The role of particle shape in computational modelling of granular matter
The role of particle shape in computational modelling of granular matter"
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Granular matter is ubiquitous in nature and is present in diverse forms in important engineering, industrial and natural processes. Particle-based computational modelling has become
indispensable to understand and predict the complex behaviour of granular matter in these processes. The success of modern computational models requires realistic and efficient
consideration of particle shape. Realistic particle shapes in naturally occurring and engineered materials offer diverse challenges owing to their multiscale nature in both length and time.
Furthermore, the complex interactions with other materials, such as interstitial fluids, are highly nonlinear and commonly involve multiphysics coupling. This Technical Review presents a
comprehensive appraisal of state-of-the-art computational models for granular particles of either naturally occurring shapes or engineered geometries. It focuses on particle shape
characterization, representation and implementation, as well as its important effects. In addition, the particles may be hard, highly deformable, crushable or phase transformable; they might
change their behaviour in the presence of interstitial fluids and are sensitive to density, confining stress and flow state. We describe generic methodologies that capture the universal
features of granular matter and some unique approaches developed for special but important applications. KEY POINTS * Particle-based computational modelling that considers realistic particle
shapes has become indispensable for understanding and predicting the complex behaviour of granular matter in engineering, industry and nature. * How to effectively represent the shape of a
particle is closely related to its intended purpose; the modelling of naturally occurring granular materials may differ from approaches for engineered particles. * Particle shape
representation is inseparably coupled to the detection of interparticle contacts, both of which critically determine the computational accuracy and efficiency of simulations of granular
matter. * Specific methodologies are needed to address challenges arising from crushable particles or highly deformable particles, in which the co-evolution of particle shapes and sizes and
hence contact detection algorithms dictate both accuracy and efficiency. * Consideration of shape effects in coupled simulations of granular particles and environmental fluids requires
revamped theories and methods to faithfully reflect their underpinning multiphase, multiphysics nature. * Incorporating realistic particle shapes in granular matter modelling must harness
the latest advances in parallel computing and machine learning for effective large-scale computations. Access through your institution Buy or subscribe This is a preview of subscription
content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access
subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $99.00 per year only $8.25 per issue Learn more Buy
this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *
Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE UNCERTAINTY INHERENT TO DEM SIMULATIONS OF INTERLOCKING
PARTICLES Article Open access 04 March 2025 MECHANICAL BEHAVIOR AND PARTICLE CRUSHING OF IRREGULAR GRANULAR MATERIAL UNDER HIGH PRESSURE USING DISCRETE ELEMENT METHOD Article Open access 15
May 2023 PRECURSORY ARCH-LIKE STRUCTURES EXPLAIN THE CLOGGING PROBABILITY IN A GRANULAR HOPPER FLOW Article Open access 22 June 2024 REFERENCES * Marzinek, J. K., Huber, R. G. & Bond,
P. J. Multiscale modelling and simulation of viruses. _Curr. Opin. Struct. Biol._ 61, 146–152 (2020). Article Google Scholar * Zong, Y. & Zhao, K. Manipulation of self-assembled
structures by shape-designed polygonal colloids in 2D. _Curr. Opin. Solid State Mater. Sci._ 26, 101022 (2022). Article ADS Google Scholar * Voss, J. & Wittkowski, R. On the
shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves. _Nanoscale Adv._ 2, 3890–3899 (2020). Article ADS Google Scholar * Wang, J. et al. Shape matters:
morphologically biomimetic particles for improved drug delivery. _Chem. Eng. J._ 410, 127849 (2021). Article Google Scholar * Luo, X., Wang, Z., Yang, L., Gao, T. & Zhang, Y. A review
of analytical methods and models used in atmospheric microplastic research. _Sci. Total Environ._ 828, 154487 (2022). Article ADS Google Scholar * Mollon, G. & Zhao, J. Generating
realistic 3D sand particles using Fourier descriptors. _Granul. Matter_ 15, 95–108 (2013). Article Google Scholar * Su, Y. et al. Determination and interpretation of bonded-particle model
parameters for simulation of maize kernels. _Biosyst. Eng._ 210, 193–205 (2021). Article Google Scholar * Ghadiri, M. et al. Cohesive powder flow: trends and challenges in characterisation
and analysis. _KONA Powder Part. J._ https://doi.org/10.14356/kona.2020018 (2020). Article Google Scholar * Piton, G., Goodwin, S. R., Mark, E. & Strouth, A. Debris flows, boulders
and constrictions: a simple framework for modeling jamming, and its consequences on outflow. _J. Geophys. Res. Earth Surf._ 127, e2021JF006447 (2022). Article ADS Google Scholar * Rackow,
T. et al. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. _J. Geophys. Res. Ocean_ 122, 3170–3190 (2017). Article ADS Google
Scholar * Ferrari, F. & Tanga, P. The role of fragment shapes in the simulations of asteroids as gravitational aggregates. _Icarus_ 350, 113871 (2020). Article Google Scholar * Shi,
L., Zhao, W., Sun, B. & Sun, W. Determination of the coefficient of rolling friction of irregularly shaped maize particles by using discrete element method. _Int. J. Agric. Biol. Eng._
13, 15–25 (2020). Google Scholar * Cui, X., Gui, N., Yang, X., Tu, J. & Jiang, S. Analysis of particle shape effect on the discharging of non-spherical particles in HTR-10 reactor core.
_Nucl. Eng. Des._ 371, 110934 (2021). Article Google Scholar * Tang, X. & Yang, J. Wave propagation in granular material: what is the role of particle shape? _J. Mech. Phys. Solids_
157, 104605 (2021). Article MathSciNet Google Scholar * Jones, R. P., Ottino, J. M., Umbanhowar, P. B. & Lueptow, R. M. Predicting segregation of nonspherical particles. _Phys. Rev.
Fluids_ 6, 054301 (2021). Article ADS Google Scholar * Xia, Y. et al. Assessment of a tomography-informed polyhedral discrete element modelling approach for complex-shaped granular woody
biomass in stress consolidation. _Biosyst. Eng._ 205, 187–211 (2021). Article Google Scholar * Zhang, R., Ku, X., Yang, S., Wang, J. & Fan, L. Modeling and simulation of the motion and
gasification behaviors of superellipsoidal biomass particles in an entrained-flow reactor. _Energy Fuels_ 35, 1488–1502 (2021). Article Google Scholar * Leisner, A. M., Richardson, D. C.,
Statler, T. S., Nichols, W. & Zhang, Y. An extended parameter space study of the effect of cohesion in gravitational aggregates through spin-up simulations. _Planet. Space Sci._ 182,
104845 (2020). Article Google Scholar * Wang, F., Liu, J. & Zeng, H. Interactions of particulate matter and pulmonary surfactant: implications for human health. _Adv. Colloid Interface
Sci._ 284, 102244 (2020). Article Google Scholar * Wang, Y., Li, L., Hofmann, D., Andrade, J. E. & Daraio, C. Structured fabrics with tunable mechanical properties. _Nature_ 596, 238
(2021). Article ADS Google Scholar * Keller, S. & Jaeger, H. M. Aleatory architectures. _Granul. Matter_ 18, 29 (2016). Article Google Scholar * Dierichs, K. & Menges, A.
