The role of particle shape in computational modelling of granular matter

Nature

The role of particle shape in computational modelling of granular matter"


Play all audios:

Loading...

ABSTRACT Granular matter is ubiquitous in nature and is present in diverse forms in important engineering, industrial and natural processes. Particle-based computational modelling has become


indispensable to understand and predict the complex behaviour of granular matter in these processes. The success of modern computational models requires realistic and efficient


consideration of particle shape. Realistic particle shapes in naturally occurring and engineered materials offer diverse challenges owing to their multiscale nature in both length and time.


Furthermore, the complex interactions with other materials, such as interstitial fluids, are highly nonlinear and commonly involve multiphysics coupling. This Technical Review presents a


comprehensive appraisal of state-of-the-art computational models for granular particles of either naturally occurring shapes or engineered geometries. It focuses on particle shape


characterization, representation and implementation, as well as its important effects. In addition, the particles may be hard, highly deformable, crushable or phase transformable; they might


change their behaviour in the presence of interstitial fluids and are sensitive to density, confining stress and flow state. We describe generic methodologies that capture the universal


features of granular matter and some unique approaches developed for special but important applications. KEY POINTS * Particle-based computational modelling that considers realistic particle


shapes has become indispensable for understanding and predicting the complex behaviour of granular matter in engineering, industry and nature. * How to effectively represent the shape of a


particle is closely related to its intended purpose; the modelling of naturally occurring granular materials may differ from approaches for engineered particles. * Particle shape


representation is inseparably coupled to the detection of interparticle contacts, both of which critically determine the computational accuracy and efficiency of simulations of granular


matter. * Specific methodologies are needed to address challenges arising from crushable particles or highly deformable particles, in which the co-evolution of particle shapes and sizes and


hence contact detection algorithms dictate both accuracy and efficiency. * Consideration of shape effects in coupled simulations of granular particles and environmental fluids requires


revamped theories and methods to faithfully reflect their underpinning multiphase, multiphysics nature. * Incorporating realistic particle shapes in granular matter modelling must harness


the latest advances in parallel computing and machine learning for effective large-scale computations. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $99.00 per year only $8.25 per issue Learn more Buy


this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *


Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE UNCERTAINTY INHERENT TO DEM SIMULATIONS OF INTERLOCKING


PARTICLES Article Open access 04 March 2025 MECHANICAL BEHAVIOR AND PARTICLE CRUSHING OF IRREGULAR GRANULAR MATERIAL UNDER HIGH PRESSURE USING DISCRETE ELEMENT METHOD Article Open access 15


May 2023 PRECURSORY ARCH-LIKE STRUCTURES EXPLAIN THE CLOGGING PROBABILITY IN A GRANULAR HOPPER FLOW Article Open access 22 June 2024 REFERENCES * Marzinek, J. K., Huber, R. G. & Bond,


P. J. Multiscale modelling and simulation of viruses. _Curr. Opin. Struct. Biol._ 61, 146–152 (2020). Article  Google Scholar  * Zong, Y. & Zhao, K. Manipulation of self-assembled


structures by shape-designed polygonal colloids in 2D. _Curr. Opin. Solid State Mater. Sci._ 26, 101022 (2022). Article  ADS  Google Scholar  * Voss, J. & Wittkowski, R. On the


shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves. _Nanoscale Adv._ 2, 3890–3899 (2020). Article  ADS  Google Scholar  * Wang, J. et al. Shape matters:


morphologically biomimetic particles for improved drug delivery. _Chem. Eng. J._ 410, 127849 (2021). Article  Google Scholar  * Luo, X., Wang, Z., Yang, L., Gao, T. & Zhang, Y. A review


of analytical methods and models used in atmospheric microplastic research. _Sci. Total Environ._ 828, 154487 (2022). Article  ADS  Google Scholar  * Mollon, G. & Zhao, J. Generating


realistic 3D sand particles using Fourier descriptors. _Granul. Matter_ 15, 95–108 (2013). Article  Google Scholar  * Su, Y. et al. Determination and interpretation of bonded-particle model


parameters for simulation of maize kernels. _Biosyst. Eng._ 210, 193–205 (2021). Article  Google Scholar  * Ghadiri, M. et al. Cohesive powder flow: trends and challenges in characterisation


and analysis. _KONA Powder Part. J._ https://doi.org/10.14356/kona.2020018 (2020). Article  Google Scholar  * Piton, G., Goodwin, S. R., Mark, E. & Strouth, A. Debris flows, boulders


and constrictions: a simple framework for modeling jamming, and its consequences on outflow. _J. Geophys. Res. Earth Surf._ 127, e2021JF006447 (2022). Article  ADS  Google Scholar  * Rackow,


T. et al. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. _J. Geophys. Res. Ocean_ 122, 3170–3190 (2017). Article  ADS  Google


Scholar  * Ferrari, F. & Tanga, P. The role of fragment shapes in the simulations of asteroids as gravitational aggregates. _Icarus_ 350, 113871 (2020). Article  Google Scholar  * Shi,


L., Zhao, W., Sun, B. & Sun, W. Determination of the coefficient of rolling friction of irregularly shaped maize particles by using discrete element method. _Int. J. Agric. Biol. Eng._


13, 15–25 (2020). Google Scholar  * Cui, X., Gui, N., Yang, X., Tu, J. & Jiang, S. Analysis of particle shape effect on the discharging of non-spherical particles in HTR-10 reactor core.


_Nucl. Eng. Des._ 371, 110934 (2021). Article  Google Scholar  * Tang, X. & Yang, J. Wave propagation in granular material: what is the role of particle shape? _J. Mech. Phys. Solids_


157, 104605 (2021). Article  MathSciNet  Google Scholar  * Jones, R. P., Ottino, J. M., Umbanhowar, P. B. & Lueptow, R. M. Predicting segregation of nonspherical particles. _Phys. Rev.


Fluids_ 6, 054301 (2021). Article  ADS  Google Scholar  * Xia, Y. et al. Assessment of a tomography-informed polyhedral discrete element modelling approach for complex-shaped granular woody


biomass in stress consolidation. _Biosyst. Eng._ 205, 187–211 (2021). Article  Google Scholar  * Zhang, R., Ku, X., Yang, S., Wang, J. & Fan, L. Modeling and simulation of the motion and


gasification behaviors of superellipsoidal biomass particles in an entrained-flow reactor. _Energy Fuels_ 35, 1488–1502 (2021). Article  Google Scholar  * Leisner, A. M., Richardson, D. C.,


Statler, T. S., Nichols, W. & Zhang, Y. An extended parameter space study of the effect of cohesion in gravitational aggregates through spin-up simulations. _Planet. Space Sci._ 182,


104845 (2020). Article  Google Scholar  * Wang, F., Liu, J. & Zeng, H. Interactions of particulate matter and pulmonary surfactant: implications for human health. _Adv. Colloid Interface


Sci._ 284, 102244 (2020). Article  Google Scholar  * Wang, Y., Li, L., Hofmann, D., Andrade, J. E. & Daraio, C. Structured fabrics with tunable mechanical properties. _Nature_ 596, 238


(2021). Article  ADS  Google Scholar  * Keller, S. & Jaeger, H. M. Aleatory architectures. _Granul. Matter_ 18, 29 (2016). Article  Google Scholar  * Dierichs, K. & Menges, A.


