Partner independent fusion gene detection by multiplexed crispr-cas9 enrichment and long read nanopore sequencing

Nature

Partner independent fusion gene detection by multiplexed crispr-cas9 enrichment and long read nanopore sequencing"


Play all audios:

Loading...

ABSTRACT Fusion genes are hallmarks of various cancer types and important determinants for diagnosis, prognosis and treatment. Fusion gene partner choice and breakpoint-position promiscuity


restricts diagnostic detection, even for known and recurrent configurations. Here, we develop FUDGE (FUsion Detection from Gene Enrichment) to accurately and impartially identify fusions.


FUDGE couples target-selected and strand-specific CRISPR-Cas9 activity for fusion gene driver enrichment — without prior knowledge of fusion partner or breakpoint-location — to long read


nanopore sequencing with the bioinformatics pipeline NanoFG. FUDGE has flexible target-loci choices and enables multiplexed enrichment for simultaneous analysis of several genes in multiple


samples in one sequencing run. We observe on-average 665 fold breakpoint-site enrichment and identify nucleotide resolution fusion breakpoints within 2 days. The assay identifies cancer cell


line and tumor sample fusions irrespective of partner gene or breakpoint-position. FUDGE is a rapid and versatile fusion detection assay for diagnostic pan-cancer fusion detection. SIMILAR


CONTENT BEING VIEWED BY OTHERS RAPID AND HIGHLY SENSITIVE APPROACH FOR MULTIPLEXED SOMATIC FUSION DETECTION Article Open access 28 March 2022 AN ACCURATE DNA AND RNA BASED TARGETED


SEQUENCING ASSAY FOR CLINICAL DETECTION OF GENE FUSIONS IN SOLID TUMORS Article Open access 28 February 2025 BREAKAGE FUSION BRIDGE CYCLES DRIVE HIGH ONCOGENE NUMBER WITH MODERATE


INTRATUMOURAL HETEROGENEITY Article Open access 10 February 2025 INTRODUCTION Fusion genes are hallmarks of many human cancers. Recent studies suggest that up to 16% of cancers are driven by


a fusion gene1. Some cancer types, such as prostate cancer or chronic myeloid leukemia (CML), are characterized by a specific fusion gene (_TMPRSS2-ERG_ and _BCR-ABL1,_ respectively),


whereas other cancer types do not show such clear associations1,2. Most fusion genes are highly variable with respect to fusion gene configurations and exact breakpoint-locations. Often, one


gene is a recurrent fusion partner (e.g., _KMT2A_/_MLL_, _ALK_) which exhibits a tissue-specific pattern3. However, these genes can fuse to a multitude of partners to obtain their oncogenic


potential. One striking example is _KMT2A_, formerly known as MLL, which is a prominent fusion partner in pediatric acute myeloid leukemia (AML) and the predominant fusion partner in acute


lymphocytic leukemia (ALL) diagnosed in infants (i.e., children <1 year of age), and has been reported with more than 130 different gene configurations4,5. Whereas fusion detection is


pathognomonic for some cancer types, it is a determinant of prognosis or treatment choices in other cancer types6,7. However, the high levels of variability in fusion gene configurations


drastically limits diagnostic detection. Current diagnostic strategies include (break-apart) Fluorescence In Situ Hybridization (FISH) and reverse transcription quantitative polymerase chain


reaction (RT-qPCR) assays, depending on the knowledge and breakpoint-variability of the fusion partner7. However, these assays are laborious and time-consuming and may not identify the


fusion partner. Recently, next generation sequencing (NGS) assays which specifically target recurrent fusion partners have been developed and are currently implemented in clinical


practice8,9. These assays are highly versatile with respect to partner identification and input material (e.g., suitable for DNA isolated from Formalin-Fixed Paraffin Embedded tissue blocks;


FFPE), but are accompanied with longer turnaround-times, increased costs and bioinformatic challenges. Recent long read sequencing technologies such as Oxford Nanopore Technology (ONT)


sequencing have proven immensely helpful in elucidating structural variation in human genomes10. Furthermore, the real-time sequencing capabilities yield abundant opportunities for clinical


applications. However, sequencing throughput from one nanopore flow cell (2–5x genome coverage; R9.4) is insufficient to elucidate the complete structural variation (SV) landscape of a


genome11. ONT recently released a Cas9-based protocol for enrichment of specific genomic regions, which utilizes the upstream (5′) and downstream (3′) flanking sequences of the region of


interest (ROI), to excise the latter and perform targeted sequencing12. Two publications have utilized this method to study methylation and structural variants12, as well as genome


duplications13. With this technique, a median on-target coverage of 165x and 254x was achieved, respectively, offering a unique tool to sequence SVs such as fusion genes. However, this


approach requires knowledge of both flanking sequences of the ROI, which again restricts its application to detection of only known fusion gene partner combinations. We here develop FUDGE


(FUsion Detection from Gene Enrichment) as a fusion gene identification strategy to perform targeted enrichment of fusion genes and identify — without prior knowledge — the unknown fusion


partner and precise breakpoint by using long read, real-time ONT sequencing. Furthermore, we create and implement a complementary bioinformatic tool, NanoFG, to detect fusion genes from long


 read nanopore sequencing data. Utilizing this approach, we achieve an average breakpoint-spanning coverage of 68x — resulting in an average enrichment of 665x — and identify fusion gene


partners from various cancer types (e.g., AML, Ewing Sarcoma, Colon) within 48 h. In addition, we offer strategies for low-input DNA samples (10 ng), as well as multiplexing of samples and


targets to minimize assay costs. Finally, we utilize this method on material in which routine diagnostic procedures were unable to detect the fusion partner, and identify the fusion partner


within two days. RESULTS SCHEMATIC OVERVIEW OF FUSION GENE DETECTION ASSAY We developed FUDGE to specifically enrich for fusion genes in which only one gene partner is known and for which


the other fusion gene partner and/or breakpoint is unknown. To achieve this, genomic DNA isolated from fresh frozen samples is dephosphorylated as previously described12 and a crRNA flanking


the suspected breakpoint region(s) is utilized to target Cas9 to a specific genomic loci where it creates a double-strand DNA break (Fig. 1a). The Cas9 protein stays predominantly bound to


the PAM-distal side of the cut, therefore masking the phosphorylation side on this end, while exposing phosphorylated DNA on the PAM-proximal side of the cut (Fig. 1b). This phosphorylated


DNA, following dA-tailing, creates a distinct contact-point that can be used to anneal the ONT-specific sequencing adapters — specifically to this region only. To achieve directionality, the


crRNAs are designed in a strand-directed manner to specifically direct reads upstream or downstream of the crRNA sequence — effectively sequencing into the suspected 5′ or 3′ fusion partner


(Fig. 1b, Methods, and Supplementary Fig. 1). Thereafter, the enriched libraries are sequenced on one ONT flow cell (R9.4). To robustly detect fusion genes from low coverage nanopore


sequencing data, we developed a bioinformatic tool, NanoFG, which reports fusion partners, exact breakpoint-locations, the breakpoint-sequence and primers for validation purposes (Fig. 1c).


