The pig as an optimal animal model for cardiovascular research

Nature

The pig as an optimal animal model for cardiovascular research"


Play all audios:

Loading...

ABSTRACT Cardiovascular disease is a worldwide health problem and a leading cause of morbidity and mortality. Preclinical cardiovascular research using animals is needed to explore potential


targets and therapeutic options. Compared with rodents, pigs have many advantages, with their anatomy, physiology, metabolism and immune system being more similar to humans. Here we present


an overview of the available pig models for cardiovascular diseases, discuss their advantages over other models and propose the concept of standardized models to improve translation to the


clinical setting and control research costs. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A


PRACTICAL GUIDE TO SETTING UP PIG MODELS FOR CARDIOVASCULAR CATHETERIZATION, ELECTROPHYSIOLOGICAL ASSESSMENT AND HEART DISEASE RESEARCH Article 27 January 2022 THE CARDIAC MOLECULAR SETTING


OF METABOLIC SYNDROME IN PIGS REVEALS DISEASE SUSCEPTIBILITY AND SUGGESTS MECHANISMS THAT EXACERBATE COVID-19 OUTCOMES IN PATIENTS Article Open access 05 October 2021 HEMATOLOGIC AND


BIOCHEMICAL REFERENCE VALUES FOR ANESTHETIZED JUVENILE GERMAN CROSSBRED FARM PIGS Article Open access 05 November 2024 REFERENCES * GBD 2019 Diseases and Injuries Collaborators. Global


burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. _Lancet_ 396, 1204–1222 (2020). Article 


Google Scholar  * Tsao, C. W. et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. _Circulation_ 147, e93–e621 (2023). Article  PubMed 


Google Scholar  * Suzuki, Y., Yeung, A. C. & Ikeno, F. The pre-clinical animal model in the translational research of interventional cardiology. _JACC Cardiovasc. Interv._ 2, 373–383


(2009). Article  PubMed  Google Scholar  * Robinson, N. B. et al. The current state of animal models in research: a review. _Int. J. Surg._ 72, 9–13 (2019). Article  PubMed  Google Scholar 


* Pound, P. & Ritskes-Hoitinga, M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. _J. Transl. Med._ 16,


304 (2018). Article  PubMed  PubMed Central  Google Scholar  * Crisóstomo, V. et al. Common swine models of cardiovascular disease for research and training. _Lab Anim._ 45, 67–74 (2016).


Article  Google Scholar  * Silva, K. A. S. & Emter, C. A. Large animal models of heart failure: a translational bridge to clinical success. _JACC Basic Transl. Sci._ 5, 840–856 (2020).


Article  PubMed  PubMed Central  Google Scholar  * Shu, S., Ren, J. & Song, J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. _Heart Fail. Rev._ 27, 71–91


(2022). Article  PubMed  Google Scholar  * Lelovas, P. P., Kostomitsopoulos, N. G. & Xanthos, T. T. A comparative anatomic and physiologic overview of the porcine heart. _J. Am. Assoc.


Lab Anim. Sci._ 53, 432–438 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. Jr. & Frazier, K. S. Swine as models in


biomedical research and toxicology testing. _Vet. Pathol._ 49, 344–356 (2012). Article  CAS  PubMed  Google Scholar  * Lunney, J. K. et al. Importance of the pig as a human biomedical model.


_Sci. Transl. Med._ 13, eabd5758 (2021). Article  CAS  PubMed  Google Scholar  * Mathern, N., Yousefian, E., Ridwan, H., Nikoubashman, O. & Wiesmann, M. Comparison of porcine and human


vascular diameters for the optimization of interventional stroke training and research. _PLoS ONE_ 17, e0268005 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Elmadhun, N.