Designing architectural materials: from granular form to functional granular material. _Bioinspir. Biomim._ 16, 065010 (2021). Article  ADS  Google Scholar  * Nunzi, F. & Angelis, F. D.


Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. _Chem. Sci._ 13, 9485–9497 (2022). Article  Google Scholar  * Ostanin, I., Ballarini, R., Potyondy, D. &


Dumitrică, T. A distinct element method for large scale simulations of carbon nanotube assemblies. _J. Mech. Phys. Solids_ 61, 762–782 (2013). Article  ADS  MathSciNet  Google Scholar  *


Gentili, D. & Ori, G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. _Nanoscale_ 14, 14385–14432 (2022). Article  Google Scholar  * Li, Z., Yang,


F. & Yin, Y. Smart materials by nanoscale magnetic assembly. _Adv. Funct. Mater._ 30, 1903467 (2020). Article  Google Scholar  * Sveinsson, H. A. et al. Direct atomic simulations of


facet formation and equilibrium shapes of SiC nanoparticles. _Cryst. Growth Des._ 20, 2147–2152 (2020). Article  Google Scholar  * Espinosa, I. M. P., Jacobs, T. D. B. & Martini, A.


Atomistic simulations of the elastic compression of platinum nanoparticles. _Nanoscale Res. Lett._ 17, 96 (2022). Article  ADS  Google Scholar  * Voss, J. & Wittkowski, R. Propulsion of


bullet- and cup-shaped nano- and microparticles by traveling ultrasound waves. _Phys. Fluids_ 34, 052007 (2022). Article  ADS  Google Scholar  * Wang, C. & Jiang, H. Different-shaped


micro-objects driven by active particle aggregations. _Soft Matter_ 16, 4422–4430 (2020). Article  ADS  Google Scholar  * Chen, G. et al. Liquid-crystalline behavior on dumbbell-shaped


colloids and the observation of chiral blue phases. _Nat. Commun._ 13, 5549 (2022). Article  ADS  Google Scholar  * Palanisamy, D. & den Otter, W. K. Intrinsic viscosities of


non-spherical colloids by Brownian dynamics simulations. _J. Chem. Phys._ 151, 184902 (2019). Article  ADS  Google Scholar  * Chakrapani, T. H., Bazyar, H., Lammertink, R. G. H., Luding, S.


& Otter, W. Kden The permeability of pillar arrays in microfluidic devices: an application of Brinkman’s theory towards wall friction. _Soft Matter_ 19, 436–450 (2023). Article  ADS 


Google Scholar  * Schoenhoefer, P. W. A., Marechal, M., Cleaver, D. J. & Schroeder-Turk, G. E. Self-assembly and entropic effects in pear-shaped colloid systems. II. Depletion attraction


of pear-shaped particles in a hard-sphere solvent. _J. Chem. Phys._ 153, 034904 (2020). Article  Google Scholar  * Rosenberg, M., Dekker, F., Donaldson, J. G., Philipse, A. P. &


Kantorovich, S. S. Self-assembly of charged colloidal cubes. _Soft Matter_ 16, 4451–4461 (2020). Article  ADS  Google Scholar  * Mistry, A., Heenan, T., Smith, K., Shearing, P. &


Mukherjee, P. P. Asphericity can cause nonuniform lithium intercalation in battery active particles. _ACS Energy Lett._ 7, 1871–1879 (2022). Article  Google Scholar  * Li, L., Wang, J.,


Yang, S. & Klein, B. A voxel-based clump generation method used for DEM simulations. _Granul. Matter_ 24, 89 (2022). Article  Google Scholar  * Huet, D. P., Jalaal, M., van Beek, R., van


der Meer, D. & Wachs, A. Granular avalanches of entangled rigid particles. _Phys. Rev. Fluids_ 6, 104304 (2021). Article  ADS  Google Scholar  * Feng, Y. T. Thirty years of developments


in contact modelling of non-spherical particles in DEM: a selective review. _Acta Mech. Sin._ 39, 722343 (2023). Article  MathSciNet  Google Scholar  * Neto, A. G. & Wriggers, P.


Discrete element model for general polyhedra. _Comput. Part. Mech._ 9, 353–380 (2022). Article  Google Scholar  * Zhang, R., Ku, X. & Lin, J. Fluidization of the spherocylindrical


particles: comparison of multi-sphere and bond-sphere models. _Chem. Eng. Sci._ 253, 117540 (2022). Article  Google Scholar  * Alonso-Marroqun, F. Spheropolygons: a new method to simulate


conservative and dissipative interactions between 2D complex-shaped rigid bodies. _Europhys. Lett._ 83, 14001 (2008). Article  ADS  Google Scholar  * Liu, L. & Ji, S. A new contact


detection method for arbitrary dilated polyhedra with potential function in discrete element method. _Int. J. Numer. Methods Eng._ 121, 5742–5765 (2020). Article  MathSciNet  Google Scholar


  * Shao, L., Mao, J., Zhao, L. & Li, T. A three-dimensional deformable spheropolyhedral-based discrete element method for simulation of the whole fracture process. _Eng. Fract. Mech._


263, 108290 (2022). Article  Google Scholar  * Delaney, G. W. & Cleary, P. W. The packing properties of superellipsoids. _Europhys. Lett._ 89, 34002 (2010). Article  ADS  Google Scholar


  * Wellmann, C., Lillie, C. & Wriggers, P. A contact detection algorithm for superellipsoids based on the common-normal concept. _Eng. Comput._ 25, 432–442 (2008). Article  MATH  Google


Scholar  * Zhao, S., Zhang, N., Zhou, X. & Zhang, L. Particle shape effects on fabric of granular random packing. _Powder Technol._ 310, 175–186 (2017). Article  Google Scholar  *


Peters, J. F., Hopkins, M. A., Kala, R. & Wahl, R. E. A poly‐ellipsoid particle for non‐spherical discrete element method. _Eng. Comput._ 26, 645–657 (2009). Article  Google Scholar  *


Zhang, B., Regueiro, R., Druckrey, A. & Alshibli, K. Construction of poly-ellipsoidal grain shapes from SMT imaging on sand, and the development of a new DEM contact detection algorithm.