ENRICHMENT AND DIRECTED SEQUENCING To test the ability of the fusion gene detection assay to generate sufficient enrichment and to direct reads in the desired direction, we applied FUDGE to


genomic DNA from a male healthy donor. As a proof-of-principle we designed crRNAs for a panel of recurrent fusion partner genes (_BRAF_, _EWSR1_, and _SS18_) in a strand-specific manner. We


performed two separate library preparations (PP1 and PP2) and targeted two different exons for each of the three genomic loci per library (Fig. 2a and Supplementary Data 1). As a positive


control, we targeted two genomic loci (_C9orf72_ and _FMR1_) for which we previously performed targeted sequencing, and used two crRNAs flanking the ROI and with each targeting one of the


two different strands (Fig. 2a and Supplementary Data 1). After the sample processing, libraries of PP1 and PP2 were pooled and sequenced on a single flow cell. Sequencing resulted in a


throughput of 1.665 Gbs which corresponds to a mean genome coverage of 0.5x (Supplementary Data 1). For the loci where only one strand of the genome was targeted, on average 89% of the reads


sequenced in the anticipated 5′ or 3′ direction (Fig. 2b–d and Supplementary Fig. 2a–e). The coverage at the PP1 and PP2 cut-sites were 115x and 102x (_BRAF_) (Fig. 2b), 142x and 101x


(_EWSR1_) (Fig. 2c), 117x and 118x (_SS18_) (Fig. 2d), 57x and 104x (_C9orf72_) (Fig. 2e), and 11x and 44x (_FMR1_) (Fig. 2f), respectively. The average read-length was 9.9 kb (Fig. 2g and


Supplementary Data 1) and on average 116 reads crossed the most common fusion breakpoint-locations (Fig. 2b–d and Supplementary Data 1), proving the applicability of this assay to detect


fusion genes irrespective of breakpoint-position. IDENTIFICATION OF GENE FUSIONS IN CANCER CELL LINES To test that FUDGE identifies fusion genes independent of targeted gene or


breakpoint-location, we applied this technique to three fusion-positive cancer cell lines in which the fusion configuration was previously identified. The Ewing sarcoma cell lines A4573


(ref. 14) and CHP-100 (ref. 15) harbor the _EWSR1-FLI1_ fusion gene and the synovial sarcoma HS-SYII cell line contains a _SS18-SSX1_ fusion16. We targeted three loci per sample (_BRAF_ Exon


10, _EWS_R1 Exon 7, _SS18_ Exon 9) and sequenced the samples on one flow cell each (Supplementary Data 1). This produced a mean genome coverage of 0.24x (A4573), 0.15x (CHP-100), and 0.015x


(HS-SYII) (Fig. 3a). We observed a sharp increase to 81x (A4573), 66x (CHP-100), and 11x (HS-SYII) on-target coverage (cut to breakpoint) due to the achieved directionality (Fig. 3a and


Supplementary Fig. 1). This relates to an overall on-target fold-enrichment of 342x (A4573), 443x (CHP-100), and 735x (HS-SYII) (Fig. 3b–e). To easily identify fusion-spanning reads from


nanopore data, we developed NanoFG17. NanoFG is an amendment to NanoSV10 that calls fusion genes from nanopore sequencing data and reports the exact breakpoint-location, breakpoint-sequence


and breakpoint-spanning primers for each gene fusion (Fig. 1). The breakpoint was spanned by 69 (A4573), 62 (CHP), and 6 (HS-SYII) reads, which correlates to a 290x, 417x, and 406x


enrichment, respectively. NanoFG identified the two _EWSR1-FLI1_ fusion genes with 28 (A4573) (Fig. 3a, c) and 18 (CHP-100) (Fig. 3a, d) fusion-spanning reads which relates to a


fusion-specific enrichment of 118x and 121x, respectively (Fig. 3b). The two Ewing sarcoma cell lines harbored the same fusion gene, however, with different breakpoint-locations


(Supplementary Fig. 3A). These differences were readily detected by NanoFG and emphasizes the flexibility of this assay to identify fusions without knowledge of the exact


breakpoint-positions. To uncover why NanoFG did not identify the _SS18-SSX1_ fusion gene, we manually investigated the candidate locus in the IGV Browser18. The sequencing of the HS-SYII


cell line resulted in very little throughput, on-target coverage (11x) (Fig. 3a) and relatively low breakpoint-spanning reads (6). As a result, only one fusion-spanning read was produced,


which is below the filtering cut-off for fusion-supporting reads set for NanoFG (requirement of minimal two fusion-supporting reads). When adjusting the settings of NanoFG to one supporting


read, the _SS18-SSX1_ fusion was called (Fig. 3a, e), however, lowering the threshold of fusion-supporting reads requires manual validation if the fusion status is unknown to exclude


false-positives (Supplementary Fig. 3B). Despite the low-throughput for the HS-SYII cell line, the assay resulted in a 68x fusion-specific fold-enrichment (Fig. 3b). This shows the ability


of FUDGE to identify fusion genes irrespective of fusion partner or breakpoint-location from low-coverage nanopore sequencing data. DETECTION OF FUSION GENES FROM TUMOR MATERIAL To validate


that FUDGE identifies fusion genes from tumor material and without prior knowledge of the breakpoint-location, we applied the assay to six tumor samples of different origins with known


fusion status. We tested DNA isolated from an Ewing sarcoma (ES1), a rhabdomyosarcoma (RH), a chronic myeloid leukemia (CML), a Burkitt’s Lymphoma (BL), a philadelphia chromosome-positive


B-lymphoblastic acute leukemia (B-ALL)(ALL1) and a B-ALL (ALL2). Rhabdomyosarcomas are characterized by breaks in the second intron of _FOXO1_ (104 kb) which then fuses to either _PAX3_ or


_PAX7_ (ref. 19). Due to the large potential breakpoint region within _FOXO1_, we chose to target the _PAX3_ and _PAX7_ genes instead to minimize the number of necessary crRNAs. Here, the


most common breakpoint areas span a 18 kb and 32 kb region, respectively. Therefore, we designed sequential crRNAs to span the potential breakpoint regions of both genes (Supplementary Data 