Designing architectural materials: from granular form to functional granular material. _Bioinspir. Biomim._ 16, 065010 (2021). Article ADS Google Scholar * Nunzi, F. & Angelis, F. D.
Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. _Chem. Sci._ 13, 9485–9497 (2022). Article Google Scholar * Ostanin, I., Ballarini, R., Potyondy, D. &
Dumitrică, T. A distinct element method for large scale simulations of carbon nanotube assemblies. _J. Mech. Phys. Solids_ 61, 762–782 (2013). Article ADS MathSciNet Google Scholar *
Gentili, D. & Ori, G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. _Nanoscale_ 14, 14385–14432 (2022). Article Google Scholar * Li, Z., Yang,
F. & Yin, Y. Smart materials by nanoscale magnetic assembly. _Adv. Funct. Mater._ 30, 1903467 (2020). Article Google Scholar * Sveinsson, H. A. et al. Direct atomic simulations of
facet formation and equilibrium shapes of SiC nanoparticles. _Cryst. Growth Des._ 20, 2147–2152 (2020). Article Google Scholar * Espinosa, I. M. P., Jacobs, T. D. B. & Martini, A.
Atomistic simulations of the elastic compression of platinum nanoparticles. _Nanoscale Res. Lett._ 17, 96 (2022). Article ADS Google Scholar * Voss, J. & Wittkowski, R. Propulsion of
bullet- and cup-shaped nano- and microparticles by traveling ultrasound waves. _Phys. Fluids_ 34, 052007 (2022). Article ADS Google Scholar * Wang, C. & Jiang, H. Different-shaped
micro-objects driven by active particle aggregations. _Soft Matter_ 16, 4422–4430 (2020). Article ADS Google Scholar * Chen, G. et al. Liquid-crystalline behavior on dumbbell-shaped
colloids and the observation of chiral blue phases. _Nat. Commun._ 13, 5549 (2022). Article ADS Google Scholar * Palanisamy, D. & den Otter, W. K. Intrinsic viscosities of
non-spherical colloids by Brownian dynamics simulations. _J. Chem. Phys._ 151, 184902 (2019). Article ADS Google Scholar * Chakrapani, T. H., Bazyar, H., Lammertink, R. G. H., Luding, S.
& Otter, W. Kden The permeability of pillar arrays in microfluidic devices: an application of Brinkman’s theory towards wall friction. _Soft Matter_ 19, 436–450 (2023). Article ADS
Google Scholar * Schoenhoefer, P. W. A., Marechal, M., Cleaver, D. J. & Schroeder-Turk, G. E. Self-assembly and entropic effects in pear-shaped colloid systems. II. Depletion attraction
of pear-shaped particles in a hard-sphere solvent. _J. Chem. Phys._ 153, 034904 (2020). Article Google Scholar * Rosenberg, M., Dekker, F., Donaldson, J. G., Philipse, A. P. &
Kantorovich, S. S. Self-assembly of charged colloidal cubes. _Soft Matter_ 16, 4451–4461 (2020). Article ADS Google Scholar * Mistry, A., Heenan, T., Smith, K., Shearing, P. &
Mukherjee, P. P. Asphericity can cause nonuniform lithium intercalation in battery active particles. _ACS Energy Lett._ 7, 1871–1879 (2022). Article Google Scholar * Li, L., Wang, J.,
Yang, S. & Klein, B. A voxel-based clump generation method used for DEM simulations. _Granul. Matter_ 24, 89 (2022). Article Google Scholar * Huet, D. P., Jalaal, M., van Beek, R., van
der Meer, D. & Wachs, A. Granular avalanches of entangled rigid particles. _Phys. Rev. Fluids_ 6, 104304 (2021). Article ADS Google Scholar * Feng, Y. T. Thirty years of developments
in contact modelling of non-spherical particles in DEM: a selective review. _Acta Mech. Sin._ 39, 722343 (2023). Article MathSciNet Google Scholar * Neto, A. G. & Wriggers, P.
Discrete element model for general polyhedra. _Comput. Part. Mech._ 9, 353–380 (2022). Article Google Scholar * Zhang, R., Ku, X. & Lin, J. Fluidization of the spherocylindrical
particles: comparison of multi-sphere and bond-sphere models. _Chem. Eng. Sci._ 253, 117540 (2022). Article Google Scholar * Alonso-Marroqun, F. Spheropolygons: a new method to simulate
conservative and dissipative interactions between 2D complex-shaped rigid bodies. _Europhys. Lett._ 83, 14001 (2008). Article ADS Google Scholar * Liu, L. & Ji, S. A new contact
detection method for arbitrary dilated polyhedra with potential function in discrete element method. _Int. J. Numer. Methods Eng._ 121, 5742–5765 (2020). Article MathSciNet Google Scholar
* Shao, L., Mao, J., Zhao, L. & Li, T. A three-dimensional deformable spheropolyhedral-based discrete element method for simulation of the whole fracture process. _Eng. Fract. Mech._
263, 108290 (2022). Article Google Scholar * Delaney, G. W. & Cleary, P. W. The packing properties of superellipsoids. _Europhys. Lett._ 89, 34002 (2010). Article ADS Google Scholar
* Wellmann, C., Lillie, C. & Wriggers, P. A contact detection algorithm for superellipsoids based on the common-normal concept. _Eng. Comput._ 25, 432–442 (2008). Article MATH Google
Scholar * Zhao, S., Zhang, N., Zhou, X. & Zhang, L. Particle shape effects on fabric of granular random packing. _Powder Technol._ 310, 175–186 (2017). Article Google Scholar *
Peters, J. F., Hopkins, M. A., Kala, R. & Wahl, R. E. A poly‐ellipsoid particle for non‐spherical discrete element method. _Eng. Comput._ 26, 645–657 (2009). Article Google Scholar *
Zhang, B., Regueiro, R., Druckrey, A. & Alshibli, K. Construction of poly-ellipsoidal grain shapes from SMT imaging on sand, and the development of a new DEM contact detection algorithm.