Y. et al. The pig as a valuable model for testing the effect of resveratrol to prevent cardiovascular disease. _Ann. NY Acad. Sci._ 1290, 130–135 (2013). Article  CAS  PubMed  Google Scholar


  * Kuwahara, M. et al. Effects of pair housing on diurnal rhythms of heart rate and heart rate variability in miniature swine. _Exp. Anim._ 53, 303–309 (2004). Article  CAS  PubMed  Google


Scholar  * Zuo, K. et al. Measurement of the luminal diameter of peripheral arterial vasculature in Yorkshire×Landrace swine by using ultrasonography and angiography. _J. Am. Assoc. Lab


Anim. Sci._ 59, 438–444 (2020). PubMed  PubMed Central  Google Scholar  * Kassab, G. S. & Fung, Y. C. Topology and dimensions of pig coronary capillary network. _Am. J. Physiol._ 267,


H319–H325 (1994). CAS  PubMed  Google Scholar  * Kumar, D. et al. Distinct mouse coronary anatomy and myocardial infarction consequent to ligation. _Coron. Artery Dis._ 16, 41–44 (2005).


Article  PubMed  Google Scholar  * Gallet, R. et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic


porcine myocardial infarction. _Eur. Heart J._ 38, 201–211 (2017). CAS  PubMed  Google Scholar  * Huang, P. et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem


cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. _Cardiovasc. Res._ 116, 353–367 (2020). Article  CAS  PubMed  Google Scholar  *


Thirugnanasambandam, M. et al. Effect of collateral flow on catheter-based assessment of cardiac microvascular obstruction. _Ann. Biomed. Eng._ 50, 1090–1102 (2022). Article  PubMed  PubMed


Central  Google Scholar  * Genain, M. A. et al. Comparative anatomy and angiography of the cardiac coronary venous system in four species: human, ovine, porcine, and canine. _J. Vet.


Cardiol._ 20, 33–44 (2018). Article  PubMed  Google Scholar  * Siepe, M. et al. Anatomical study on the surgical technique used for xenotransplantation: porcine hearts into humans. _J. Surg.


Res._ 143, 211–215 (2007). Article  PubMed  Google Scholar  * Wessels, A. & Sedmera, D. Developmental anatomy of the heart: a tale of mice and man. _Physiol. Genomics_ 15, 165–176


(2003). Article  PubMed  Google Scholar  * Crick, S. J., Sheppard, M. N., Ho, S. Y., Gebstein, L. & Anderson, R. H. Anatomy of the pig heart: comparisons with normal human cardiac


structure. _J. Anat._ 193, 105–119 (1998). Article  PubMed  PubMed Central  Google Scholar  * Oglesby, M. et al. Trabecular cutting: a novel surgical therapy to increase diastolic


compliance. _J. Appl. Physiol._ 127, 457–463 (2019). Article  CAS  PubMed  Google Scholar  * Yamauchi, H. et al. Creation of nonischemic functional mitral regurgitation by annular dilatation


and nonplanar modification in a chronic in vivo swine model. _Circulation_ 128, S263–S270 (2013). Article  PubMed  Google Scholar  * Wylensek, D. et al. A collection of bacterial isolates


from the pig intestine reveals functional and taxonomic diversity. _Nat. Commun._ 11, 6389 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lim, M. Y., Song, E. J., Kang, K.


S. & Nam, Y. D. Age-related compositional and functional changes in micro-pig gut microbiome. _Geroscience_ 41, 935–944 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Heinritz, S. N., Mosenthin, R. & Weiss, E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. _Nutr. Res. Rev._ 26, 191–209 (2013).


Article  PubMed  Google Scholar  * Li, X. et al. Establishment of a _Macaca fascicularis_ gut microbiome gene catalog and comparison with the human, pig, and mouse gut microbiomes.


_Gigascience_ 7, giy100 (2018). Article  PubMed  PubMed Central  Google Scholar  * Schelstraete, W., Devreese, M. & Croubels, S. Comparative toxicokinetics of _Fusarium_ mycotoxins in


pigs and humans. _Food Chem. Toxicol._ 137, 111140 (2020). Article  CAS  PubMed  Google Scholar  * Dawson, H. D. et al. Structural and functional annotation of the porcine immunome. _BMC


Genomics_ 14, 332 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. _J.