1). The CML and the ALL1 harbored a _BCR-ABL1_ fusion gene with unknown breakpoint position. The _BCR_ gene harbors three recurrent breakpoint clusters, spanning 6.6 kb between exon 12 and


exon 15 (major-cluster), 71 kb between exon 1 and exon 2 (minor-cluster), and 1.3 kb between exon 19 and exon 20 (micro-cluster). To comprehensively cover all possible breakpoints, we


targeted all three clusters with in total eleven crRNAs (Supplementary Data 1). We sequenced each tumor sample on a single flow cell and identified, as expected, an _EWSR1-FLI1_ fusion (ES1,


8 reads) (Supplementary Data 1 and Supplementary Figs. 3A and 4A), a _PAX3-FOXO1_ fusion (RH, 32 reads) (Fig. 4a, d), a _BCR-ABL1_ fusion within the major-cluster (CML, 22 reads) (Fig. 4b,


d), a translocation between _MYC_ and the _IGH_ locus (BL, 3 reads) (Fig. 4d and Supplementary Fig. 4B), a _BCR-ABL1_ fusion within the minor-cluster (ALL1, 27 reads) (Fig. 4d and


Supplementary Fig. 4C) and a _CRLF2-P2RY8_ rearrangement (ALL2, 185 reads) (Fig. 4c, d). The on-target enrichment was 498x (ES1), 930x (RH1), 611x (CML), 347x (BL), 679 (ALL1), and 3492


(ALL2) and the breakpoint-spanning enrichment was 406x (ES1), 838x (RH1), 598x (CML), 81x (BL), 633x (ALL1), and 3601x (ALL2) (Fig. 4e). From this, a fusion-specific enrichment of 270x


(ES1), 258x (RH1), 188x (CML), 61x (BL), 197x (ALL1), and 3382x (ALL2) was achieved (Fig. 4e). Furthermore, we identified two additional fusion events, a reciprocal _FOXO1-PAX3_ (RH2) fusion


with eight fusion-supporting reads for the RH sample and a _DRICH1-BCR_ (CML2) fusion with three fusion-supporting reads for the CML sample. As these events were unexpected findings, we


validated them by breakpoint PCR (Supplementary Fig. 5A, B). We furthermore performed Sanger validation on the _DRICH1-BCR_ fusion, as this event has not been previously reported in


literature (Supplementary Fig. 5C). It is important to note that NanoFG is specifically designed to detect fusion genes with breakpoints within both of the involved fusion partners. As the


_IGH/MYC_ translocation (_IGH_-breakpoint approximatively 2.5 kb upstream of _IGHM_) and _CRLF2-P2RY8_ rearrangement (_CRLF2_-breakpoint approximatively 3.5 kb upstream of _CRLF2_) do not


meet this criterium, NanoFG does not report them and the use of NanoSV is more appropriate. For instances where a fusion event is expected in areas outside of annotated genes (including


promoter, both UTRs, and exonic/intronic regions), manual analysis of the variant calling file (vcf) reported by NanoSV, an initial step in the NanoFG pipeline (Methods) is required. Here,


the information on exact breakpoint position, number of supporting reads, etc. can be extracted. In summary, this demonstrates the ability of FUDGE to detect known and reciprocal fusion


genes and genomic rearrangements from patient samples irrespective of tumor type. BLINDED FUSION GENE DETECTION AND RUN TIME ANALYSIS To confirm that FUDGE identifies fusion genes without


prior knowledge of fusion partner or fusion status, we tested two tumor samples in a blinded manner (B1 and B2). For the B1 sample, diagnostic efforts identified a _KMT2A_ fusion through


break-apart FISH; however, the fusion partner could not be identified and was unknown prior to the experiment described here. The _KMT2A_ gene is a frequent fusion partner in AML and ALL and


shows two major breakpoint clusters4 of which we designed crRNAs for both (Supplementary Data 1). The B2 sample was randomly chosen out of a pool of six tumor samples (four ALL, one BL, one


Burkitt’s-ALL) which could potentially harbor a _BCR-ABL1_, _IGH/MYC,_ or _CRLF2-P2RY8_ rearrangement. Therefore, we targeted the B1 sample with two crRNAs and the B2 sample with 14 crRNAs


(Supplementary Data 1) and sequenced both samples on one flow cell each. NanoFG identified a _KMT2A-MLLT6_ fusion in B1 (Fig. 5a) and a _BCR-ABL1_ fusion in B2 (Fig. 5b) with 29


fusion-spanning and 27 fusion-spanning reads, respectively (Fig. 5c). Overall, we observed a breakpoint-spanning enrichment of 938x (B1) and 313x (B2) and a fusion-spanning enrichment of


143x (B1) and 148x (B2) (Fig. 5d). This demonstrates the capacity of FUDGE to identify unknown fusion events from tumor material. Furthermore, we performed a retrospective time-course


experiment on all eight sequenced tumor samples to identify the necessary sequencing time to detect fusion-spanning reads (Fig. 5e, f). On-average, 70% of the fusion-spanning reads were


produced within the first 12 h of sequencing and 90% of the fusion-spanning reads were produced within the first 24 h of sequencing (Fig. 5e). For all samples, except the IGH/MYC


rearrangement in BL, it took less than three hours of sequencing time to identify two fusion-spanning read (Fig. 5f). This highlights the speed of our approach and indicates that if 


sequencing would be stopped after 24 h, the majority of fusion-spanning reads could be obtained. FUSION GENE DETECTION FROM LOW INPUT TUMOR MATERIAL The amount of available tumor material is


often a limiting factor for genomic analysis. To circumvent this problem, we tested if our pipeline was compatible with whole genome amplified (WGA) material. WGA produces DNA fragments of


considerable length (up to 100 kb)20, and could therefore be a suitable method to produce enough DNA at sufficient length for targeted nanopore sequencing. Therefore, we sequenced WGA-DNA of


two colon cancer samples (C1 and C2), known to harbor _BRAF_ fusions (_AGAP3-BRAF_ and _TRIM24-BRAF_, respectively)21, a sarcoma sample with a _SS18-SSX1_ fusion (S1) and a PDX sarcoma


sample with unknown fusion status (S2). We targeted the S2 sample with nine crRNAs targeting the most common recurrent sarcoma fusion partners _EWSR1_, _PAX3_, _PAX7_, and _SS18_. For all


samples we performed WGA on 10 ng starting material and subjected 1 μg of WGA-DNA to the enrichment protocol. Genome coverage (Fig. 6a) and read-length were comparable to previous


experiments (Supplementary Data 1). Initially NanoFG did not detect the _AGAP3-BRAF_ fusion, however, lowering the threshold to one fusion-supporting read identified the fusion gene (Fig. 