_Eng. Comput._ 35, 733–771 (2018). Article Google Scholar * Zhao, S. & Zhao, J. A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media. _Int.
J. Numer. Anal. Methods Geomech._ 43, 2147–2169 (2019). Article Google Scholar * Lai, Z. & Huang, L. A polybézier-based particle model for the DEM modeling of granular media. _Comput.
Geotech._ 134, 104052 (2021). Article Google Scholar * Zhang, P., Dong, Y., Galindo-Torres, S. A., Scheuermann, A. & Li, L. Metaball based discrete element method for general shaped
particles with round features. _Comput. Mech._ 67, 1243–1254 (2021). Article MathSciNet MATH Google Scholar * Craveiro, M. V., Neto, A. G. & Wriggers, P. Contact between rigid convex
NURBS particles based on computer graphics concepts. _Comput. Methods Appl. Mech. Eng._ 386, 114097 (2021). Article ADS MathSciNet MATH Google Scholar * Lim, K.-W., Krabbenhoft, K.
& Andrade, J. E. On the contact treatment of non-convex particles in the granular element method. _Comp. Part. Mech._ 1, 257–275 (2014). Article Google Scholar * Mollon, G. & Zhao,
J. 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. _Comput. Methods Appl. Mech. Eng._ 279, 46–65 (2014). Article ADS MATH Google
Scholar * Zhou, B. & Wang, J. Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis: generation of a
realistic 3D sand assembly. _Int. J. Numer. Anal. Meth. Geomech._ 41, 93–109 (2017). Article Google Scholar * Sun, Q. & Zheng, J. Clone granular soils with mixed particle
morphological characteristics by integrating spherical harmonics with Gaussian mixture model, expectation-maximization, and Dirichlet process. _Acta Geotech._ 15, 2779–2796 (2020). Article
Google Scholar * Bardhan, J. P. & Knepley, M. G. Computational science and re-discovery: open-source implementation of ellipsoidal harmonics for problems in potential theory. _Comput.
Sci. Disc._ 5, 014006 (2012). Article Google Scholar * Klotz, T. S., Bardhan, J. P. & Knepley, M. G. Efficient evaluation of ellipsoidal harmonics for potential modeling. Preprint at
_arXiv_ https://doi.org/10.48550/arXiv.1708.06028 (2017). * Reimond, S. & Baur, O. Spheroidal and ellipsoidal harmonic expansions of the gravitational potential of small Solar System
bodies. Case study: comet 67P/Churyumov-Gerasimenko: gravitational potential of small bodies. _J. Geophys. Res. Planets_ 121, 497–515 (2016). Article ADS Google Scholar * Cundall, P. A.
& Strack, O. D. L. A discrete numerical model for granular assemblies. _Géotechnique_ 29, 47–65 (1979). Article Google Scholar * Smallenburg, F. Efficient event-driven simulations of
hard spheres. _Eur. Phys. J. E_ 45, 22 (2022). Article Google Scholar * Cantor, D., Azema, E. & Preechawuttipong, I. Microstructural analysis of sheared polydisperse polyhedral grains.
_Phys. Rev. E_ 101, 062901 (2020). Article ADS Google Scholar * Wachs, A. Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive,
and non-spherical rigid bodies. _Acta Mech._ 230, 1919–1980 (2019). Article MathSciNet MATH Google Scholar * Radjai, F. & Richefeu, V. Contact dynamics as a nonsmooth discrete
element method. _Mech. Mater._ 41, 715–728 (2009). Article Google Scholar * Dubois, F., Acary, V. & Jean, M. The contact dynamics method: a nonsmooth story. _C. R. Méc._ 346, 247–262
(2018). Article ADS Google Scholar * Hahn, J. K. Realistic animation of rigid bodies. _SIGGRAPH Comput. Graph._ 22, 299–308 (1988). Article Google Scholar * Tang, X., Paluszny, A. &
Zimmerman, R. W. An impulse-based energy tracking method for collision resolution. _Comput. Methods Appl. Mech. Eng._ 278, 160–185 (2014). Article ADS MathSciNet MATH Google Scholar *
Lee, S. J. & Hashash, Y. M. A. iDEM: an impulse‐based discrete element method for fast granular dynamics. _Int. J. Numer. Methods Eng._ 104, 79–103 (2015). Article MathSciNet MATH
Google Scholar * Jehser, M. & Likos, C. N. Aggregation shapes of amphiphilic ring polymers: from spherical to toroidal micelles. _Colloid Polym. Sci._ 298, 735–745 (2020). Article
Google Scholar * Donev, A., Torquato, S. & Stillinger, F. H. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. II. Applications to ellipses
and ellipsoids. _J. Comput. Phys._ 202, 765–793 (2005). ADS MathSciNet MATH Google Scholar * Skora, T., Vaghefikia, F., Fitter, J. & Kondrat, S. Macromolecular crowding: how shape
and interactions affect diffusion. _J. Phys. Chem. B_ 124, 7537–7543 (2020). Article Google Scholar * Baldauf, L., Teich, E. G., Schall, P., van Anders, G. & Rossi, L. Shape and
interaction decoupling for colloidal preassembly. _Sci. Adv._ 8, eabm0548 (2022). Article Google Scholar * Chiappini, M. & Dijkstra, M. A generalized density-modulated twist-splay-bend
phase of banana-shaped particles. _Nat. Commun._ 12, 2157 (2021). Article ADS Google Scholar * Pal, A. et al. Shape matters in magnetic-field-assisted assembly of prolate colloids. _ACS
Nano_ 16, 2558–2568 (2022). Article Google Scholar * Ferrari, F., Lavagna, M. & Blazquez, E. A parallel-GPU code for asteroid aggregation problems with angular particles. _Mon. Not.
Roy. Astron. Soc._ 492, 749–761 (2020). Article ADS Google Scholar * Zhao, S., Lai, Z. & Zhao, J. Leveraging ray tracing cores for particle‐based simulations on GPUs. _Int. J. Numer.