Immunol._ 172, 2731–2738 (2004). Article  CAS  PubMed  Google Scholar  * Clapperton, M., Glass, E. J. & Bishop, S. C. Pig peripheral blood mononuclear leucocyte subsets are heritable and


genetically correlated with performance. _Animal_ 2, 1575–1584 (2008). Article  CAS  PubMed  Google Scholar  * Groenen, M. A. et al. Analyses of pig genomes provide insight into porcine


demography and evolution. _Nature_ 491, 393–398 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Warr, A. et al. An improved pig reference genome sequence to enable pig


genetics and genomics research. _Gigascience_ 9, giaa051 (2020). Article  PubMed  PubMed Central  Google Scholar  * Kooij, V. et al. Sizing up models of heart failure: proteomics from flies


to humans. _Proteomics Clin. Appl._ 8, 653–664 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Elnakish, M. T., Hassanain, H. H. & Janssen, P. M. Vascular


remodeling-associated hypertension leads to left ventricular hypertrophy and contractile dysfunction in profilin-1 transgenic mice. _J. Cardiovasc. Pharmacol._ 60, 544–552 (2012). Article 


CAS  PubMed  Google Scholar  * Rafael-Fortney, J. A. et al. Early treatment with lisinopril and spironolactone preserves cardiac and skeletal muscle in Duchenne muscular dystrophy mice.


_Circulation_ 124, 582–588 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Müller, O. J. et al. Improved cardiac gene transfer by transcriptional and transductional targeting


of adeno-associated viral vectors. _Cardiovasc. Res._ 70, 70–78 (2006). Article  PubMed  Google Scholar  * Su, H. et al. AAV serotype 1 mediates more efficient gene transfer to pig


myocardium than AAV serotype 2 and plasmid. _J. Gene Med._ 10, 33–41 (2008). Article  CAS  PubMed  Google Scholar  * Liu, S. et al. Gene therapy knockdown of Hippo signaling induces


cardiomyocyte renewal in pigs after myocardial infarction. _Sci. Transl. Med._ 13, eabd6892 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Costa, F. M. et al. Impact of


ESC/ACCF/AHA/WHF universal definition of myocardial infarction on mortality at 10 years. _Eur. Heart J._ 33, 2544–2550 (2012). Article  PubMed  Google Scholar  * Samsky, M. D. et al.


Cardiogenic shock after acute myocardial infarction: a review. _JAMA_ 326, 1840–1850 (2021). Article  PubMed  PubMed Central  Google Scholar  * Wang, X. et al. Stem cells for myocardial


repair with use of a transarterial catheter. _Circulation_ 120, S238–S246 (2009). Article  PubMed  PubMed Central  Google Scholar  * Inagaki, K. et al. Inhibition of delta-protein kinase C


protects against reperfusion injury of the ischemic heart in vivo. _Circulation_ 108, 2304–2307 (2003). Article  CAS  PubMed  Google Scholar  * Traxler, D. et al. Early elevation of systemic


plasma clusterin after reperfused acute myocardial infarction in a preclinical porcine model of ischemic heart disease. _Int. J. Mol. Sci._ 21, 4591 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Vilahur, G. et al. Protective effects of ticagrelor on myocardial injury after infarction. _Circulation_ 134, 1708–1719 (2016). Article  CAS  PubMed  Google


Scholar  * Crisostomo, V. et al. Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived


cells. _Stem Cell Res. Ther._ 10, 152 (2019). Article  PubMed  PubMed Central  Google Scholar  * Fernández-Jiménez, R. et al. Myocardial edema after ischemia/reperfusion is not stable and


follows a bimodal pattern: imaging and histological tissue characterization. _J. Am. Coll. Cardiol._ 65, 315–323 (2015). Article  PubMed  Google Scholar  * Malliaras, K. et al. Validation of


contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. _Circulation_ 128, 2764–2775


(2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pulido, M. et al. Transcriptome profile reveals differences between remote and ischemic myocardium after acute myocardial


infarction in a swine model. _Biology_ 12, 340 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Trivella, M. G. et al. Percutaneous cardiac support during myocardial


infarction drastically reduces mortality: perspectives from a swine model. _Int. J. Artif. Organs_ 40, 338–344 (2017). Article  PubMed  Google Scholar  * Delgado-Montero, A. et al. Blood


stasis imaging predicts cerebral microembolism during acute myocardial infarction. _J. Am. Soc. Echocardiogr._ 33, 389–398 (2020). Article  PubMed  Google Scholar  * Lim, M. et al.


Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute


myocardial infarction. _Stem Cell Res. Ther._ 9, 129 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lubberding, A. F., Sattler, S. M., Flethøj, M., Tfelt-Hansen, J. &


Jespersen, T. Comparison of hemodynamics, cardiac electrophysiology, and ventricular arrhythmia in an open- and a closed-chest porcine model of acute myocardial infarction. _Am. J. Physiol.


Heart Circ. Physiol._ 318, H391–h400 (2020). Article  CAS  PubMed  Google Scholar  * Malyar, N. M., Lerman, L. O., Gössl, M., Beighley, P. E. & Ritman, E. L. Relation of nonperfused


myocardial volume and surface area to left ventricular performance in coronary microembolization. _Circulation_ 110, 1946–1952 (2004). Article  PubMed  Google Scholar  * Carlsson, M.,


Wilson, M., Martin, A. J. & Saeed, M. Myocardial microinfarction after coronary microembolization in swine: MR imaging characterization. _Radiology_ 250, 703–713 (2009). Article  PubMed


  PubMed Central  Google Scholar  * Kleinbongard, P. & Heusch, G. A fresh look at coronary microembolization. _Nat. Rev. Cardiol._ 19, 265–280 (2022). Article  PubMed  Google Scholar  *


Pascual Izco, M. et al. Ivabradine in acute heart failure: effects on heart rate and hemodynamic parameters in a randomized and controlled swine trial. _Cardiol. J._ 27, 62–71 (2020).


Article  PubMed  Google Scholar  * Rønning, L. et al. Opposite diastolic effects of omecamtiv mecarbil versus dobutamine and ivabradine co-treatment in pigs with acute ischemic heart


failure. _Physiol. Rep._ 6, e13879 (2018). Article  PubMed  PubMed Central  Google Scholar  * Olivari, D. et al. Searching for preclinical models of acute decompensated heart failure: a


concise narrative overview and a novel swine model. _Cardiovasc. Drugs Ther._ 36, 727–738 (2022). Article  CAS  PubMed  Google Scholar  * Poss, K. D., Wilson, L. G. & Keating, M. T.


Heart regeneration in zebrafish. _Science_ 298, 2188–2190 (2002). Article  CAS  PubMed  Google Scholar  * Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart.


_Science_ 331, 1078–1080 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. _Science_ 324, 98–102 (2009).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Cahill, T. J., Choudhury, R. P. & Riley, P. R. Heart regeneration and repair after myocardial infarction: translational


opportunities for novel therapeutics. _Nat. Rev. Drug. Discov._ 16, 699–717 (2017). Article  CAS  PubMed  Google Scholar  * Senyo, S. E. et al. Mammalian heart renewal by pre-existing


cardiomyocytes. _Nature_ 493, 433–436 (2013). Article  CAS  PubMed  Google Scholar  * Zhu, W. et al. Regenerative potential of neonatal porcine hearts. _Circulation_ 138, 2809–2816 (2018).


Article  PubMed  PubMed Central  Google Scholar  * Panchal, A. R. et al. 2019 American Heart Association focused update on advanced cardiovascular life support: use of advanced airways,


vasopressors, and extracorporeal cardiopulmonary resuscitation during cardiac arrest: an update to the American Heart Association guidelines for cardiopulmonary resuscitation and emergency


cardiovascular care. _Circulation_ 140, e881–e894 (2019). PubMed  Google Scholar  * Hoogendoorn, A. et al. Variation in coronary atherosclerosis severity related to a distinct LDL


(low-density lipoprotein) profile: findings from a familial hypercholesterolemia pig model. _Arterioscler. Thromb. Vasc. Biol._ 39, 2338–2352 (2019). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Denolin, H., Kuhn, H., Krayenbuehl, H. P., Loogen, F. & Reale, A. The definition of heart failure. _Eur. Heart J._ 4, 445–448 (1983). Article  CAS  PubMed  Google


Scholar  * McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. _Eur. Heart J._ 42, 3599–3726 (2021). Article  CAS  PubMed  Google