6a–c). The _TRIM24-BRAF_ fusion was called by NanoFG with eleven fusion-spanning reads (Fig. 6a, b, d). For the S1 and the S2 sample, neither NanoFG nor manual inspection in IGV could detect


a targeted fusion gene. Notably, WGA introduced accompanying structural variation leading to a high number of fusion gene predictions (Supplementary Fig. 5D) and difficulties for manual


inspection in IGV. However, we show that a fusion supporting threshold of two reads is a reasonable cut-off for normal and WGA-samples, as the number of predicted fusions decreases


drastically compared to one supporting read but remains relatively stable compared to a higher fusion-support (Supplementary Fig. 5D). Furthermore, fusion genes identified by NanoFG that


were not targeted through crRNAs within our assay are very likely to be false-positives. We successfully validated the two _BRAF_ fusion genes, detected by a single fusion-spanning read


(such as in A_GAP3-BRAF)_, by utilizing the exact breakpoint-locations provided by NanoFG and breakpoint-spanning PCR on the non-amplified tumor DNA (Supplementary Fig. 5E). In addition, for


the _BRAF_ fusions, the breakpoint junction locations were 6.5 kb apart (Fig. 6c, d and Supplementary Fig. 3), highlighting the unbiased performance of our assay. This demonstrates that


FUDGE may be successfully applied to WGA material and NanoFG still accurately identifies the exact genomic breakpoint of the structural variants; however, prior knowledge of both fusion


genes is required. MULTIPLEXING OF FUSION POSITIVE CELL LINES Parallel identification and cost-reduction are key for diagnostic approaches. Therefore, we tested the feasibility to multiplex


samples in one sequencing run. We obtained DNA from four _KMT2A_-fusion positive cell lines (ALLPO, KOPN8, ML2 and Monomac-1) with different fusion partners (_MLLT1_, _MLLT2_, _MLLT3_, and


_MLLT4_). We used two crRNAs targeting both breakpoint clusters (Supplementary Table. 1) and produced separate libraries for each sample (Fig. 7a). The targeted libraries were pooled


pre-sequencing without barcoding and run on a single flow cell. This multiplexing approach resulted in a genome coverage of 0.57x and average read-length of 9.2 kb (Supplementary Data 1).


NanoFG identified the four different fusion partners (Supplementary Fig. 6A) and 6 different breakpoint-locations (Fig. 7b). Interestingly, two _KMT2A_-fusions (_MLLT2_ and _MLLT3_) appeared


to be reciprocal (Supplementary Fig. 6A, B). The breakpoints within _KMT2A_ spanned a region of 6 kb, and we identified breakpoints for reciprocal fusions to be location-independent (Fig. 


7c). We utilized the breakpoint-spanning primers and tested all samples for the occurrence of all fusion genes (Fig. 7a). This approach easily deconvoluted the sample-of-origin of each


fusion, therefore validating this multiplexing approach (Supplementary Fig. 7A). Of note, the Monomac-1 cell line (_KMT2A-MLLT3_) also exhibited a positive result for the _KMT2A-MLLT1_


fusion. This could be traced back to a contamination in the cultured cell line, highlighting the sensitivity of this assay to detect subclonal events. We isolated fresh DNA from the


Monomac-1 cell line and could indeed only validate the expected fusion gene _KMT2A-MLLT3_ (Supplementary Fig. 7B). Furthermore, from the coverage plot we observed 26 reads within the _MLLT4_


fusion partner (Supplementary Fig. 6A) which were not explained by any of the NanoFG detected fusions. Upon manual investigation in the IGV browser, we identified one fusion, _KMT2A-MLLT4_,


that had a more complex rearrangement which was not called by NanoFG (Supplementary Fig. 7C). In this case, a small 30 bp region of _KMT2A_ was deleted, followed by a 185 bp inversion and


the ultimate fusion to _MLLT4_. We again designed breakpoint-spanning primers and in addition, performed Sanger-sequencing on the amplicons and validated the occurrence and structure of the


complex rearrangement (Supplementary Fig. 7C). As a result, with the use of only one nanopore flow cell, we identified seven fusion genes from four samples with a collective on-target


enrichment of 349x resulting in an average of 18 fusion-spanning reads (Fig. 7d). This shows the ability of our approach to multiplex samples with different fusion genes and


breakpoint-positions and pinpoint the sample-of-origin by a simple PCR assay. DISCUSSION Fusion genes are critical determinants for diagnosis, prognosis and treatment opportunities for


various cancer types22. However, fusion gene detection by diagnostic approaches is limited to highly recurrent fusion gene configurations. We here developed FUDGE, a fusion detection assay


from gene enrichment coupled to nanopore sequencing, which enables rapid partner-location and breakpoint-location independent fusion gene detection within 48 h. Rapid identification of the


genomic breakpoint offers the opportunity to utilize the breakpoint junctions as a biomarker for minimal residual disease (MRD) tracing23. Common diagnostic approaches for fusion gene


detection can be divided into DNA or RNA-based approaches (Table 1). Detection of fusion genes on the RNA level might be less complex due to the restriction of breakpoints to exon-exon


junctions; however, RNA molecules are less stable and the overall abundance is influenced by expression levels. DNA-based approaches such as targeted NGS assays or WGS are preferable since


they identify all fusion gene events including promoter fusions, as well as the exact genomic breakpoint. However, these assays are hampered by longer turn-around times and WGS can result in


high false-positive rates. With FUDGE we offer fast and unbiased fusion gene detection. We successfully identified fusion genes from genomic DNA independent of cancer type or fusion gene


configuration and/or breakpoint-positions. We targeted ten recurrent fusion partners within eight solid and hematological tumor specimens and identified 22 unique fusion gene configurations,


highlighting the complexity of fusion gene biology. In one case, _KMT2A_ was identified as a fusion partner by break-apart FISH through diagnostic efforts; however, the fusion partner was


undetectable. We applied FUDGE to the sample and identified _MLLT6_ as the fusion partner within two days (provided the crRNA was already designed and in-house). Furthermore, FUDGE also


detects reciprocal fusion events without additional efforts. In the case of two _BRAF_ fusion-positive samples, the breakpoint locations were >6 kb apart from each other. Conventional


methods such as qPCR would have not sufficed to span this large region of possible breakpoint-positions. We integrated an adaptation to the protocol to design sequential guides, offering the


opportunity to span large regions of possible breakpoint-locations. For the _BCR-ABL1_ fusion, we spanned a >80 kb region, highlighting the versatility of FUDGE. With our assay, fusion


detection is possible within 48 h. Rapid identification of fusion genes is essential for tumor types where fusion genes are pathognomonic such as Ewing sarcoma or synovial sarcoma22,24.


Hence, early detection allows for early definitive diagnosis and treatment initiation. Furthermore, occurrence of a specific fusion gene configuration can be a determinant of prognosis25.