Methods Eng._ 124, 696–713 (2022). Article MathSciNet Google Scholar * Howard, M. P., Anderson, J. A., Nikoubashman, A., Glotzer, S. C. & Panagiotopoulos, A. Z. Efficient neighbor
list calculation for molecular simulation of colloidal systems using graphics processing units. _Comput. Phys. Commun._ 203, 45–52 (2016). Article ADS Google Scholar * Donev, A.,
Torquato, S. & Stillinger, F. H. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. _J. Comput. Phys._ 202, 737–764
(2005). Article ADS MathSciNet MATH Google Scholar * Girault, I., Chadil, M.-A. & Vincent, S. Comparison of methods computing the distance between two ellipsoids. _J. Comput. Phys._
458, 111100 (2022). Article MathSciNet MATH Google Scholar * Eliáš, J. Simulation of railway ballast using crushable polyhedral particles. _Powder Technol._ 264, 458–465 (2014). Article
Google Scholar * Zhao, S., Zhou, X. & Liu, W. Discrete element simulations of direct shear tests with particle angularity effect. _Granul. Matter_ 17, 793–806 (2015). Article Google
Scholar * Günther, O. & Wong, E. A dual approach to detect polyhedral intersections in arbitrary dimensions. _BIT Numer. Math._ 31, 2–14 (1991). Article MathSciNet MATH Google
Scholar * Feng, Y. T. An effective energy-conserving contact modelling strategy for spherical harmonic particles represented by surface triangular meshes with automatic simplification.
_Comput. Methods Appl. Mech. Eng._ 379, 113750 (2021). Article ADS MathSciNet MATH Google Scholar * Lai, Z., Chen, Q. & Huang, L. Fourier series-based discrete element method for
computational mechanics of irregular-shaped particles. _Comput. Methods Appl. Mech. Eng._ 362, 112873 (2020). Article ADS MathSciNet MATH Google Scholar * He, H. & Zheng, J.
Simulations of realistic granular soils in oedometer tests using physics engine. _Int. J. Numer. Anal. Methods Geomech._ 44, 983–1002 (2020). Article Google Scholar * Zhu, F. & Zhao,
J. Modeling continuous grain crushing in granular media: a hybrid peridynamics and physics engine approach. _Comput. Methods Appl. Mech. Eng._ 348, 334–355 (2019). Article ADS MathSciNet
MATH Google Scholar * Ramasubramani, V., Vo, T., Anderson, J. A. & Glotzer, S. C. A mean-field approach to simulating anisotropic particles. _J. Chem. Phys._ 153, 084106 (2020).
Article Google Scholar * Lubachevsky, B. D. & Stillinger, F. H. Geometric properties of random disk packings. _J. Stat. Phys._ 60, 561–583 (1990). Article ADS MathSciNet MATH
Google Scholar * Maher, C. E., Stillinger, F. H. & Torquato, S. Characterization of void space, large-scale structure, and transport properties of maximally random jammed packings of
superballs. _Phys. Rev. Mater._ 6, 025603 (2022). Article Google Scholar * Cundall, P. A. Formulation of a three-dimensional distinct element model — part I. A scheme to detect and
represent contacts in a system composed of many polyhedral blocks. _Int. J. Rock Mech. Min. Sci. Geomech. Abstr._ 25, 107–116 (1988). Article Google Scholar * Nezami, E. G., Hashash, Y. M.
A., Zhao, D. W. & Ghaboussi, J. A fast contact detection algorithm for 3-D discrete element method. _Comput. Geotech._ 31, 575–587 (2004). Article Google Scholar * Azéma, E., Radjai,
F. & Dubois, F. Packings of irregular polyhedral particles: strength, structure, and effects of angularity. _Phys. Rev. E_ 87, 062203 (2013). Article ADS Google Scholar * Zhan, L.,
Peng, C., Zhang, B. & Wu, W. A surface mesh represented discrete element method (SMR-DEM) for particles of arbitrary shape. _Powder Technol._ 377, 760–779 (2021). Article Google Scholar
* Capozza, R. & Hanley, K. J. A hierarchical, spherical harmonic-based approach to simulate abradable, irregularly shaped particles in DEM. _Powder Technol._ 378, 528–537 (2021).
Article Google Scholar * Wang, X., Yin, Z.-Y., Xiong, H., Su, D. & Feng, Y.-T. A spherical-harmonic-based approach to discrete element modeling of 3D irregular particles. _Int. J.
Numer. Methods Eng._ 122, 5626–5655 (2021). Article MathSciNet Google Scholar * Kawamoto, R., Andò, E., Viggiani, G. & Andrade, J. E. Level set discrete element method for
three-dimensional computations with triaxial case study. _J. Mech. Phys. Solids_ 91, 1–13 (2016). Article ADS MathSciNet Google Scholar * Harmon, J. M., Arthur, D. & Andrade, J. E.
Level set splitting in DEM for modeling breakage mechanics. _Comput. Methods Appl. Mech. Eng._ 365, 112961 (2020). Article ADS MathSciNet MATH Google Scholar * Duriez, J. &
Galusinski, C. A level set-discrete element method in YADE for numerical, micro-scale, geomechanics with refined grain shapes. _Comput. Geosci._ 157, 104936 (2021). Article Google Scholar
* Lai, Z., Zhao, S., Zhao, J. & Huang, L. Signed distance field framework for unified DEM modeling of granular media with arbitrary particle shapes. _Comput. Mech._ 70, 763–783 (2022).
Article MathSciNet MATH Google Scholar * Mori, Y. & Sakai, M. Advanced DEM simulation on powder mixing for ellipsoidal particles in an industrial mixer. _Chem. Eng. J._ 429, 132415
(2022). Article Google Scholar * Huang, S., Huang, L., Lai, Z. & Zhao, J. Morphology characterization and discrete element modeling of coral sand with intraparticle voids. _Eng. Geol._
315, 107023 (2023). Article Google Scholar * Feng, Y. T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: basic framework and general
contact model. _Comput. Methods Appl. Mech. Eng._ 373, 113454 (2021). Article ADS MathSciNet MATH Google Scholar * Hoque, S. Z., Anand, D. V. & Patnaik, B. S. A dissipative particle
dynamics simulation of a pair of red blood cells in flow through a symmetric and an asymmetric bifurcated microchannel. Comput. Part. Mech. 9, 1219–1231 (2022). Article Google Scholar *
Villone, M. M. & Maffettone, P. L. Dynamics, rheology, and applications of elastic deformable particle suspensions: a review. _Rheol. Acta_ 58, 109–130 (2019). Article Google Scholar *
Norouzi, M., Andric, J., Vernet, A. & Pallares, J. Shape evolution of long flexible fibers in viscous flows. _Acta Mech._ 233, 2077–2091 (2022). Article MATH Google Scholar *
Emiroglu, D. B. et al. Building block properties govern granular hydrogel mechanics through contact deformations. _Sci. Adv._ 8, eadd8570 (2022). Article Google Scholar * Tavares, L. M.