Scholar  * Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Joint


Committee on Clinical Practice Guidelines. _Circulation_ 145, e895–e1032 (2022). PubMed  Google Scholar  * Savarese, G., Stolfo, D., Sinagra, G. & Lund, L. H. Heart failure with


mid-range or mildly reduced ejection fraction. _Nat. Rev. Cardiol._ 19, 100–116 (2022). Article  PubMed  Google Scholar  * Borlaug, B. A. Evaluation and management of heart failure with


preserved ejection fraction. _Nat. Rev. Cardiol._ 17, 559–573 (2020). Article  CAS  PubMed  Google Scholar  * Harjola, V. P. et al. Organ dysfunction, injury and failure in acute heart


failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of


Cardiology (ESC). _Eur. J. Heart Fail._ 19, 821–836 (2017). Article  PubMed  Google Scholar  * Naar, J. et al. Acute severe heart failure reduces heart rate variability: an experimental


study in a porcine model. _Int. J. Mol. Sci._ 24, 493 (2022). Article  PubMed  PubMed Central  Google Scholar  * Lacko, S. et al. Severe acute heart failure - experimental model with very


low mortality. _Physiol. Res._ 67, 555–562 (2018). Article  CAS  PubMed  Google Scholar  * Roche, E. T. et al. Soft robotic sleeve supports heart function. _Sci. Transl. Med._ 9, eaaf3925


(2017). Article  PubMed  Google Scholar  * Tsao, C. W. et al. Heart Disease and Stroke Statistics-2022 Update: a report from the American Heart Association. _Circulation_ 145, e153–e639


(2022). Article  PubMed  Google Scholar  * Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. _N. Engl. J. Med._ 383, 1413–1424 (2020). Article  CAS 


PubMed  Google Scholar  * Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. _N. Engl. J. Med._ 385, 1451–1461 (2021). Article  CAS  PubMed  Google


Scholar  * Khatibzadeh, S., Farzadfar, F., Oliver, J., Ezzati, M. & Moran, A. Worldwide risk factors for heart failure: a systematic review and pooled analysis. _Int. J. Cardiol._ 168,


1186–1194 (2013). Article  PubMed  Google Scholar  * Sharp, T. E. 3rd et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. _J. Am.


Coll. Cardiol._ 72, 2609–2621 (2018). Article  PubMed  Google Scholar  * Schuleri, K. H. et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction:


focus on cardiovascular imaging and regenerative therapies. _Comp. Med._ 58, 568–579 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Sassoon, D. J. et al. Glucagon-like peptide 1


receptor activation augments cardiac output and improves cardiac efficiency in obese swine after myocardial infarction. _Diabetes_ 66, 2230–2240 (2017). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Martínez-Milla, J. et al. Translational large animal model of hibernating myocardium: characterization by serial multimodal imaging. _Basic Res. Cardiol._ 115, 33 (2020).


Article  PubMed  Google Scholar  * Onohara, D. et al. Image-guided targeted mitral valve tethering with chordal encircling snares as a preclinical model of secondary mitral regurgitation.


_J. Cardiovasc. Transl. Res._ 15, 653–665 (2022). Article  PubMed  Google Scholar  * Watanabe, S., Bikou, O., Hajjar, R. J. & Ishikawa, K. Swine model of mitral regurgitation induced


heart failure. _Methods Mol. Biol._ 1816, 327–335 (2018). Article  CAS  PubMed  Google Scholar  * Möllmann, H. et al. Desynchronization: a novel model to induce heart failure. _Thorac.


Cardiovasc. Surg._ 57, 441–448 (2009). Article  PubMed  Google Scholar  * Pfeffer, M. A., Shah, A. M. & Borlaug, B. A. Heart failure with preserved ejection fraction in perspective.


_Circ. Res._ 124, 1598–1617 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Olver, T. D. et al. Western diet-fed, aortic-banded Ossabaw swine: a preclinical model of


cardio-metabolic heart failure. _JACC Basic Transl. Sci._ 4, 404–421 (2019). Article  PubMed  PubMed Central  Google Scholar  * Sharp, T. E. 3rd et al. Novel Göttingen miniswine model of


heart failure with preserved ejection fraction integrating multiple comorbidities. _JACC Basic Transl. Sci._ 6, 154–170 (2021). Article  PubMed  PubMed Central  Google Scholar  * Charles, C.