FUDGE identified all fusion gene configurations within 48 h, allowing immediate diagnosis and treatment initiation. In addition, we show that 70% of the fusion-supporting reads are produced


in the first 12 h of sequencing and that three hours of sequencing are sufficient to identify two fusion-spanning reads, offering the opportunity to reduce the assay time for urgent cases to


less than a day. Until now, we focused our assay on ten different recurrent fusion genes; however, expanding the assay to any gene of interest is possible. Furthermore, rapid detection of


the exact genomic breakpoint-positions opens the door to immediately identify patient specific targets to trace fusion molecules within circulating tumor DNA (ctDNA) from liquid biopsies and


asses treatment responses by monitoring of minimal residual disease. A limitation of this approach is the requirement of non-fragmented DNA. Applying the FUDGE crRNA protocol to FFPE


material (the current standard for pathology procedures), will most likely fail to comprehensively identify fusion genes due to short read lengths derived from degraded FFPE DNA. An


adaptation of the design strategy to regularly interspace crRNAs at short intervals may overcome this issue; however, this approach will drastically increase the assay costs per fusion gene.


Furthermore, intratumoral heterogeneity and tumor purity are likely to influence the lower detection limits of our assay, and the use of WGA in situations of low DNA availability may be


useful to accurately identify the breakpoint-location but only with prior knowledge of both fusion gene partners. We set a cut-off of at least two fusion-spanning reads to reliably detect a


fusion gene without further validation. In general, we observed a decrease in on-target coverage for low throughput sequencing runs and/or more distal breakpoint events (Supplementary Fig. 


8), suggesting that higher coverage of breakpoints can be obtained by guides placed closer to breakpoints. Notably, none of the sequenced DNA samples used in these experiments was


specifically isolated for long read sequencing. Thus, optimizing the isolation method and therefore the length of the DNA molecules and/or incorporating the tiling approach will have a


positive effect on detecting these more distal events. Here, two fusions were only detected with one fusion-spanning read each, requiring the manual validation of the fusion gene by


breakpoint PCR. However, by incorporating a multi-crRNA approach and increased efforts from ONT to improve sequencing throughput, the performance of FUDGE is expected to improve. In


addition, the latter would allow for higher capacities to multiplex samples, reducing costs of the assay further. Our current multiplexing approach, with sample pooling and retrospective


demultiplexing by breakpoint PCR, reduces cost but prolongs assay duration and increases the complexity of sample processing. With lower throughput flow cells, such as the ONT Flongle,


individual samples could be run separately, without pooling and demultiplex-PCR, thus simplifying the workflow and lowering assay costs dramatically. In conclusion, FUDGE identifies fusion


genes irrespective of fusion partner or breakpoint-location from low-coverage nanopore sequencing. FUDGE overcomes various limitations of current diagnostic assays by multiplexing targets in


a rapid, accurate assay and can be applied to detect fusion genes within 48 h. The application of this assay in the clinic could allow for rapid gene fusion detection to allow appropriate


therapy initiation and identification of specific genetic targets for blood-based minimal residual disease tracing. METHODS CELL LINES AND CULTURE Ewing sarcoma cell lines (A4573, CHP-100)


and synovial sarcoma cell line (HS-SYII) were cultured in 5% CO2 in a humidified atmosphere at 37 °C in Dulbecco’s modified medium (DMEM) (Thermo Fisher) supplemented with 10% fetal bovine


serum (FBS) and antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin). The absence of _Mycoplasma sp_. contamination was determined with a Lonza MycoAlert system. Cell lines were


obtained in collaboration from Anton Henssen, Charité Berlin. ALL cell lines ALL-PO and KOPN8 and AML cell lines ML2 and Monomac-1 were maintained as suspension cultures in RPMI-1640 medium


(Invitrogen), supplemented with 10% or 20% fetal calf serum (FCS) and antibiotics. Cell lines were obtained in collaboration from Ronald Stam, PMC Utrecht. PATIENT MATERIAL The healthy donor


(PP) provided written informed consent. The patients ES1 and RH had been registered and treated according to German trial protocols of the German Society of Pediatric Oncology and


Hematology (GPOH). This study was conducted in accordance with the Declaration of Helsinki and Good Clinical Practice, and informed consent was obtained from all patients or their guardians.


Collection and use of patient specimen were approved by the institutional review boards of Charité Universitätsmedizin Berlin. Specimen, clinical data were archived and made available by


Charité-Universitätsmedizin Berlin. C1 and C2 were previously sequenced21 and were kindly provided by Prof Ijzermans, Dept of Surgery, Erasmus Medical Center Rotterdam, The Netherlands. B1


was a kind gift from Prof. dr. C.M. Zwaan, Erasmus Medical Center—Sophia Children’s Hospital, Rotterdam, The Netherlands/Princess Maxima Center for Pediatric Oncology, Utrecht, The


Netherlands. Informed consent is given by the patient or his/her parents or legal guardians, and all is performed in line with the declaration of Helsinki, and the Erasmus MC—Sophia


Children’s Hospital approved the experiments. CML, BL, ALL1, ALL2, and B2 were from the diagnostic sample archive of the Princess Máxima Center for Pediatric Oncology, Utrecht, The


Netherlands. As the work was interpreted as falling within the scope of diagnostic service improvement, it did not require specific research ethics committee approval as stated in the EU


Clinical Trials Directive (2001/20/EC). DNA ISOLATION Genomic DNA from cultured cells (A4573, CHP-100 and HS-SYII) and tissue (ES1 and RH) was extracted by using the column-based NucleoSpin®


Tissue DNA extraction kit (Macherey-Nagel) following manufacturer’s instructions. Sample quality control was performed using a 4200 TapeStation System (Agilent), and DNA content was


measured with a Qubit 3.0 Fluorometer (Thermo Fisher). Genomic DNA from the ALL cell lines (ALLPO and KOPN8), AML cell lines (ML2 and Monomac-1) and AML patient (B1) was isolated by using


the column-based Qiagen DNeasy Blood and Tissue DNA extraction kit (Qiagen) following the manufacturer’s instructions and DNA content was measured with a Qubit 2.0 Fluorometer (Thermo


Fisher). Genomic DNA was extracted either manually or with the QIAcube automated sample processor with the AllPrep DNA/RNA mini kit for CML, BL, and ALL2 and the QIAamp blood mini kit for


the samples ALL1 and B2. WGA For whole genome amplification (WGA), 10 ng starting material was amplified with the repli-g mini kit (Qiagen) according to the manufacturer’s protocol. CRRNA


DESIGN Each potential gene fusion constituted a known fusion partner to be targeted with this enrichment technique, and an (un)known partner to be identified following subsequent sequencing.