& das Chagas, A. S. A stochastic particle replacement strategy for simulating breakage in DEM. _Powder Technol._ 377, 222–232 (2021). Article Google Scholar * Jiang, Y., Mora, P.,
Herrmann, H. J. & Alonso-Marroquín, F. Damage separation model: a replaceable particle method based on strain energy field. _Phys. Rev. E_ 104, 045311 (2021). Article ADS MathSciNet
Google Scholar * Orozco, L. F., Delenne, J.-Y., Sornay, P. & Radjai, F. Scaling behavior of particle breakage in granular flows inside rotating drums. _Phys. Rev. E_ 101, 052904 (2020).
Article ADS Google Scholar * Ramkrishna, D. & Singh, M. R. Population balance modeling: current status and future prospects. _Annu. Rev. Chem. Biomol. Eng._ 5, 123–146 (2014).
Article Google Scholar * Cabiscol, R., Finke, J. H. & Kwade, A. A bi-directional DEM-PBM coupling to evaluate chipping and abrasion of pharmaceutical tablets. _Adv. Powder Technol._
32, 2839–2855 (2021). Article Google Scholar * Kuang, D.-M., Long, Z.-L., Ogwu, I. & Chen, Z. A discrete element method (DEM)-based approach to simulating particle breakage. _Acta
Geotech._ 17, 2751–2764 (2022). Article Google Scholar * Fang, C., Gong, J., Nie, Z., Li, B. & Li, X. DEM study on the microscale and macroscale shear behaviours of granular materials
with breakable and irregularly shaped particles. _Comput. Geotech._ 137, 104271 (2021). Article Google Scholar * Nguyen, D.-H., Azéma, E., Sornay, P. & Radjai, F. Bonded-cell model for
particle fracture. _Phys. Rev. E_ 91, 022203 (2015). Article ADS MathSciNet Google Scholar * Cantor, D., Azéma, E., Sornay, P. & Radjai, F. Three-dimensional bonded-cell model for
grain fragmentation. _Comp. Part. Mech._ 4, 441–450 (2017). Article Google Scholar * Nikolić, M., Karavelić, E., Ibrahimbegovic, A. & Miščević, P. Lattice element models and their
peculiarities. _Arch. Comput. Methods Eng._ 25, 753–784 (2018). Article MathSciNet MATH Google Scholar * Delenne, J.-Y., Topin, V. & Radjai, F. Failure of cemented granular materials
under simple compression: experiments and numerical simulations. _Acta Mech._ 205, 9–21 (2009). Article MATH Google Scholar * Affes, R., Delenne, J.-Y., Monerie, Y., Radjaï, F. &
Topin, V. Tensile strength and fracture of cemented granular aggregates. _Eur. Phys. J. E_ 35, 117 (2012). Article Google Scholar * Topin, V., Radjaï, F., Delenne, J.-Y. & Mabille, F.
Mechanical modeling of wheat hardness and fragmentation. _Powder Technol._ 190, 215–220 (2009). Article Google Scholar * Sargado, J. M., Keilegavlen, E., Berre, I. & Nordbotten, J. M.
A combined finite element–finite volume framework for phase-field fracture. _Comput. Methods Appl. Mech. Eng._ 373, 113474 (2021). Article ADS MathSciNet MATH Google Scholar * Rahimi,
M. N. & Moutsanidis, G. A smoothed particle hydrodynamics approach for phase field modeling of brittle fracture. _Comput. Methods Appl. Mech. Eng._ 398, 115191 (2022). Article ADS
MathSciNet MATH Google Scholar * Mohajerani, S. & Wang, G. ‘Touch-aware’ contact model for peridynamics modeling of granular systems. _Int. J. Numer. Methods Eng._ 123, 3850–3878
(2022). Article MathSciNet Google Scholar * Zhu, F. & Zhao, J. Multiscale modeling of continuous crushing of granular media: the role of grain microstructure. _Comput. Part. Mech._ 8,
1089–1101 (2021). Article Google Scholar * Pezeshkian, W. & Marrink, S. J. Simulating realistic membrane shapes. _Curr. Opin. Cell Biol._ 71, 103–111 (2021). Article Google Scholar
* Li, B. & Abel, S. M. Membrane-mediated interactions between hinge-like particles. _Soft Matter_ 18, 2742–2749 (2022). Article ADS Google Scholar * Boromand, A. et al. The role of
deformability in determining the structural and mechanical properties of bubbles and emulsions. _Soft Matter_ 15, 5854–5865 (2019). Article ADS Google Scholar * Treado, J. D. et al.
Bridging particle deformability and collective response in soft solids. _Phys. Rev. Mater._ 5, 055605 (2021). Article Google Scholar * Tran, S. B. Q., Le, Q. T., Leong, F. Y. & Le, D.
V. Modeling deformable capsules in viscous flow using immersed boundary method. _Phys. Fluids_ 32, 093602 (2020). Article ADS Google Scholar * Gay Neto, A., Hudobivnik, B., Moherdaui, T.
F. & Wriggers, P. Flexible polyhedra modeled by the virtual element method in a discrete element context. _Comput. Methods Appl. Mech. Eng._ 387, 114163 (2021). Article ADS MathSciNet
MATH Google Scholar * Rahmati, S., Zuniga, A., Jodoin, B. & Veiga, R. G. A. Deformation of copper particles upon impact: a molecular dynamics study of cold spray. _Comput. Mater.
Sci._ 171, 109219 (2020). Article Google Scholar * Liu, X. et al. Discrete element-embedded finite element model for simulation of soft particle motion and deformation. _Particuology_ 68,
88–100 (2022). Article Google Scholar * Cardenas-Barrantes, M., Cantor, D., Bares, J., Renouf, M. & Azema, E. Micromechanical description of the compaction of soft pentagon assemblies.
_Phys. Rev. E_ 103, 062902 (2021). Article ADS Google Scholar * Nezamabadi, S., Radjai, F., Averseng, J. & Delenne, J.-Y. Implicit frictional-contact model for soft particle systems.
_J. Mech. Phys. Solids_ 83, 72–87 (2015). Article ADS MathSciNet MATH Google Scholar * Nezamabadi, S., Ghadiri, M., Delenne, J.-Y. & Radjai, F. Modelling the compaction of plastic
particle packings. _Comput. Part. Mech._ 9, 45–52 (2022). Article Google Scholar * Brunk, N. E., Kadupitiya, J. C. S. & Jadhao, V. Designing surface charge patterns for shape control
of deformable nanoparticles. _Phys. Rev. Lett._ 125, 248001 (2020). Article ADS Google Scholar * Harting, J. et al. Recent advances in the simulation of particle-laden flows. _Eur. Phys.