_Eng. Comput._ 35, 733–771 (2018). Article  Google Scholar  * Zhao, S. & Zhao, J. A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media. _Int.


J. Numer. Anal. Methods Geomech._ 43, 2147–2169 (2019). Article  Google Scholar  * Lai, Z. & Huang, L. A polybézier-based particle model for the DEM modeling of granular media. _Comput.


Geotech._ 134, 104052 (2021). Article  Google Scholar  * Zhang, P., Dong, Y., Galindo-Torres, S. A., Scheuermann, A. & Li, L. Metaball based discrete element method for general shaped


particles with round features. _Comput. Mech._ 67, 1243–1254 (2021). Article  MathSciNet  MATH  Google Scholar  * Craveiro, M. V., Neto, A. G. & Wriggers, P. Contact between rigid convex


NURBS particles based on computer graphics concepts. _Comput. Methods Appl. Mech. Eng._ 386, 114097 (2021). Article  ADS  MathSciNet  MATH  Google Scholar  * Lim, K.-W., Krabbenhoft, K.


& Andrade, J. E. On the contact treatment of non-convex particles in the granular element method. _Comp. Part. Mech._ 1, 257–275 (2014). Article  Google Scholar  * Mollon, G. & Zhao,


J. 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. _Comput. Methods Appl. Mech. Eng._ 279, 46–65 (2014). Article  ADS  MATH  Google


Scholar  * Zhou, B. & Wang, J. Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis: generation of a


realistic 3D sand assembly. _Int. J. Numer. Anal. Meth. Geomech._ 41, 93–109 (2017). Article  Google Scholar  * Sun, Q. & Zheng, J. Clone granular soils with mixed particle


morphological characteristics by integrating spherical harmonics with Gaussian mixture model, expectation-maximization, and Dirichlet process. _Acta Geotech._ 15, 2779–2796 (2020). Article 


Google Scholar  * Bardhan, J. P. & Knepley, M. G. Computational science and re-discovery: open-source implementation of ellipsoidal harmonics for problems in potential theory. _Comput.


Sci. Disc._ 5, 014006 (2012). Article  Google Scholar  * Klotz, T. S., Bardhan, J. P. & Knepley, M. G. Efficient evaluation of ellipsoidal harmonics for potential modeling. Preprint at


_arXiv_ https://doi.org/10.48550/arXiv.1708.06028 (2017). * Reimond, S. & Baur, O. Spheroidal and ellipsoidal harmonic expansions of the gravitational potential of small Solar System


bodies. Case study: comet 67P/Churyumov-Gerasimenko: gravitational potential of small bodies. _J. Geophys. Res. Planets_ 121, 497–515 (2016). Article  ADS  Google Scholar  * Cundall, P. A.


& Strack, O. D. L. A discrete numerical model for granular assemblies. _Géotechnique_ 29, 47–65 (1979). Article  Google Scholar  * Smallenburg, F. Efficient event-driven simulations of


hard spheres. _Eur. Phys. J. E_ 45, 22 (2022). Article  Google Scholar  * Cantor, D., Azema, E. & Preechawuttipong, I. Microstructural analysis of sheared polydisperse polyhedral grains.


_Phys. Rev. E_ 101, 062901 (2020). Article  ADS  Google Scholar  * Wachs, A. Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive,


and non-spherical rigid bodies. _Acta Mech._ 230, 1919–1980 (2019). Article  MathSciNet  MATH  Google Scholar  * Radjai, F. & Richefeu, V. Contact dynamics as a nonsmooth discrete


element method. _Mech. Mater._ 41, 715–728 (2009). Article  Google Scholar  * Dubois, F., Acary, V. & Jean, M. The contact dynamics method: a nonsmooth story. _C. R. Méc._ 346, 247–262


(2018). Article  ADS  Google Scholar  * Hahn, J. K. Realistic animation of rigid bodies. _SIGGRAPH Comput. Graph._ 22, 299–308 (1988). Article  Google Scholar  * Tang, X., Paluszny, A. &


Zimmerman, R. W. An impulse-based energy tracking method for collision resolution. _Comput. Methods Appl. Mech. Eng._ 278, 160–185 (2014). Article  ADS  MathSciNet  MATH  Google Scholar  *


Lee, S. J. & Hashash, Y. M. A. iDEM: an impulse‐based discrete element method for fast granular dynamics. _Int. J. Numer. Methods Eng._ 104, 79–103 (2015). Article  MathSciNet  MATH 


Google Scholar  * Jehser, M. & Likos, C. N. Aggregation shapes of amphiphilic ring polymers: from spherical to toroidal micelles. _Colloid Polym. Sci._ 298, 735–745 (2020). Article 


Google Scholar  * Donev, A., Torquato, S. & Stillinger, F. H. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. II. Applications to ellipses


and ellipsoids. _J. Comput. Phys._ 202, 765–793 (2005). ADS  MathSciNet  MATH  Google Scholar  * Skora, T., Vaghefikia, F., Fitter, J. & Kondrat, S. Macromolecular crowding: how shape


and interactions affect diffusion. _J. Phys. Chem. B_ 124, 7537–7543 (2020). Article  Google Scholar  * Baldauf, L., Teich, E. G., Schall, P., van Anders, G. & Rossi, L. Shape and


interaction decoupling for colloidal preassembly. _Sci. Adv._ 8, eabm0548 (2022). Article  Google Scholar  * Chiappini, M. & Dijkstra, M. A generalized density-modulated twist-splay-bend


phase of banana-shaped particles. _Nat. Commun._ 12, 2157 (2021). Article  ADS  Google Scholar  * Pal, A. et al. Shape matters in magnetic-field-assisted assembly of prolate colloids. _ACS


Nano_ 16, 2558–2568 (2022). Article  Google Scholar  * Ferrari, F., Lavagna, M. & Blazquez, E. A parallel-GPU code for asteroid aggregation problems with angular particles. _Mon. Not.


Roy. Astron. Soc._ 492, 749–761 (2020). Article  ADS  Google Scholar  * Zhao, S., Lai, Z. & Zhao, J. Leveraging ray tracing cores for particle‐based simulations on GPUs. _Int. J. Numer.