The known target fusion partners were designated as a 5′ or 3′ fusion partner, dependent upon known literature. Furthermore, the most common breakpoint locations were extracted from a


literature search and the most distal breakpoint locations were noted as extreme borders of the targeted area. If the unknown fusion partner was the 5′ partner, crRNAs were designed as the


sequence present on the minus strand of the gene (5′–>3′) until the PAM sequence. If the unknown fusion partner was the 3′ partner, crRNAs were designed as the sequence present on the


plus strand of the gene (5′–>3′) until the PAM sequence (Supplementary Fig. 1). Custom Alt-R® crRNAs were designed with the Integrated DNA Technologies (IDT) custom gRNA design tool and


chosen with maximum on-target and lowest off-target scores (IDT). CAS9 ENRICHMENT AND NANOPORE SEQUENCING Cas9 enrichment was adapted from the ONT Cas9 enrichment protocol12. In brief,


approximately 1 μg of genomic DNA or WGA-DNA (Supplementary Data 1) was dephosphorylated with Quick calf intestinal phosphatase (NEB) and CutSmart Buffer (NEB) for 10 min at 37 °C and


inactivated for 2 min at 80 °C. crRNAs were resuspended in TE pH7.5 to 100 μM. For simultaneous targeting of multiple loci, crRNAs were pooled equimolarly to 100 μM. Ribonucleoprotein


complexes (RNPs) were prepared by mixing 100 uM equimolarialy pooled crRNA pools with 100 μM tracrRNA (IDT) and duplex buffer (IDT), incubated for 5 min at 95 °C and thereafter cooled to


room temperature. 10 μM RNPs were mixed with 62 μM HiFiCas9 (IDT) and 1× CutSMart buffer (NEB) and incubated at RT for 15 min to produce Cas9 RNPs. Dephosphorylated DNA sample and Cas9 RNPs


were mixed with 10 mM dATP and Taq polymerase (NEB) at 37 °C for 15 min and 72 °C for 5 min to facilitate cutting of the genomic DNA and dA-tailing. Adapter ligation mix was prepared by


mixing Ligation Buffer (SQK-LSK109, ONT), Next Quick T4 DNA Ligase (NEB) and Adapter Mix (SQK-LSK109, ONT). The mix was carefully applied to the processed DNA sample without vortexing and


incubated at room temperature for 25 min. DNA was washed and bound to beads by adding TE pH8.0 and 0.3× volume AMPure XP beads (Agencourt) and incubated for 10 min at room temperature.


Fragments below 3 kb were washed away by washing the bead-bound solution twice with Long Fragment Buffer (SQK-LSK109, ONT). Enriched library was released from the beads with Elution Buffer


(SQK-LSK109, ONT). Enriched library concentration was measured with a Qubit Fluorometer 3.0 (Thermo Fisher). The library from one tumor sample was loaded onto one flow cell (R 9.4, ONT)


according to the manufacturer’s protocol. Sequencing was performed on a GridION X5 instrument (ONT) and basecalling was performed by Guppy (ONT). NANOFG NanoFG can be found at


https://github.com/SdeBlank/NanoFG. Reads were mapped to the human reference genome version GRCHh37 by using minimap2 (v. 2.6)26 with parameters: ‘-x map-ont -a’. The produced SAM file was


compressed to bam format and indexed with samtools (v. 1.7)27. Next, structural variations were detected from the bam file. The user can choose either NanoSV (v. 1.2.4)10 with default


parameters: ‘min_mapq=12, depth_support=False, mapq_flag=48’, cluster_distance=100, ci_flag=300’ or Sniffles (v.1.0.9)28 with default parameters: ‘-s 2 -n -1 --genotype’ to detect SVs. We


here used NanoSV for all experiments (except multiplexing). For the samples C1 and HS-SYII, additional parameters: ‘cluster_count=1’ were used for NanoSV due to the low number of reads


spanning the fusion. For the multiplexing experiment, the fraction of reads supporting the fusions was below the allele frequency cut-off in NanoSV. Therefore, the default Sniffles settings


were used to detect 6 fusions. By default, all SVs that do not pass the built-in NanoSV or Sniffles filters are removed. In addition, all insertions are also removed from the VCF. NanoFG


selected candidate SVs that possibly form a fusion gene by annotating both ends of an SV with genes from the ENSEMBL database29. If both ends of the SV are positioned in different genes it


was flagged as a possible fusion. Next, all the reads supporting the candidate SVs were extracted with samtools (v. 1.7)27. To remap and accurately detect SVs, all reads extracted per


candidate fusion gene were re-mapped using LAST30 (921) with default settings for increased mapping accuracy. Then, NanoSV was used to accurately define the breakpoints in the remapped


fusion candidates. NanoSV parameters ‘cluster_count=2, depth_support=False’, cluster_distance=100, ci_flag=300’ were used to detect all present fusions. For C1 and HS-SYII, ‘cluster_count=1’


was used as a parameter for NanoSV. To check and flag fusions, additional information from the ENSEMBL database was gathered to produce an exact composition of the fusion gene. Only fusions


that have the ability to produce a continuous transcript on the same strand were retained and additional flags were added to the sample to give extra indication if reported fusions are


likely important or if some information from the ENSEMBL database is incomplete. All gathered ENSEMBL gene information was used to produce an overview of the detected fusions. This includes


the genes involved, the exon or intron containing the breakpoint, the exact position of the fusion, the number of fusion-supporting reads, involved CDS length of both fused genes and the


final fused CDS length. The detected fusions were also reported in VCF format for further analysis. The number of fusion-supporting reads in the overview can differ from the number of reads


reported in the vcf due to the fact that a read which supports a breakpoint multiple times in NanoSV is detected as a single supporting read by NanoFG. To give a better overview of detected


fusions, NanoFG also produced a visual overview in PDF format. Apart from information on the genes, flags, position and fusion supporting reads it also included the locations of protein


domains to provide quick insight into what domain are involved in the fusion. NanoFG automatically designed primers for fusion gene validation using primer3 (ref. 31) with default settings,


aiming for a 200–400 bp product. Table 2 contains all primer sequences used for validation of breakpoints. The run time of NanoFG on +−25000 nanopore reads is approximately 20 min using a


single thread. Detailed instructions including a test-set can be found on GitHub (https://github.com/SdeBlank/NanoFG). MINIMAL SEQUENCING DURATION EXPERIMENT To detect differences in fusion


gene detection based upon sequencing duration, all fastqs were merged and all reads were sorted based on the time of sequencing. The earliest time was taken as the start of the sequencing


run and subsequently reads were selected based on bins of 1, 2, 3, 4, 5, 6, 12, 18, 24, 30, 36, 42, and 48 h after the first read had been sequenced. NanoFG was then run separately on every


fastq by using default settings for every sample. Using this approach, the time points where at least 2 supporting reads of a fusion have been sequenced can be determined to define the


minimal sequencing duration necessary for each sample to produce two fusion-spanning reads. MINIMAL SUPPORTING READ CUT-OFF To select a minimum number of supporting reads used in the


detection of fusion genes, we ran NanoFG on a number of samples (CHP-100, ES1, C1-WGA, and C2-WGA) with a minimum of one supporting read. Thereafter, the number of fusions reported with a


minimum of 1, 2, 3, 4, and 5+ supporting reads were counted. REPORTING SUMMARY Further information on research design is available in the Nature Research Reporting Summary linked to this


article. DATA AVAILABILITY Low coverage WGS Binary Alignment Map (BAM) files from nanopore sequencing are available through controlled access at the European Genome-phenome Archive (EGA),


hosted at the EBI and the CRG (https://ega-archive.org), with accession number EGAS00001003964. Requests for data access will be evaluated by the UMCU Department of Genetics Data Access


