al. The genetic sex-determination system predicts adult sex ratios in tetrapods. _Nature_ 527, 91–94 (2015). Article  CAS  PubMed  Google Scholar  * Hoskins, R. A. et al. The


Release 6 reference sequence of the _Drosophila melanogaster_ genome. _Genome Res._ 25, 445–458 (2015). Article  PubMed  PubMed Central  Google Scholar  * Li, X. Y., Harrison, M. M.,


Villalta, J. E., Kaplan, T. & Eisen, M. B. Establishment of regions of genomic activity during the _Drosophila_ maternal to zygotic transition. _eLife_ 3, e03737 (2014). Article  PubMed


Central  CAS  Google Scholar  * Brown, E. J., Nguyen, A. H. & Bachtrog, D. The Drosophila Y chromosome affects heterochromatin integrity genome-wide. _Mol. Biol. Evol._


https://doi.org/10.1093/molbev/msaa082 (2020). * Bonhoure, N. et al. Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. _Genome


Res._ 24, 1157–1168 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lu, B. Y., Emtage, P. C., Duyf, B. J., Hilliker, A. J. & Eissenberg, J. C. Heterochromatin protein 1


is required for the normal expression of two heterochromatin genes in Drosophila. _Genetics_ 155, 699–708 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Carlson, K. A. et al.


Genome-wide gene expression in relation to age in large laboratory cohorts of _Drosophila melanogaster_. _Genet. Res. Int._ 2015, 835624 (2015). PubMed  PubMed Central  Google Scholar  *


Garschall, K. & Flatt, T. The interplay between immunity and aging in _Drosophila_. _F1000Res._ 7, 160 (2018). Article  PubMed  PubMed Central  Google Scholar  * Pletcher, S. D. et al.


Genome-wide transcript profiles in aging and calorically restricted _Drosophila melanogaster_. _Curr. Biol._ 12, 712–723 (2002). Article  CAS  PubMed  Google Scholar  * Chen, H., Zheng, X.


& Zheng, Y. Age-associated loss of lamin-B leads to systemic inflammation and gut hyperplasia. _Cell_ 159, 829–843 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen,


H., Zheng, X., Xiao, D. & Zheng, Y. Age-associated de-repression of retrotransposons in the _Drosophila_ fat body, its potential cause and consequence. _Aging Cell_ 15, 542–552 (2016).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Tran, J. R., Chen, H., Zheng, X. & Zheng, Y. Lamin in inflammation and aging. _Curr. Opin. Cell Biol._ 40, 124–130 (2016). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Pindyurin, A. V. et al. The large fraction of heterochromatin in _Drosophila_ neurons is bound by both B-type lamin and HP1a. _Epigenetics


Chromatin_ 11, 65 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Salz, H. K. & Erickson, J. W. Sex determination in _Drosophila_: the view from the top. _Fly_ 4, 60–70


(2010). Article  CAS  PubMed  Google Scholar  * Carvalho, A. B., Koerich, L. B. & Clark, A. G. Origin and evolution of Y chromosomes: _Drosophila_ tales. _Trends Genet._ 25, 270–277


(2009). Article  PubMed Central  CAS  Google Scholar  * Ganley, A. R. & Kobayashi, T. Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and


aging. _FEMS Yeast Res._ 14, 49–59 (2014). Article  CAS  PubMed  Google Scholar  * Sinclair, D. A., Mills, K. & Guarente, L. Accelerated aging and nucleolar fragmentation in yeast sgs1


mutants. _Science_ 277, 1313–1316 (1997). Article  CAS  PubMed  Google Scholar  * Lu, K. L., Nelson, J. O., Watase, G. J., Warsinger-Pepe, N. & Yamashita, Y. M. Transgenerational


dynamics of rDNA copy number in _Drosophila_ male germline stem cells. _eLife_ 7, e32421 (2018). Article  PubMed  PubMed Central  Google Scholar  * Peng, J. C. & Karpen, G. H. H3K9


methylation and RNA interference regulate nucleolar organization and repeated DNA stability. _Nat. Cell Biol._ 9, 25–35 (2007). Article  CAS  PubMed  Google Scholar  * Buchwalter, A. &


Hetzer, M. W. Nucleolar expansion and elevated protein translation in premature aging. _Nat. Commun._ 8, 328 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Tiku, V. et al.