Methods Eng._ 124, 696–713 (2022). Article  MathSciNet  Google Scholar  * Howard, M. P., Anderson, J. A., Nikoubashman, A., Glotzer, S. C. & Panagiotopoulos, A. Z. Efficient neighbor


list calculation for molecular simulation of colloidal systems using graphics processing units. _Comput. Phys. Commun._ 203, 45–52 (2016). Article  ADS  Google Scholar  * Donev, A.,


Torquato, S. & Stillinger, F. H. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. _J. Comput. Phys._ 202, 737–764


(2005). Article  ADS  MathSciNet  MATH  Google Scholar  * Girault, I., Chadil, M.-A. & Vincent, S. Comparison of methods computing the distance between two ellipsoids. _J. Comput. Phys._


458, 111100 (2022). Article  MathSciNet  MATH  Google Scholar  * Eliáš, J. Simulation of railway ballast using crushable polyhedral particles. _Powder Technol._ 264, 458–465 (2014). Article


  Google Scholar  * Zhao, S., Zhou, X. & Liu, W. Discrete element simulations of direct shear tests with particle angularity effect. _Granul. Matter_ 17, 793–806 (2015). Article  Google


Scholar  * Günther, O. & Wong, E. A dual approach to detect polyhedral intersections in arbitrary dimensions. _BIT Numer. Math._ 31, 2–14 (1991). Article  MathSciNet  MATH  Google


Scholar  * Feng, Y. T. An effective energy-conserving contact modelling strategy for spherical harmonic particles represented by surface triangular meshes with automatic simplification.


_Comput. Methods Appl. Mech. Eng._ 379, 113750 (2021). Article  ADS  MathSciNet  MATH  Google Scholar  * Lai, Z., Chen, Q. & Huang, L. Fourier series-based discrete element method for


computational mechanics of irregular-shaped particles. _Comput. Methods Appl. Mech. Eng._ 362, 112873 (2020). Article  ADS  MathSciNet  MATH  Google Scholar  * He, H. & Zheng, J.


Simulations of realistic granular soils in oedometer tests using physics engine. _Int. J. Numer. Anal. Methods Geomech._ 44, 983–1002 (2020). Article  Google Scholar  * Zhu, F. & Zhao,


J. Modeling continuous grain crushing in granular media: a hybrid peridynamics and physics engine approach. _Comput. Methods Appl. Mech. Eng._ 348, 334–355 (2019). Article  ADS  MathSciNet 


MATH  Google Scholar  * Ramasubramani, V., Vo, T., Anderson, J. A. & Glotzer, S. C. A mean-field approach to simulating anisotropic particles. _J. Chem. Phys._ 153, 084106 (2020).


Article  Google Scholar  * Lubachevsky, B. D. & Stillinger, F. H. Geometric properties of random disk packings. _J. Stat. Phys._ 60, 561–583 (1990). Article  ADS  MathSciNet  MATH 


Google Scholar  * Maher, C. E., Stillinger, F. H. & Torquato, S. Characterization of void space, large-scale structure, and transport properties of maximally random jammed packings of


superballs. _Phys. Rev. Mater._ 6, 025603 (2022). Article  Google Scholar  * Cundall, P. A. Formulation of a three-dimensional distinct element model — part I. A scheme to detect and


represent contacts in a system composed of many polyhedral blocks. _Int. J. Rock Mech. Min. Sci. Geomech. Abstr._ 25, 107–116 (1988). Article  Google Scholar  * Nezami, E. G., Hashash, Y. M.


A., Zhao, D. W. & Ghaboussi, J. A fast contact detection algorithm for 3-D discrete element method. _Comput. Geotech._ 31, 575–587 (2004). Article  Google Scholar  * Azéma, E., Radjai,


F. & Dubois, F. Packings of irregular polyhedral particles: strength, structure, and effects of angularity. _Phys. Rev. E_ 87, 062203 (2013). Article  ADS  Google Scholar  * Zhan, L.,


Peng, C., Zhang, B. & Wu, W. A surface mesh represented discrete element method (SMR-DEM) for particles of arbitrary shape. _Powder Technol._ 377, 760–779 (2021). Article  Google Scholar


  * Capozza, R. & Hanley, K. J. A hierarchical, spherical harmonic-based approach to simulate abradable, irregularly shaped particles in DEM. _Powder Technol._ 378, 528–537 (2021).


Article  Google Scholar  * Wang, X., Yin, Z.-Y., Xiong, H., Su, D. & Feng, Y.-T. A spherical-harmonic-based approach to discrete element modeling of 3D irregular particles. _Int. J.


Numer. Methods Eng._ 122, 5626–5655 (2021). Article  MathSciNet  Google Scholar  * Kawamoto, R., Andò, E., Viggiani, G. & Andrade, J. E. Level set discrete element method for


three-dimensional computations with triaxial case study. _J. Mech. Phys. Solids_ 91, 1–13 (2016). Article  ADS  MathSciNet  Google Scholar  * Harmon, J. M., Arthur, D. & Andrade, J. E.


Level set splitting in DEM for modeling breakage mechanics. _Comput. Methods Appl. Mech. Eng._ 365, 112961 (2020). Article  ADS  MathSciNet  MATH  Google Scholar  * Duriez, J. &


Galusinski, C. A level set-discrete element method in YADE for numerical, micro-scale, geomechanics with refined grain shapes. _Comput. Geosci._ 157, 104936 (2021). Article  Google Scholar 


* Lai, Z., Zhao, S., Zhao, J. & Huang, L. Signed distance field framework for unified DEM modeling of granular media with arbitrary particle shapes. _Comput. Mech._ 70, 763–783 (2022).


Article  MathSciNet  MATH  Google Scholar  * Mori, Y. & Sakai, M. Advanced DEM simulation on powder mixing for ellipsoidal particles in an industrial mixer. _Chem. Eng. J._ 429, 132415


(2022). Article  Google Scholar  * Huang, S., Huang, L., Lai, Z. & Zhao, J. Morphology characterization and discrete element modeling of coral sand with intraparticle voids. _Eng. Geol._


315, 107023 (2023). Article  Google Scholar  * Feng, Y. T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: basic framework and general


contact model. _Comput. Methods Appl. Mech. Eng._ 373, 113454 (2021). Article  ADS  MathSciNet  MATH  Google Scholar  * Hoque, S. Z., Anand, D. V. & Patnaik, B. S. A dissipative particle


dynamics simulation of a pair of red blood cells in flow through a symmetric and an asymmetric bifurcated microchannel. Comput. Part. Mech. 9, 1219–1231 (2022). Article  Google Scholar  *


Villone, M. M. & Maffettone, P. L. Dynamics, rheology, and applications of elastic deformable particle suspensions: a review. _Rheol. Acta_ 58, 109–130 (2019). Article  Google Scholar  *


Norouzi, M., Andric, J., Vernet, A. & Pallares, J. Shape evolution of long flexible fibers in viscous flows. _Acta Mech._ 233, 2077–2091 (2022). Article  MATH  Google Scholar  *


Emiroglu, D. B. et al. Building block properties govern granular hydrogel mechanics through contact deformations. _Sci. Adv._ 8, eadd8570 (2022). Article  Google Scholar  * Tavares, L. M.