Board (EGAC00001000432) and transferred on completion of a material transfer agreement and authorization by the medical ethical committee of the UMCU to ensure compliance with the Dutch


medical research involving human subjects act. The source data underlying Figs. 2–7 are provided as a Source Data file. The ENSEMBL database for genome build GRCh37 can be found at


https://grch37.ensembl.org/index.html. Any other relevant data are available from the authors upon reasonable request. Source data are provided with this paper. CODE AVAILABILITY NanoFG


requirements, readme, and pipeline are at https://github.com/SdeBlank/NanoFG. Source data are provided with this paper. REFERENCES * Gao, Q. et al. Driver fusions and their implications in


the development and treatment of human cancers. _Cell Rep._ 23, 227–238.e3 (2018). Article  CAS  Google Scholar  * Gong, Z. et al. Clinical and prognostic significance of e1a2 BCR-ABL1


transcript subtype in chronic myeloid leukemia. _Blood Cancer J._ 7, e583 (2017). Article  CAS  Google Scholar  * Latysheva, N. S. & Babu, M. M. Discovering and understanding oncogenic


gene fusions through data intensive computational approaches. _Nucleic Acids Res._ 44, 4487–4503 (2016). Article  CAS  Google Scholar  * Meyer, C. et al. Human MLL/KMT2A gene exhibits a


second breakpoint cluster region for recurrent MLL-USP2 fusions. _Leukemia_ 33, 2306–2340 (2019). Article  Google Scholar  * Winters, A. C. & Bernt, K. M. MLL-Rearranged leukemias-an


update on science and clinical approaches. _Front. Pediatr._ 5, 4 (2017). Article  Google Scholar  * Delattre, O. et al. The Ewing family of tumors–a subgroup of small-round-cell tumors


defined by specific chimeric transcripts. _N. Engl. J. Med._ 331, 294–299 (1994). Article  CAS  Google Scholar  * Meyer, C. et al. The MLL recombinome of acute leukemias in 2017. _Leukemia_


32, 273–284 (2018). Article  CAS  Google Scholar  * Lam, S. W. et al. Molecular analysis of gene fusions in bone and soft tissue tumors by anchored multiplex PCR-based targeted


next-generation sequencing. _J. Mol. Diagn._ 20, 653–663 (2018). Article  CAS  Google Scholar  * Wang, K. et al. Patient-derived xenotransplants can recapitulate the genetic driver landscape


of acute leukemias. _Leukemia_ 31, 151–158 (2017). Article  CAS  Google Scholar  * Stancu, M. C. et al. Mapping and phasing of structural variation in patient genomes using nanopore


sequencing. _Nat. Commun._ 8, 1–13 (2017). * Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. _Nat. Biotechnol._ 36, 338–345 (2018). Article  CAS 


Google Scholar  * Gilpatrick, T. et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. _Nat. Biotechnol._ 38, 433–438 (2020). Article  CAS  Google Scholar  * Watson, C. M.


et al. Cas9-based enrichment and single-molecule sequencing for precise characterization of genomic duplications. _Lab. Invest_. 100, 135–146 (2019). Article  Google Scholar  * Erkizan, H.


V. et al. Novel peptide binds EWS-FLI1 and reduces the oncogenic potential in Ewing tumors. _Cell Cycle_ 10, 3397–3408 (2011). Article  CAS  Google Scholar  * Kim, J.-S. et al. Lovastatin


induces apoptosis in a primitive neuroectodermal tumor cell line in association with RB down-regulation and loss of the G1 checkpoint. _Oncogene_ 19, 6082–6090 (2000). Article  CAS  Google


Scholar  * Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. _eLife_ 7, e41305 (2018). Article  Google Scholar  * SdeBlank.


SdeBlank/NanoFG. _GitHub_ https://github.com/SdeBlank/NanoFG (2020). * Robinson, J. T. et al. Integrative genomics viewer. _Nat. Biotechnol._ 29, 24–26 (2011). Article  CAS  Google Scholar 


* Marshall, A. D. & Grosveld, G. C. Alveolar rhabdomyosarcoma—The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. _Skelet. Muscle_ 2, 25 (2012). Article  CAS  Google Scholar  *


QIAGEN. Overview on whole genome amplification. _QIAGEN_ https://www.qiagen.com/nl/service-and-support/learning-hub/technologies-and-research-topics/wga/overview-on-wga/ (2020). *


Kloosterman, W. P. et al. A Systematic analysis of oncogenic gene fusions in primary colon cancer. _Cancer Res._ 77, 3814–3822 (2017). Article  CAS  Google Scholar  * Burchill, S. A. Ewing’s


sarcoma: diagnostic, prognostic, and therapeutic implications of molecular abnormalities. _J. Clin. Pathol._ 56, 96–102 (2003). Article  CAS  Google Scholar  * Valle-Inclan, J. E. et al.


Rapid identification of genomic structural variations with nanopore sequencing enables blood-based cancer monitoring. Preprint at _medRxiv_ https://www.medrxiv.org/content/10.1101/19011932v1


(2019). * Trautmann, M. et al. SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma. _Oncogene_ 33, 5006–5016 (2014). Article  CAS  Google


Scholar  * Balgobind, B. V. et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. _Blood_ 114,


2489–2496 (2009). Article  CAS  Google Scholar  * Li, H. Minimap2: pairwise alignment for nucleotide sequences. _Bioinformatics_ 34, 3094–3100 (2018). Article  CAS  Google Scholar  * Li, H.


et al. The sequence alignment/map format and SAM tools. _Bioinformatics_ 25, 2078–2079 (2009). Article  Google Scholar  * Sedlazeck, F. J. et al. Accurate detection of complex structural


variations using single-molecule sequencing. _Nat. Methods_ 15, 461–468 (2018). Article  CAS  Google Scholar  * Cunningham, F. et al. Ensembl 2019. _Nucleic Acids Res._ 47, D745–D751 (2019).