Small nucleoli are a cellular hallmark of longevity. _Nat. Commun._ 8, 16083 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Helmrich, A., Ballarino, M., Nudler, E. &


Tora, L. Transcription-replication encounters, consequences and genomic instability. _Nat. Struct. Mol. Biol._ 20, 412–418 (2013). Article  CAS  PubMed  Google Scholar  * Greil, F. &


Ahmad, K. Nucleolar dominance of the Y chromosome in _Drosophila melanogaster_. _Genetics_ 191, 1119–1128 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tower, J.


Sex-specific gene expression and life span regulation. _Trends Endocrinol. Metab._ 28, 735–747 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lyckegaard, E. M. & Clark,


A. G. Ribosomal DNA and stellate gene copy number variation on the Y chromosome of _Drosophila melanogaster_. _Proc. Natl Acad. Sci. USA_ 86, 1944–1948 (1989). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Repping, S. et al. Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. _Nat.


Genet._ 35, 247–251 (2003). Article  CAS  PubMed  Google Scholar  * Griffin, R. M., Le Gall, D., Schielzeth, H. & Friberg, U. Within-population Y-linked genetic variation for lifespan in


_Drosophila melanogaster_. _J. Evol. Biol._ 28, 1940–1947 (2015). Article  CAS  PubMed  Google Scholar  * Lemos, B., Branco, A. T. & Hartl, D. L. Epigenetic effects of polymorphic Y


chromosomes modulate chromatin components, immune response, and sexual conflict. _Proc. Natl Acad. Sci. USA_ 107, 15826–15831 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Lemos, B., Araripe, L. O. & Hartl, D. L. Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. _Science_ 319, 91–93 (2008). Article  CAS  PubMed 


Google Scholar  * Sackton, T. B., Montenegro, H., Hartl, D. L. & Lemos, B. Interspecific Y chromosome introgressions disrupt testis-specific gene expression and male reproductive


phenotypes in _Drosophila__. Proc. Natl Acad. Sci. USA_ 108, 17046–17051 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ewing, A. D. & Kazazian, H. H. Jr.


High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. _Genome Res._ 20, 1262–1270 (2010). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Bosco, G., Campbell, P., Leiva-Neto, J. T. & Markow, T. A. Analysis of _Drosophila_ species genome size and satellite DNA content reveals significant differences among


strains as well as between species. _Genetics_ 177, 1277–1290 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ellis, L. et al. Intrapopulation genome size variation in _D.


melanogaster_ reflects life history. _PLoS Genet._ 10, e1004522 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Linford, N. J., Bilgir, C., Ro, J. & Pletcher, S. D.


Measurement of lifespan in _Drosophila melanogaster_. _J. Vis. Exp._ 71, e50068 (2013). Google Scholar  * Alekseyenko, A., Larschan, E., Lai, W., Park, P. & Kuroda, M. High-resolution


ChIP-chip analysis reveals that the _Drosophila_ MSL complex selectively identifies active genes on the male X chromosome. _Genes Dev._ 20, 848–857 (2006). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. _Nat. Methods_ 9, 357–359 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Ellison, C. E. & Bachtrog, D. Dosage compensation via transposable element mediated rewiring of a regulatory network. _Science_ 342, 846–850 (2013). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. _Bioinformatics_ 29, 15–21 (2013). Article  CAS  PubMed  Google Scholar  * Liao, Y., Smyth, G. K. &


Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. _Bioinformatics_ 30, 923–930 (2014). Article  CAS  PubMed  Google Scholar  *


Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. _Genome Biol._ 15, 550 (2014). Article  PubMed  PubMed Central  CAS 


Google Scholar  * Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. _BMC


Bioinformatics_ 10, 48 (2009). Article  PubMed  PubMed Central  Google Scholar  * Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene


ontology terms. _PLoS ONE_ 6, e21800 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Koch, P., Platzer, M. & Downie, B. R. RepARK—de novo creation of repeat libraries


from whole-genome NGS reads. _Nucleic Acids Res._ 42, e80 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Quinlan, A. R. BEDTools: the Swiss-army tool for genome feature


analysis. _Curr. Protoc. Bioinformatics_ 47, 11.12.1–34 (2014). Article  Google Scholar  * Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. _J. Am. Stat.


Assoc._ 53, 457–481 (1958). Article  Google Scholar  Download references ACKNOWLEDGEMENTS D.B. was funded by NIH grants (nos. R01GM076007, GM101255 and R01AG057029). AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA Emily J. Brown, Alison H. Nguyen & Doris Bachtrog Authors * Emily J.