& das Chagas, A. S. A stochastic particle replacement strategy for simulating breakage in DEM. _Powder Technol._ 377, 222–232 (2021). Article  Google Scholar  * Jiang, Y., Mora, P.,


Herrmann, H. J. & Alonso-Marroquín, F. Damage separation model: a replaceable particle method based on strain energy field. _Phys. Rev. E_ 104, 045311 (2021). Article  ADS  MathSciNet 


Google Scholar  * Orozco, L. F., Delenne, J.-Y., Sornay, P. & Radjai, F. Scaling behavior of particle breakage in granular flows inside rotating drums. _Phys. Rev. E_ 101, 052904 (2020).


Article  ADS  Google Scholar  * Ramkrishna, D. & Singh, M. R. Population balance modeling: current status and future prospects. _Annu. Rev. Chem. Biomol. Eng._ 5, 123–146 (2014).


Article  Google Scholar  * Cabiscol, R., Finke, J. H. & Kwade, A. A bi-directional DEM-PBM coupling to evaluate chipping and abrasion of pharmaceutical tablets. _Adv. Powder Technol._


32, 2839–2855 (2021). Article  Google Scholar  * Kuang, D.-M., Long, Z.-L., Ogwu, I. & Chen, Z. A discrete element method (DEM)-based approach to simulating particle breakage. _Acta


Geotech._ 17, 2751–2764 (2022). Article  Google Scholar  * Fang, C., Gong, J., Nie, Z., Li, B. & Li, X. DEM study on the microscale and macroscale shear behaviours of granular materials


with breakable and irregularly shaped particles. _Comput. Geotech._ 137, 104271 (2021). Article  Google Scholar  * Nguyen, D.-H., Azéma, E., Sornay, P. & Radjai, F. Bonded-cell model for


particle fracture. _Phys. Rev. E_ 91, 022203 (2015). Article  ADS  MathSciNet  Google Scholar  * Cantor, D., Azéma, E., Sornay, P. & Radjai, F. Three-dimensional bonded-cell model for


grain fragmentation. _Comp. Part. Mech._ 4, 441–450 (2017). Article  Google Scholar  * Nikolić, M., Karavelić, E., Ibrahimbegovic, A. & Miščević, P. Lattice element models and their


peculiarities. _Arch. Comput. Methods Eng._ 25, 753–784 (2018). Article  MathSciNet  MATH  Google Scholar  * Delenne, J.-Y., Topin, V. & Radjai, F. Failure of cemented granular materials


under simple compression: experiments and numerical simulations. _Acta Mech._ 205, 9–21 (2009). Article  MATH  Google Scholar  * Affes, R., Delenne, J.-Y., Monerie, Y., Radjaï, F. &


Topin, V. Tensile strength and fracture of cemented granular aggregates. _Eur. Phys. J. E_ 35, 117 (2012). Article  Google Scholar  * Topin, V., Radjaï, F., Delenne, J.-Y. & Mabille, F.


Mechanical modeling of wheat hardness and fragmentation. _Powder Technol._ 190, 215–220 (2009). Article  Google Scholar  * Sargado, J. M., Keilegavlen, E., Berre, I. & Nordbotten, J. M.


A combined finite element–finite volume framework for phase-field fracture. _Comput. Methods Appl. Mech. Eng._ 373, 113474 (2021). Article  ADS  MathSciNet  MATH  Google Scholar  * Rahimi,


M. N. & Moutsanidis, G. A smoothed particle hydrodynamics approach for phase field modeling of brittle fracture. _Comput. Methods Appl. Mech. Eng._ 398, 115191 (2022). Article  ADS 


MathSciNet  MATH  Google Scholar  * Mohajerani, S. & Wang, G. ‘Touch-aware’ contact model for peridynamics modeling of granular systems. _Int. J. Numer. Methods Eng._ 123, 3850–3878


(2022). Article  MathSciNet  Google Scholar  * Zhu, F. & Zhao, J. Multiscale modeling of continuous crushing of granular media: the role of grain microstructure. _Comput. Part. Mech._ 8,


1089–1101 (2021). Article  Google Scholar  * Pezeshkian, W. & Marrink, S. J. Simulating realistic membrane shapes. _Curr. Opin. Cell Biol._ 71, 103–111 (2021). Article  Google Scholar 


* Li, B. & Abel, S. M. Membrane-mediated interactions between hinge-like particles. _Soft Matter_ 18, 2742–2749 (2022). Article  ADS  Google Scholar  * Boromand, A. et al. The role of


deformability in determining the structural and mechanical properties of bubbles and emulsions. _Soft Matter_ 15, 5854–5865 (2019). Article  ADS  Google Scholar  * Treado, J. D. et al.


Bridging particle deformability and collective response in soft solids. _Phys. Rev. Mater._ 5, 055605 (2021). Article  Google Scholar  * Tran, S. B. Q., Le, Q. T., Leong, F. Y. & Le, D.


V. Modeling deformable capsules in viscous flow using immersed boundary method. _Phys. Fluids_ 32, 093602 (2020). Article  ADS  Google Scholar  * Gay Neto, A., Hudobivnik, B., Moherdaui, T.


F. & Wriggers, P. Flexible polyhedra modeled by the virtual element method in a discrete element context. _Comput. Methods Appl. Mech. Eng._ 387, 114163 (2021). Article  ADS  MathSciNet


  MATH  Google Scholar  * Rahmati, S., Zuniga, A., Jodoin, B. & Veiga, R. G. A. Deformation of copper particles upon impact: a molecular dynamics study of cold spray. _Comput. Mater.


Sci._ 171, 109219 (2020). Article  Google Scholar  * Liu, X. et al. Discrete element-embedded finite element model for simulation of soft particle motion and deformation. _Particuology_ 68,


88–100 (2022). Article  Google Scholar  * Cardenas-Barrantes, M., Cantor, D., Bares, J., Renouf, M. & Azema, E. Micromechanical description of the compaction of soft pentagon assemblies.


_Phys. Rev. E_ 103, 062902 (2021). Article  ADS  Google Scholar  * Nezamabadi, S., Radjai, F., Averseng, J. & Delenne, J.-Y. Implicit frictional-contact model for soft particle systems.


_J. Mech. Phys. Solids_ 83, 72–87 (2015). Article  ADS  MathSciNet  MATH  Google Scholar  * Nezamabadi, S., Ghadiri, M., Delenne, J.-Y. & Radjai, F. Modelling the compaction of plastic


particle packings. _Comput. Part. Mech._ 9, 45–52 (2022). Article  Google Scholar  * Brunk, N. E., Kadupitiya, J. C. S. & Jadhao, V. Designing surface charge patterns for shape control


of deformable nanoparticles. _Phys. Rev. Lett._ 125, 248001 (2020). Article  ADS  Google Scholar  * Harting, J. et al. Recent advances in the simulation of particle-laden flows. _Eur. Phys.