J. Spec. Top._ 223, 2253–2267 (2014). Article Google Scholar * Robinson, M., Luding, S. & Ramaioli, M. Fluid-particle flow and validation using two-way-coupled mesoscale SPH-DEM. _Int.
J. Multiph. Flow_ 59, 121–134 (2014). Article Google Scholar * Vowinckel, B. Incorporating grain-scale processes in macroscopic sediment transport models: a review and perspectives for
environmental and geophysical applications. _Acta Mech._ 232, 2023–2050 (2021). Article MathSciNet MATH Google Scholar * Zhang, X. & Tahmasebi, P. Coupling irregular particles and
fluid: complex dynamics of granular flows. _Comput. Geotech._ 143, 104624 (2022). Article Google Scholar * Shrestha, S., Kuang, S. B., Yu, A. B. & Zhou, Z. Y. Effect of van der Waals
force on bubble dynamics in bubbling fluidized beds of ellipsoidal particles. _Chem. Eng. Sci._ 212, 115343 (2020). Article Google Scholar * Jain, R., Tschisgale, S. & Froehlich, J.
Effect of particle shape on bedload sediment transport in case of small particle loading. _Meccanica_ 55, 299–315 (2020). Article MathSciNet Google Scholar * Shaebani, M. R., Wysocki, A.,
Winkler, R. G., Gompper, G. & Rieger, H. Computational models for active matter. _Nat. Rev. Phys._ 2, 181–199 (2020). Article Google Scholar * Aliu, O., Sakidin, H., Foroozesh, J.
& Yahya, N. Lattice Boltzmann application to nanofluids dynamics — a review. _J. Mol. Liq._ 300, 112284 (2020). Article Google Scholar * de Graaf, J. et al. Lattice-Boltzmann
hydrodynamics of anisotropic active matter. _J. Chem. Phys._ 144, 134106 (2016). Article ADS Google Scholar * Lee, M., Lohrmann, C., Szuttor, K., Auradou, H. & Holm, C. The influence
of motility on bacterial accumulation in a microporous channel. _Soft Matter_ 17, 893–902 (2021). Article ADS Google Scholar * Yang, Q. et al. Capillary condensation under atomic-scale
confinement. _Nature_ 588, 250–253 (2020). Article ADS Google Scholar * Yang, L., Sega, M. & Harting, J. Capillary‐bridge forces between solid particles: insights from lattice
Boltzmann simulations. _AIChE J._ 67, e17350 (2021). Article Google Scholar * Delenne, J.-Y., Richefeu, V. & Radjai, F. Liquid clustering and capillary pressure in granular media. _J.
Fluid Mech._ 762, R5 (2015). Article MathSciNet Google Scholar * Wang, S., Wu, Q. & He, Y. Estimation of the fluidization behavior of nonspherical wet particles with liquid transfer.
_Ind. Eng. Chem. Res._ 61, 10254–10263 (2022). Article Google Scholar * Mittal, K., Dutta, S. & Fischer, P. Direct numerical simulation of rotating ellipsoidal particles using moving
nonconforming Schwarz-spectral element method. _Comput. Fluids_ 205, 104556 (2020). Article MathSciNet MATH Google Scholar * Reder, M., Hoffrogge, P. W., Schneider, D. & Nestler, B.
A phase-field based model for coupling two-phase flow with the motion of immersed rigid bodies. _Int. J. Numer. Methods Eng._ 123, 3757–3780 (2022). Article MathSciNet Google Scholar *
Jabeen, S., Usman, K. & Shahid, M. Numerical study of general shape particles in a concentric annular duct having inner obstacle. _Comput. Part. Mech._ 9, 485–497 (2022). Article Google
Scholar * Peskin, C. S. The immersed boundary method. _Acta Numer._ 11, 479–517 (2002). Article MathSciNet MATH Google Scholar * Wu, M., Peters, B., Rosemann, T. & Kruggel-Emden,
H. A forcing fictitious domain method to simulate fluid–particle interaction of particles with super-quadric shape. _Powder Technol._ 360, 264–277 (2020). Article Google Scholar * Isoz,
M., Sourek, M. K., Studenik, O. & Koci, P. Hybrid fictitious domain-immersed boundary solver coupled with discrete element method for simulations of flows laden with arbitrarily-shaped
particles. _Comput. Fluids_ 244, 105538 (2022). Article MathSciNet MATH Google Scholar * Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate
flows. _J. Comput. Phys._ 209, 448–476 (2005). Article ADS MathSciNet MATH Google Scholar * Lauber, M., Weymouth, G. D. & Limbert, G. Immersed boundary simulations of flows driven
by moving thin membranes. _J. Comput. Phys._ 457, 111076 (2022). Article MathSciNet MATH Google Scholar * Yamamoto, R., Molina, J. J. & Nakayama, Y. Smoothed profile method for
direct numerical simulations of hydrodynamically interacting particles. _Soft Matter_ 17, 4226–4253 (2021). Article ADS Google Scholar * Aniello, A. et al. Comparison of a finite volume
and two lattice Boltzmann solvers for swirled confined flows. _Comput. Fluids_ 241, 105463 (2022). Article MathSciNet MATH Google Scholar * Patel, K. & Stark, H. A pair of particles
in inertial microfluidics: effect of shape, softness, and position. _Soft Matter_ 17, 4804–4817 (2021). Article ADS Google Scholar * Cheng, H., Luding, S., Rivas, N., Harting, J. &
Magnanimo, V. Hydro-micromechanical modeling of wave propagation in saturated granular crystals. _Int. J. Numer. Anal. Methods Geomech._ 43, 1115–1139 (2019). Article Google Scholar *
Lind, S. J., Rogers, B. D. & Stansby, P. K. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. _Proc. R. Soc. A Math. Phys. Eng. Sci._ 476, 20190801
(2020). ADS MathSciNet MATH Google Scholar * Canelas, R. B., Crespo, A. J. C., Domínguez, J. M., Ferreira, R. M. L. & Gómez-Gesteira, M. SPH–DCDEM model for arbitrary geometries in
free surface solid–fluid flows. _Comput. Phys. Commun._ 202, 131–140 (2016). Article ADS MathSciNet Google Scholar * Bouscasse, B., Colagrossi, A., Marrone, S. & Antuono, M.