Brown View author publications You can also search for this author inPubMed Google Scholar * Alison H. Nguyen View author publications You can also search for this author inPubMed Google


Scholar * Doris Bachtrog View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS D.B. and E.J.B. conceived the study and wrote the paper. E.J.B.


and A.H.N. collected and analysed the data. CORRESPONDING AUTHOR Correspondence to Doris Bachtrog. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests.


ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. EXTENDED DATA EXTENDED DATA


FIG. 1 SURVIVORSHIP CURVES OF ADDITIONAL _D. MELANOGASTER_ STRAINS. Shown are Kaplan-Meier survivorship curves for line 2549 males and females ((C(1;Y),y1cv1v1B/0 & C(1)RM,y1v1/0) and


Oregon-R wild-type males and females. EXTENDED DATA FIG. 2 GENOME-WIDE ENRICHMENT OF H3K9ME2 FOR REPLICATE YOUNG AND OLD _D. MELANOGASTER_ MALES AND FEMALES ALONG THE DIFFERENT CHROMOSOME


ARMS. Pearson correlation coefficients for replicate H3K9me2 datasets for old males and females, and boxplots of normalized enrichment values for the replicates. Genome-wide plots were


generated using biological replicate data as in Fig. 1b,d. EXTENDED DATA FIG. 3 LOSS AND GAIN OF HETEROCHROMATIN DURING AGEING. Shown are chromosomal locations of 50 kb windows that gain


(red) or lose (blue) at least 1.5-fold H3K9me2 signal during ageing for males and females. Pericentromeric regions are indicated by the red portion of the line beneath each chromosome.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–19 and Tables 1 and 2. REPORTING SUMMARY SUPPLEMENTARY TABLE 3 AND 4 Gene expression changes during ageing in (A) XX


females, (B) XY males, (C) X0 males, (D) XXY females and (E) XYY males. Enriched GO categories of genes that significantly changed expression during ageing in (A) XX females, (B) XY males,


(C) X0 males, (D) XXY females and (E) XYY males. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Brown, E.J., Nguyen, A.H. & Bachtrog, D. The Y


chromosome may contribute to sex-specific ageing in _Drosophila_. _Nat Ecol Evol_ 4, 853–862 (2020). https://doi.org/10.1038/s41559-020-1179-5 Download citation * Received: 16 September 2019


* Accepted: 16 March 2020 * Published: 20 April 2020 * Issue Date: June 2020 * DOI: https://doi.org/10.1038/s41559-020-1179-5 SHARE THIS ARTICLE Anyone you share the following link with


will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative


Trending News

Vigilance raids eight locations linked to r&b je in da case

NUAPADA: Vigilance officials on Friday conducted simultaneous raids at eight locations linked to junior engineer in the ...

Indian cities: flood of woes, drought of action

Urban development in the Indian context is, effectively, an unplanned amoebic expansion of housing and commercial spaces...

Customer stabs tailor to death over poor trouser fit

KANNIYAKUMARI: A restaurant worker was arrested by Vadasery police on Thursday for allegedly stabbing a tailor to death,...

Bjp mp says widows of pahalgam victims 'should have fought back instead of pleading' to terrorists

BJP Rajya Sabha MP Ram Chander Jangra on Saturday sparked a controversy after he stated that the widows of the victims o...

Odisha hc directs collector of jajpur to stop mining in balarampur prf

CUTTACK: The Orissa High Court on Friday directed Jajpur collector to ensure mining operations are stopped at the six bl...

Latests News

The y chromosome may contribute to sex-specific ageing in drosophila

ABSTRACT Heterochromatin suppresses repetitive DNA, and a loss of heterochromatin has been observed in aged cells of sev...

Application of rr-xgboost combined model in data calibration of micro air quality detector

ABSTRACT Grid monitoring is the current development direction of atmospheric monitoring. The micro air quality detector ...

Japan is set to have a new prime minister, here's what you need to know about him

A pedestrian reads an extra edition newspaper reporting Fumio Kishida, former foreign minister, being elected as the new...

Toil and trouble and … startup acquisitions! | techcrunch

_Welcome to Startups Weekly, a fresh human-first take on this week’s startup news and trends. To get this in your inbox,...

New atpenins, nbri23477 a and b, inhibit the growth of human prostate cancer cells

ABSTRACT The growth and metastasis of prostate cancer are regulated by prostate stroma through the tumor–stromal cell in...

Top