J. Spec. Top._ 223, 2253–2267 (2014). Article  Google Scholar  * Robinson, M., Luding, S. & Ramaioli, M. Fluid-particle flow and validation using two-way-coupled mesoscale SPH-DEM. _Int.


J. Multiph. Flow_ 59, 121–134 (2014). Article  Google Scholar  * Vowinckel, B. Incorporating grain-scale processes in macroscopic sediment transport models: a review and perspectives for


environmental and geophysical applications. _Acta Mech._ 232, 2023–2050 (2021). Article  MathSciNet  MATH  Google Scholar  * Zhang, X. & Tahmasebi, P. Coupling irregular particles and


fluid: complex dynamics of granular flows. _Comput. Geotech._ 143, 104624 (2022). Article  Google Scholar  * Shrestha, S., Kuang, S. B., Yu, A. B. & Zhou, Z. Y. Effect of van der Waals


force on bubble dynamics in bubbling fluidized beds of ellipsoidal particles. _Chem. Eng. Sci._ 212, 115343 (2020). Article  Google Scholar  * Jain, R., Tschisgale, S. & Froehlich, J.


Effect of particle shape on bedload sediment transport in case of small particle loading. _Meccanica_ 55, 299–315 (2020). Article  MathSciNet  Google Scholar  * Shaebani, M. R., Wysocki, A.,


Winkler, R. G., Gompper, G. & Rieger, H. Computational models for active matter. _Nat. Rev. Phys._ 2, 181–199 (2020). Article  Google Scholar  * Aliu, O., Sakidin, H., Foroozesh, J.


& Yahya, N. Lattice Boltzmann application to nanofluids dynamics — a review. _J. Mol. Liq._ 300, 112284 (2020). Article  Google Scholar  * de Graaf, J. et al. Lattice-Boltzmann


hydrodynamics of anisotropic active matter. _J. Chem. Phys._ 144, 134106 (2016). Article  ADS  Google Scholar  * Lee, M., Lohrmann, C., Szuttor, K., Auradou, H. & Holm, C. The influence


of motility on bacterial accumulation in a microporous channel. _Soft Matter_ 17, 893–902 (2021). Article  ADS  Google Scholar  * Yang, Q. et al. Capillary condensation under atomic-scale


confinement. _Nature_ 588, 250–253 (2020). Article  ADS  Google Scholar  * Yang, L., Sega, M. & Harting, J. Capillary‐bridge forces between solid particles: insights from lattice


Boltzmann simulations. _AIChE J._ 67, e17350 (2021). Article  Google Scholar  * Delenne, J.-Y., Richefeu, V. & Radjai, F. Liquid clustering and capillary pressure in granular media. _J.


Fluid Mech._ 762, R5 (2015). Article  MathSciNet  Google Scholar  * Wang, S., Wu, Q. & He, Y. Estimation of the fluidization behavior of nonspherical wet particles with liquid transfer.


_Ind. Eng. Chem. Res._ 61, 10254–10263 (2022). Article  Google Scholar  * Mittal, K., Dutta, S. & Fischer, P. Direct numerical simulation of rotating ellipsoidal particles using moving


nonconforming Schwarz-spectral element method. _Comput. Fluids_ 205, 104556 (2020). Article  MathSciNet  MATH  Google Scholar  * Reder, M., Hoffrogge, P. W., Schneider, D. & Nestler, B.


A phase-field based model for coupling two-phase flow with the motion of immersed rigid bodies. _Int. J. Numer. Methods Eng._ 123, 3757–3780 (2022). Article  MathSciNet  Google Scholar  *


Jabeen, S., Usman, K. & Shahid, M. Numerical study of general shape particles in a concentric annular duct having inner obstacle. _Comput. Part. Mech._ 9, 485–497 (2022). Article  Google


Scholar  * Peskin, C. S. The immersed boundary method. _Acta Numer._ 11, 479–517 (2002). Article  MathSciNet  MATH  Google Scholar  * Wu, M., Peters, B., Rosemann, T. & Kruggel-Emden,


H. A forcing fictitious domain method to simulate fluid–particle interaction of particles with super-quadric shape. _Powder Technol._ 360, 264–277 (2020). Article  Google Scholar  * Isoz,


M., Sourek, M. K., Studenik, O. & Koci, P. Hybrid fictitious domain-immersed boundary solver coupled with discrete element method for simulations of flows laden with arbitrarily-shaped


particles. _Comput. Fluids_ 244, 105538 (2022). Article  MathSciNet  MATH  Google Scholar  * Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate


flows. _J. Comput. Phys._ 209, 448–476 (2005). Article  ADS  MathSciNet  MATH  Google Scholar  * Lauber, M., Weymouth, G. D. & Limbert, G. Immersed boundary simulations of flows driven


by moving thin membranes. _J. Comput. Phys._ 457, 111076 (2022). Article  MathSciNet  MATH  Google Scholar  * Yamamoto, R., Molina, J. J. & Nakayama, Y. Smoothed profile method for


direct numerical simulations of hydrodynamically interacting particles. _Soft Matter_ 17, 4226–4253 (2021). Article  ADS  Google Scholar  * Aniello, A. et al. Comparison of a finite volume


and two lattice Boltzmann solvers for swirled confined flows. _Comput. Fluids_ 241, 105463 (2022). Article  MathSciNet  MATH  Google Scholar  * Patel, K. & Stark, H. A pair of particles


in inertial microfluidics: effect of shape, softness, and position. _Soft Matter_ 17, 4804–4817 (2021). Article  ADS  Google Scholar  * Cheng, H., Luding, S., Rivas, N., Harting, J. &


Magnanimo, V. Hydro-micromechanical modeling of wave propagation in saturated granular crystals. _Int. J. Numer. Anal. Methods Geomech._ 43, 1115–1139 (2019). Article  Google Scholar  *


Lind, S. J., Rogers, B. D. & Stansby, P. K. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. _Proc. R. Soc. A Math. Phys. Eng. Sci._ 476, 20190801


(2020). ADS  MathSciNet  MATH  Google Scholar  * Canelas, R. B., Crespo, A. J. C., Domínguez, J. M., Ferreira, R. M. L. & Gómez-Gesteira, M. SPH–DCDEM model for arbitrary geometries in


free surface solid–fluid flows. _Comput. Phys. Commun._ 202, 131–140 (2016). Article  ADS  MathSciNet  Google Scholar  * Bouscasse, B., Colagrossi, A., Marrone, S. & Antuono, M.