Nonlinear water wave interaction with floating bodies in SPH. _J. Fluids Struct._ 42, 112–129 (2013). Article ADS Google Scholar * Trujillo-Vela, M. G., Galindo-Torres, S. A., Zhang, X.,
Ramos-Cañón, A. M. & Escobar-Vargas, J. A. Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows. _Comput. Geotech._ 125, 103669
(2020). Article Google Scholar * Peng, C., Zhan, L., Wu, W. & Zhang, B. A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape. _Powder Technol._
387, 509–526 (2021). Article Google Scholar * Chen, H., Zhao, S., Zhao, J. & Zhou, X. DEM-enriched contact approach for material point method. _Comput. Methods Appl. Mech. Eng._ 404,
115814 (2023). Article ADS MathSciNet MATH Google Scholar * Español, P. & Warren, P. B. Perspective: dissipative particle dynamics. _J. Chem. Phys._ 146, 150901 (2017). Article ADS
Google Scholar * Zhang, J. & Choi, C. E. Improved settling velocity for microplastic fibers: a new shape-dependent drag model. _Environ. Sci. Technol._ 56, 962–973 (2022). Article
ADS Google Scholar * Zhong, W., Yu, A., Liu, X., Tong, Z. & Zhang, H. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. _Powder
Technol._ 302, 108–152 (2016). Article Google Scholar * Yang, F., Zeng, Y.-H. & Huai, W.-X. A new model for settling velocity of non-spherical particles. _Environ. Sci. Pollut. Res._
28, 61636–61646 (2021). Article Google Scholar * Castang, C., Lain, S., Garcia, D. & Sommerfeld, M. Aerodynamic coefficients of irregular non-spherical particles at intermediate
Reynolds numbers. _Powder Technol._ 402, 117341 (2022). Article Google Scholar * Livi, C., Di Staso, G., Clercx, H. J. H. & Toschi, F. Drag and lift coefficients of ellipsoidal
particles under rarefied flow conditions. _Phys. Rev. E_ 105, 015306 (2022). Article ADS MathSciNet Google Scholar * Chen, S., Chen, P. & Fu, J. Drag and lift forces acting on linear
and irregular agglomerates formed by spherical particles. _Phys. Fluids_ 34, 023307 (2022). Article ADS Google Scholar * Tagliavini, G. et al. Drag coefficient prediction of
complex-shaped snow particles falling in air beyond the Stokes regime. _Int. J. Multiph. Flow_ 140, 103652 (2021). Article Google Scholar * Dey, S., Ali, S. Z. & Padhi, E. Terminal
fall velocity: the legacy of Stokes from the perspective of fluvial hydraulics. _Proc. R. Soc. A Math. Phys. Eng. Sci._ 475, 20190277 (2019). ADS MathSciNet MATH Google Scholar *
Bonazzi, F., Hall, C. K. & Weikl, T. R. Membrane morphologies induced by mixtures of arc-shaped particles with opposite curvature. _Soft Matter_ 17, 268–275 (2021). Article ADS Google
Scholar * Cheng, H., Thornton, A. R., Luding, S., Hazel, A. L. & Weinhart, T. Concurrent multi-scale modeling of granular materials: role of coarse-graining in FEM–DEM coupling.
_Comput. Methods Appl. Mech. Eng._ 403, 115651 (2023). Article ADS MathSciNet MATH Google Scholar * Xu, X., Li, C. & Gao, X. Coarse-grained DEM-CFD simulation of fluidization
behavior of irregular shape sand particles. _Ind. Eng. Chem. Res._ 61, 9099–9109 (2022). Article Google Scholar * Yue, Y. et al. Hybrid grains: adaptive coupling of discrete and continuum
simulations of granular media. in _SIGGRAPH Asia 2018 Technical Papers on — SIGGRAPH Asia ’18_ 1–19 (ACM Press, 2018). https://doi.org/10.1145/3272127.3275095. * Guo, N. & Zhao, J.
Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. _Comput. Methods Appl. Mech. Eng._ 305, 37–61 (2016). Article ADS MathSciNet MATH
Google Scholar * Zhao, S., Zhao, J. & Lai, Y. Multiscale modeling of thermo-mechanical responses of granular materials: a hierarchical continuum–discrete coupling approach. _Comput.
Methods Appl. Mech. Eng._ 367, 113100 (2020). Article ADS MathSciNet MATH Google Scholar * Liang, W. & Zhao, J. Multiscale modeling of large deformation in geomechanics. _Int. J.
Numer. Anal. Methods Geomech._ 43, 1080–1114 (2019). Article Google Scholar * Zhao, S., Zhao, J., Liang, W. & Niu, F. Multiscale modeling of coupled thermo-mechanical behavior of
granular media in large deformation and flow. _Comput. Geotech._ 149, 104855 (2022). Article Google Scholar * Jaeggi, A., Rajagopalan, A. K., Morari, M. & Mazzotti, M. Characterizing
ensembles of platelike particles via machine learning. _Ind. Eng. Chem. Res._ 60, 473–483 (2021). Article Google Scholar * Zhang, H. et al. Characterization of particle size and shape by
an IPI system through deep learning. _J. Quant. Spectrosc. Radiat. Transf._ 268, 107642 (2021). Article Google Scholar * Hwang, S., Pan, J., Sunny, A. A. & Fan, L.-S. A machine
learning-based particle–particle collision model for non-spherical particles with arbitrary shape. _Chem. Eng. Sci._ 251, 117439 (2022). Article Google Scholar * Lai, Z., Chen, Q. &
Huang, L. Machine-learning-enabled discrete element method: contact detection and resolution of irregular-shaped particles. _Int. J. Numer. Anal. Methods Geomech._ 46, 113–140 (2022).
Article Google Scholar * Yan, S.-N., Wang, T.-Y., Tang, T.-Q., Ren, A.-X. & He, Y.-R. Simulation on hydrodynamics of non-spherical particulate system using a drag coefficient
correlation based on artificial neural network. _Pet. Sci._ 17, 537–555 (2020). Article Google Scholar * Hwang, S., Pan, J. & Fan, L.-S. A machine learning-based interaction force
model for non-spherical and irregular particles in low Reynolds number incompressible flows. _Powder Technol._ 392, 632–638 (2021). Article Google Scholar * Cheng, H. et al. An iterative
Bayesian filtering framework for fast and automated calibration of DEM models. _Comput. Methods Appl. Mech. Eng._ 350, 268–294 (2019). Article ADS MathSciNet MATH Google Scholar * Ma,
G., Guan, S., Wang, Q., Feng, Y. T. & Zhou, W. A predictive deep learning framework for path-dependent mechanical behavior of granular materials. _Acta Geotech._ 17, 3463–3478 (2022).