Article  CAS  Google Scholar  * Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. _Genome Res._ 21, 487–493 (2011). Article


  Google Scholar  * Untergasser, A. et al. Primer3–new capabilities and interfaces. _Nucleic Acids Res._ 40, e115 (2012). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS


We thank all members of the Kloosterman and van Haaften groups for fruitful discussions and support. The authors thank KWF for supporting C.S. and W.P.K. grant UU 2012-5710. This work was


supported by funds from the Utrecht University to implement a single-molecule sequencing facility. We thank the Utrecht Sequencing Facility for the Nanopore Sequencing. The colon cancer


samples were kindly provided by Prof Ijzermans, Department of Surgery, Erasmus Medical Center Rotterdam, The Netherlands. Miriam Guillen Navarro, Susan Arentsen-Peters, Heathcliff


Dorado-Garcia and Victor Bardinet have kindly helped with providing the clinical samples and information. AUTHOR INFORMATION Author notes * These authors contributed equally: Gijs van


Haaften, Glen R. Monroe. AUTHORS AND AFFILIATIONS * Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands


Christina Stangl, Sam de Blank, Ivo Renkens, Tamara Verbeek, Jose Espejo Valle-Inclan, Wigard P. Kloosterman, Gijs van Haaften & Glen R. Monroe * Division of Molecular Oncology,


Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands Christina Stangl & Emile E. Voest * Oncode Institute, 3521 AL, Utrecht, Netherlands Christina Stangl, Jose Espejo


Valle-Inclan, Markus J. van Roosmalen & Emile E. Voest * Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands Liset Westera, Markus J. van Roosmalen & Ronald W. Stam *


Dutch Childhood Oncology Group (DCOG), Den Haag, Netherlands Liset Westera * Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany Rocio Chamorro


González & Anton G. Henssen * Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany Rocio Chamorro González & Anton G. Henssen * German


Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany Anton G. Henssen * Berlin Institute of Health, Berlin, Germany Anton G. Henssen


Authors * Christina Stangl View author publications You can also search for this author inPubMed Google Scholar * Sam de Blank View author publications You can also search for this author


inPubMed Google Scholar * Ivo Renkens View author publications You can also search for this author inPubMed Google Scholar * Liset Westera View author publications You can also search for


this author inPubMed Google Scholar * Tamara Verbeek View author publications You can also search for this author inPubMed Google Scholar * Jose Espejo Valle-Inclan View author publications


You can also search for this author inPubMed Google Scholar * Rocio Chamorro González View author publications You can also search for this author inPubMed Google Scholar * Anton G. Henssen


View author publications You can also search for this author inPubMed Google Scholar * Markus J. van Roosmalen View author publications You can also search for this author inPubMed Google


Scholar * Ronald W. Stam View author publications You can also search for this author inPubMed Google Scholar * Emile E. Voest View author publications You can also search for this author


inPubMed Google Scholar * Wigard P. Kloosterman View author publications You can also search for this author inPubMed Google Scholar * Gijs van Haaften View author publications You can also


search for this author inPubMed Google Scholar * Glen R. Monroe View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS C.S., W.P.K., and G.M.


conceived the study. C.S. and G.M. designed experiments, and C.S., T.V., and I.R. performed the experiments. L.W., R.C.G., A.G.H., and R.S. provided samples and clinical information for the


study. S.B., J.E.V.-I and M.J.R. performed bioinformatic analysis. C.S. and S.B. analyzed data and C.S., G.H., and G.M. interpreted the data. C.S. wrote the manuscript, which was edited by


W.P.K., E.E.V., G.H., and G.M. and reviewed by all authors. CORRESPONDING AUTHOR Correspondence to Glen R. Monroe. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Communications_ thanks Tim Mercer, William Jeck and the other, anonymous, reviewer(s) for their contribution to the peer


review of this work. Peer reviewer reports are available. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional


affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY DATA 1 SUPPLEMENTARY INFORMATION PEER REVIEW FILE REPORTING SUMMARY DESCRIPTION OF ADDITIONAL SUPPLEMENTARY FILES SOURCE DATA SOURCE


DATA RIGHTS AND PERMISSIONS OPEN ACCESS This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and


reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes


were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If


material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain


permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Stangl, C., de Blank, S., Renkens, I. _et al._ Partner independent fusion gene detection by multiplexed CRISPR-Cas9 enrichment and long read nanopore sequencing. _Nat Commun_ 11,


2861 (2020). https://doi.org/10.1038/s41467-020-16641-7 Download citation * Received: 05 November 2019 * Accepted: 12 May 2020 * Published: 05 June 2020 * DOI:


https://doi.org/10.1038/s41467-020-16641-7 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Dwp change for people on benefits born within three-year period rolled out

The Department for Work and Pensions is launching a new initiative to support benefits claimants born in specific years....

Ryanair passengers praise 'perfect' cabin bag with 'lots of pockets' - YorkshireLive

What's OnRyanair passengers praise 'perfect' cabin bag with 'lots of pockets'The VANKEV Backpack is the ideal travel com...

Moyes in tribute to victims and emergency services after liverpool parade crash

THE EVERTON BOSS BECAME THE LATEST FIGUREHEAD TO EXPRESS SOLIDARITY WITH THOSE AFFECTED BY THE CITY CENTRE INCIDENT 11:3...

Foreign office issues fresh warnings to brits heading to turkey

The UK Foreign Office has today issued a fresh caution to Brits planning to visit Turkey, advising extra care when using...

Karine jean-pierre roasted over ‘orwellian’ tweet touting ‘0% inflation’

EXPLORE MORE President Biden’s truth-averse top spokesperson was ridiculed after she touted “0% inflation in July” follo...

Latests News

Partner independent fusion gene detection by multiplexed crispr-cas9 enrichment and long read nanopore sequencing

ABSTRACT Fusion genes are hallmarks of various cancer types and important determinants for diagnosis, prognosis and trea...

Eggs linked to salmonella outbreak

Eggs contaminated with salmonella have been linked to an outbreak across nine states, sickening 65 people and leading to...

The government’s funding changes are meddling with the purpose of universities

Federal education minister Dan Tehan in recent days announced an overhaul of the fee structures for undergraduate degree...

Treatment of diabetic mice with the sglt2 inhibitor ta-1887 antagonizes diabetic cachexia and decreases mortality

ABSTRACT A favorable effect of an inhibitor of the sodium–glucose cotransporter 2 (SGLT2i) on mortality of diabetic pati...

Teacher to carry olympic torch : compton educator, nominated by one of her eighth-grade students, is first in southland to be chosen for the honor.

Runners from Los Angeles will soon get the Olympic flame started on its journey to the Summer Games in Atlanta. And in t...

Top