Nonlinear water wave interaction with floating bodies in SPH. _J. Fluids Struct._ 42, 112–129 (2013). Article  ADS  Google Scholar  * Trujillo-Vela, M. G., Galindo-Torres, S. A., Zhang, X.,


Ramos-Cañón, A. M. & Escobar-Vargas, J. A. Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows. _Comput. Geotech._ 125, 103669


(2020). Article  Google Scholar  * Peng, C., Zhan, L., Wu, W. & Zhang, B. A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape. _Powder Technol._


387, 509–526 (2021). Article  Google Scholar  * Chen, H., Zhao, S., Zhao, J. & Zhou, X. DEM-enriched contact approach for material point method. _Comput. Methods Appl. Mech. Eng._ 404,


115814 (2023). Article  ADS  MathSciNet  MATH  Google Scholar  * Español, P. & Warren, P. B. Perspective: dissipative particle dynamics. _J. Chem. Phys._ 146, 150901 (2017). Article  ADS


  Google Scholar  * Zhang, J. & Choi, C. E. Improved settling velocity for microplastic fibers: a new shape-dependent drag model. _Environ. Sci. Technol._ 56, 962–973 (2022). Article 


ADS  Google Scholar  * Zhong, W., Yu, A., Liu, X., Tong, Z. & Zhang, H. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. _Powder


Technol._ 302, 108–152 (2016). Article  Google Scholar  * Yang, F., Zeng, Y.-H. & Huai, W.-X. A new model for settling velocity of non-spherical particles. _Environ. Sci. Pollut. Res._


28, 61636–61646 (2021). Article  Google Scholar  * Castang, C., Lain, S., Garcia, D. & Sommerfeld, M. Aerodynamic coefficients of irregular non-spherical particles at intermediate


Reynolds numbers. _Powder Technol._ 402, 117341 (2022). Article  Google Scholar  * Livi, C., Di Staso, G., Clercx, H. J. H. & Toschi, F. Drag and lift coefficients of ellipsoidal


particles under rarefied flow conditions. _Phys. Rev. E_ 105, 015306 (2022). Article  ADS  MathSciNet  Google Scholar  * Chen, S., Chen, P. & Fu, J. Drag and lift forces acting on linear


and irregular agglomerates formed by spherical particles. _Phys. Fluids_ 34, 023307 (2022). Article  ADS  Google Scholar  * Tagliavini, G. et al. Drag coefficient prediction of


complex-shaped snow particles falling in air beyond the Stokes regime. _Int. J. Multiph. Flow_ 140, 103652 (2021). Article  Google Scholar  * Dey, S., Ali, S. Z. & Padhi, E. Terminal


fall velocity: the legacy of Stokes from the perspective of fluvial hydraulics. _Proc. R. Soc. A Math. Phys. Eng. Sci._ 475, 20190277 (2019). ADS  MathSciNet  MATH  Google Scholar  *


Bonazzi, F., Hall, C. K. & Weikl, T. R. Membrane morphologies induced by mixtures of arc-shaped particles with opposite curvature. _Soft Matter_ 17, 268–275 (2021). Article  ADS  Google


Scholar  * Cheng, H., Thornton, A. R., Luding, S., Hazel, A. L. & Weinhart, T. Concurrent multi-scale modeling of granular materials: role of coarse-graining in FEM–DEM coupling.


_Comput. Methods Appl. Mech. Eng._ 403, 115651 (2023). Article  ADS  MathSciNet  MATH  Google Scholar  * Xu, X., Li, C. & Gao, X. Coarse-grained DEM-CFD simulation of fluidization


behavior of irregular shape sand particles. _Ind. Eng. Chem. Res._ 61, 9099–9109 (2022). Article  Google Scholar  * Yue, Y. et al. Hybrid grains: adaptive coupling of discrete and continuum


simulations of granular media. in _SIGGRAPH Asia 2018 Technical Papers on — SIGGRAPH Asia ’18_ 1–19 (ACM Press, 2018). https://doi.org/10.1145/3272127.3275095. * Guo, N. & Zhao, J.


Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. _Comput. Methods Appl. Mech. Eng._ 305, 37–61 (2016). Article  ADS  MathSciNet  MATH 


Google Scholar  * Zhao, S., Zhao, J. & Lai, Y. Multiscale modeling of thermo-mechanical responses of granular materials: a hierarchical continuum–discrete coupling approach. _Comput.


Methods Appl. Mech. Eng._ 367, 113100 (2020). Article  ADS  MathSciNet  MATH  Google Scholar  * Liang, W. & Zhao, J. Multiscale modeling of large deformation in geomechanics. _Int. J.


Numer. Anal. Methods Geomech._ 43, 1080–1114 (2019). Article  Google Scholar  * Zhao, S., Zhao, J., Liang, W. & Niu, F. Multiscale modeling of coupled thermo-mechanical behavior of


granular media in large deformation and flow. _Comput. Geotech._ 149, 104855 (2022). Article  Google Scholar  * Jaeggi, A., Rajagopalan, A. K., Morari, M. & Mazzotti, M. Characterizing


ensembles of platelike particles via machine learning. _Ind. Eng. Chem. Res._ 60, 473–483 (2021). Article  Google Scholar  * Zhang, H. et al. Characterization of particle size and shape by


an IPI system through deep learning. _J. Quant. Spectrosc. Radiat. Transf._ 268, 107642 (2021). Article  Google Scholar  * Hwang, S., Pan, J., Sunny, A. A. & Fan, L.-S. A machine


learning-based particle–particle collision model for non-spherical particles with arbitrary shape. _Chem. Eng. Sci._ 251, 117439 (2022). Article  Google Scholar  * Lai, Z., Chen, Q. &


Huang, L. Machine-learning-enabled discrete element method: contact detection and resolution of irregular-shaped particles. _Int. J. Numer. Anal. Methods Geomech._ 46, 113–140 (2022).


Article  Google Scholar  * Yan, S.-N., Wang, T.-Y., Tang, T.-Q., Ren, A.-X. & He, Y.-R. Simulation on hydrodynamics of non-spherical particulate system using a drag coefficient


correlation based on artificial neural network. _Pet. Sci._ 17, 537–555 (2020). Article  Google Scholar  * Hwang, S., Pan, J. & Fan, L.-S. A machine learning-based interaction force


model for non-spherical and irregular particles in low Reynolds number incompressible flows. _Powder Technol._ 392, 632–638 (2021). Article  Google Scholar  * Cheng, H. et al. An iterative


Bayesian filtering framework for fast and automated calibration of DEM models. _Comput. Methods Appl. Mech. Eng._ 350, 268–294 (2019). Article  ADS  MathSciNet  MATH  Google Scholar  * Ma,


G., Guan, S., Wang, Q., Feng, Y. T. & Zhou, W. A predictive deep learning framework for path-dependent mechanical behavior of granular materials. _Acta Geotech._ 17, 3463–3478 (2022).