Article Google Scholar * Wang, K. et al. A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media. _J. Comput. Phys._ 443, 110526
(2021). Article MathSciNet MATH Google Scholar * Karniadakis, G. E. et al. Physics-informed machine learning. _Nat. Rev. Phys._ 3, 422–440 (2021). Article Google Scholar * Park, E. H.,
Kindratenko, V. & Hashash, Y. M. A. Shared memory parallelization for high-fidelity large-scale 3D polyhedral particle simulations. _Comput. Geotech._ 137, 104008 (2021). Article
Google Scholar * Gao, X., Yu, J., Lu, L., Li, C. & Rogers, W. A. Development and validation of SuperDEM–CFD coupled model for simulating non-spherical particles hydrodynamics in
fluidized beds. _Chem. Eng. J._ 420, 127654 (2021). Article Google Scholar * Wu, C. et al. System-level modeling of GPU/FPGA clusters for molecular dynamics simulations. in _2021 IEEE High
Performance Extreme Computing Conference_ (_HPEC_) 1–8 (IEEE, 2021). https://doi.org/10.1109/HPEC49654.2021.9622838. * Weinhart, T., Fuchs, R., Staedler, T., Kappl, M. & Luding, S.
Sintering — pressure- and temperature-dependent contact models. in _Particles in Contact_ (ed. Antonyuk, S.) 311–338 (Springer International Publishing, 2019).
https://doi.org/10.1007/978-3-030-15899-6_10. * Taghizadeh, K., Steeb, H., Luding, S. & Magnanimo, V. Elastic waves in particulate glass–rubber mixtures. _Proc. R. Soc. A Math. Phys.
Eng. Sci._ 477, 20200834 (2021). ADS MathSciNet Google Scholar * Luding, S. Introduction to discrete element methods. _Eur. J. Environ. Civ. Eng._ 12, 785–826 (2008). Article Google
Scholar * Angelidakis, V., Nadimi, S., Otsubo, M. & Utili, S. CLUMP: a code library to generate universal multi-sphere particles. _SoftwareX_ 15, 100735 (2021). Article Google Scholar
* Ferellec, J. & McDOWELL, G. Modelling realistic shape and particle inertia in DEM. _Géotechnique_ 60, 227–232 (2010). Article MATH Google Scholar * Zhao, S., Chen, H. & Zhao,
J. Multiscale modeling of freeze–thaw behavior in granular media. _Acta Mech. Sin._ 39, 722195 (2023). Article MathSciNet Google Scholar * Zhao, S. & Zhao, J. SudoDEM: unleashing the
predictive power of the discrete element method on simulation for non-spherical granular particles. _Comput. Phys. Commun._ 259, 107670 (2021). Article MathSciNet MATH Google Scholar *
Ye, T., Phan-Thien, N. & Lim, C. T. Particle-based simulations of red blood cells — a review. _J. Biomech._ 49, 2255–2266 (2016). Article Google Scholar * Nagata, T. et al. A simple
collision algorithm for arbitrarily shaped objects in particle-resolved flow simulation using an immersed boundary method. _Int. J. Numer. Methods Fluids_ 92, 1256–1273 (2020). Article ADS
MathSciNet Google Scholar Download references ACKNOWLEDGEMENTS J.Z. and S.Z. acknowledge the financial supports from the National Natural Science Foundation of China (via Project Nos
11972030 and 51909095) and Research Grants Council of Hong Kong (GRF Projects Nos 16206322, 16208720 and 16211221 and F-HKUST601/19). J.Z. also acknowledges the supports by the Project of
Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-2020083) and the internal research supports provided by HKUST (FP907, IEG22EG01 and IEG22EG01PG).
AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * The Hong Kong University of Science and Technology, Hong Kong, China Jidong Zhao & Shiwei Zhao * The University of Twente, Enschede, The
Netherlands Stefan Luding Authors * Jidong Zhao View author publications You can also search for this author inPubMed Google Scholar * Shiwei Zhao View author publications You can also
search for this author inPubMed Google Scholar * Stefan Luding View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors contributed to
all aspects of manuscript preparation, revision and editing. CORRESPONDING AUTHORS Correspondence to Jidong Zhao or Shiwei Zhao. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare
no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Physics_ thanks Devang Khakhar, Farhang Radjai and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and
permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Zhao, J., Zhao, S. & Luding, S. The role of particle shape in computational modelling of granular matter. _Nat Rev Phys_ 5, 505–525
(2023). https://doi.org/10.1038/s42254-023-00617-9 Download citation * Accepted: 27 June 2023 * Published: 10 August 2023 * Issue Date: September 2023 * DOI:
https://doi.org/10.1038/s42254-023-00617-9 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not
currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
Trending News
Va durham health care | veterans affairsFind VA policies on privacy and patient rights, family rights, visitation, and more. DURHAM VA HEALTH CARE SYSTEM HAS UP...
Tim mcgraw's publicist plays down fan slap videoThe damning footage was taken at a show in Atlanta, Georgia on Sunday (13Jul14), while McGraw was walking into the crowd...
Leonard Roberts Joins TNT’s ‘Major Crimes’ As RecurringLeonard Roberts (American Crime Story: The People v O.J. Simpson) has joined the cast of TNT‘s drama series Major Crimes...
Gettys resolve feud, will split $4-billion trustThe Getty family, one of America’s wealthiest clans, today resolved a bitter feud over disposition of a $4-billion trust...
AARP Purpose Prize Fellow Patricia FunegraBy AARP En español “Many people told me not to do all this because I wasn’t ready but I believe that the key to succes...
Latests News
The role of particle shape in computational modelling of granular matterABSTRACT Granular matter is ubiquitous in nature and is present in diverse forms in important engineering, industrial an...
Neighbours gobsmacked by 'second life' of frail oap who loves bowls and fishingWILLIAM ‘BILLY BOY' EASTMENT WAS INTERCEPTED AT SANTIAGO AIRPORT ALLEGEDLY WITH £200,000 WORTH OF METH AND HIS NEIG...
Channelnews : lg announces local availability of new superslim notebookLG Electronics have announced the newest addition to the LG gram range, the thinnest one yet, the LG gram SuperSlim note...
Heartwarming quotes by charlie chaplin on his birth anniversarySir Charles Spencer 'Charlie' Chaplin was famous for having a happy soul and a genius brain. Charlie Chaplin...
Will invest $1 billion in india to digitise small and medium businesses: amazon ceoBezos also said that his company will also export "$10 billion worth of Make in India goods by 2025." Jeff Bez...