Article  Google Scholar  * Wang, K. et al. A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media. _J. Comput. Phys._ 443, 110526


(2021). Article  MathSciNet  MATH  Google Scholar  * Karniadakis, G. E. et al. Physics-informed machine learning. _Nat. Rev. Phys._ 3, 422–440 (2021). Article  Google Scholar  * Park, E. H.,


Kindratenko, V. & Hashash, Y. M. A. Shared memory parallelization for high-fidelity large-scale 3D polyhedral particle simulations. _Comput. Geotech._ 137, 104008 (2021). Article 


Google Scholar  * Gao, X., Yu, J., Lu, L., Li, C. & Rogers, W. A. Development and validation of SuperDEM–CFD coupled model for simulating non-spherical particles hydrodynamics in


fluidized beds. _Chem. Eng. J._ 420, 127654 (2021). Article  Google Scholar  * Wu, C. et al. System-level modeling of GPU/FPGA clusters for molecular dynamics simulations. in _2021 IEEE High


Performance Extreme Computing Conference_ (_HPEC_) 1–8 (IEEE, 2021). https://doi.org/10.1109/HPEC49654.2021.9622838. * Weinhart, T., Fuchs, R., Staedler, T., Kappl, M. & Luding, S.


Sintering — pressure- and temperature-dependent contact models. in _Particles in Contact_ (ed. Antonyuk, S.) 311–338 (Springer International Publishing, 2019).


https://doi.org/10.1007/978-3-030-15899-6_10. * Taghizadeh, K., Steeb, H., Luding, S. & Magnanimo, V. Elastic waves in particulate glass–rubber mixtures. _Proc. R. Soc. A Math. Phys.


Eng. Sci._ 477, 20200834 (2021). ADS  MathSciNet  Google Scholar  * Luding, S. Introduction to discrete element methods. _Eur. J. Environ. Civ. Eng._ 12, 785–826 (2008). Article  Google


Scholar  * Angelidakis, V., Nadimi, S., Otsubo, M. & Utili, S. CLUMP: a code library to generate universal multi-sphere particles. _SoftwareX_ 15, 100735 (2021). Article  Google Scholar


  * Ferellec, J. & McDOWELL, G. Modelling realistic shape and particle inertia in DEM. _Géotechnique_ 60, 227–232 (2010). Article  MATH  Google Scholar  * Zhao, S., Chen, H. & Zhao,


J. Multiscale modeling of freeze–thaw behavior in granular media. _Acta Mech. Sin._ 39, 722195 (2023). Article  MathSciNet  Google Scholar  * Zhao, S. & Zhao, J. SudoDEM: unleashing the


predictive power of the discrete element method on simulation for non-spherical granular particles. _Comput. Phys. Commun._ 259, 107670 (2021). Article  MathSciNet  MATH  Google Scholar  *


Ye, T., Phan-Thien, N. & Lim, C. T. Particle-based simulations of red blood cells — a review. _J. Biomech._ 49, 2255–2266 (2016). Article  Google Scholar  * Nagata, T. et al. A simple


collision algorithm for arbitrarily shaped objects in particle-resolved flow simulation using an immersed boundary method. _Int. J. Numer. Methods Fluids_ 92, 1256–1273 (2020). Article  ADS


  MathSciNet  Google Scholar  Download references ACKNOWLEDGEMENTS J.Z. and S.Z. acknowledge the financial supports from the National Natural Science Foundation of China (via Project Nos


11972030 and 51909095) and Research Grants Council of Hong Kong (GRF Projects Nos 16206322, 16208720 and 16211221 and F-HKUST601/19). J.Z. also acknowledges the supports by the Project of


Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-2020083) and the internal research supports provided by HKUST (FP907, IEG22EG01 and IEG22EG01PG).


AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * The Hong Kong University of Science and Technology, Hong Kong, China Jidong Zhao & Shiwei Zhao * The University of Twente, Enschede, The


Netherlands Stefan Luding Authors * Jidong Zhao View author publications You can also search for this author inPubMed Google Scholar * Shiwei Zhao View author publications You can also


search for this author inPubMed Google Scholar * Stefan Luding View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors contributed to


all aspects of manuscript preparation, revision and editing. CORRESPONDING AUTHORS Correspondence to Jidong Zhao or Shiwei Zhao. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare


no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Physics_ thanks Devang Khakhar, Farhang Radjai and the other, anonymous, reviewer(s) for their contribution to the


peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other


rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Zhao, J., Zhao, S. & Luding, S. The role of particle shape in computational modelling of granular matter. _Nat Rev Phys_ 5, 505–525


(2023). https://doi.org/10.1038/s42254-023-00617-9 Download citation * Accepted: 27 June 2023 * Published: 10 August 2023 * Issue Date: September 2023 * DOI:


https://doi.org/10.1038/s42254-023-00617-9 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Va durham health care | veterans affairs

Find VA policies on privacy and patient rights, family rights, visitation, and more. DURHAM VA HEALTH CARE SYSTEM HAS UP...

Tim mcgraw's publicist plays down fan slap video

The damning footage was taken at a show in Atlanta, Georgia on Sunday (13Jul14), while McGraw was walking into the crowd...

Leonard Roberts Joins TNT’s ‘Major Crimes’ As Recurring

Leonard Roberts (American Crime Story: The People v O.J. Simpson) has joined the cast of TNT‘s drama series Major Crimes...

Gettys resolve feud, will split $4-billion trust

The Getty family, one of America’s wealthiest clans, today resolved a bitter feud over disposition of a $4-billion trust...

AARP Purpose Prize Fellow Patricia Funegra

By AARP   En español “Many people told me not to do all this because I wasn’t ready but I believe that the key to succes...

Latests News

The role of particle shape in computational modelling of granular matter

ABSTRACT Granular matter is ubiquitous in nature and is present in diverse forms in important engineering, industrial an...

Neighbours gobsmacked by 'second life' of frail oap who loves bowls and fishing

WILLIAM ‘BILLY BOY' EASTMENT WAS INTERCEPTED AT SANTIAGO AIRPORT ALLEGEDLY WITH £200,000 WORTH OF METH AND HIS NEIG...

Channelnews : lg announces local availability of new superslim notebook

LG Electronics have announced the newest addition to the LG gram range, the thinnest one yet, the LG gram SuperSlim note...

Heartwarming quotes by charlie chaplin on his birth anniversary

Sir Charles Spencer 'Charlie' Chaplin was famous for having a happy soul and a genius brain. Charlie Chaplin&#...

Will invest $1 billion in india to digitise small and medium businesses: amazon ceo

Bezos also said that his company will also export "$10 billion worth of Make in India goods by 2025." Jeff Bez...

Top