J. et al. A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. _ESC Heart Fail._ 7, 92–102 (2020). PubMed  Google Scholar


  * Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. _Eur. Heart


J._ 29, 270–276 (2008). Article  PubMed  Google Scholar  * Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific


Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology


Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. _Circulation_ 113, 1807–1816 (2006). Article  PubMed  Google Scholar  * Olivotto, I. et al. Mavacamten for


treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. _Lancet_ 396, 759–769 (2020). Article  CAS 


PubMed  Google Scholar  * Jefferies, J. L. & Towbin, J. A. Dilated cardiomyopathy. _Lancet_ 375, 752–762 (2010). Article  PubMed  Google Scholar  * Argulian, E., Sherrid, M. V. &


Messerli, F. H. Misconceptions and facts about hypertrophic cardiomyopathy. _Am. J. Med._ 129, 148–152 (2016). Article  PubMed  Google Scholar  * Marian, A. J. & Braunwald, E.


Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. _Circ. Res._ 121, 749–770 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Maron, B. J. & Maron, M. S. Hypertrophic cardiomyopathy. _Lancet_ 381, 242–255 (2013). Article  PubMed  Google Scholar  * del Rio, C. L. et al. Abstract 20770: a novel mini-pig genetic


model of hypertrophic cardiomyopathy: altered myofilament dynamics, hyper-contractility, and impaired systolic/diastolic functional reserve in vivo. _Circulation_ 136, A20770 (2017). Google


Scholar  * Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. _Cell_ 62, 999–1006


(1990). Article  CAS  PubMed  Google Scholar  * von der Ecken, J., Heissler, S. M., Pathan-Chhatbar, S., Manstein, D. J. & Raunser, S. Cryo-EM structure of a human cytoplasmic actomyosin


complex at near-atomic resolution. _Nature_ 534, 724–728 (2016). Article  CAS  PubMed  Google Scholar  * Sewanan, L. R. et al. Extracellular matrix from hypertrophic myocardium provokes


impaired twitch dynamics in healthy cardiomyocytes. _JACC Basic Transl. Sci._ 4, 495–505 (2019). Article  PubMed  PubMed Central  Google Scholar  * Montag, J. et al. Successful knock-in of


hypertrophic cardiomyopathy-mutation R723G into the MYH7 gene mimics HCM pathology in pigs. _Sci. Rep._ 8, 4786 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kraft, T. et


al. Familial hypertrophic cardiomyopathy: functional effects of myosin mutation R723G in cardiomyocytes. _J. Mol. Cell. Cardiol._ 57, 13–22 (2013). Article  CAS  PubMed  Google Scholar  *


McKenna, W. J. & Judge, D. P. Epidemiology of the inherited cardiomyopathies. _Nat. Rev. Cardiol._ 18, 22–36 (2021). Article  PubMed  Google Scholar  * Marsman, E. M. J., Postema, P. G.


& Remme, C. A. Brugada syndrome: update and future perspectives. _Heart_ 108, 668–675 (2022). Article  CAS  PubMed  Google Scholar  * Park, D. S. et al. Genetically engineered SCN5A


mutant pig hearts exhibit conduction defects and arrhythmias. _J. Clin. Invest._ 125, 403–412 (2015). Article  PubMed  Google Scholar  * Schneider, J. W. et al. Dysregulated


ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. _Nat. Med._ 26, 1788–1800 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Brauch, K. M. et al.


Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. _J. Am. Coll. Cardiol._ 54, 930–941 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Farrar, D. J., Chow, E. & Brown, C. D. Isolated systolic and diastolic ventricular interactions in pacing-induced dilated cardiomyopathy and effects of volume loading and pericardium.


_Circulation_ 92, 1284–1290 (1995). Article  CAS  PubMed  Google Scholar  * Schroeder, M. A. et al. Hyperpolarized 13C magnetic resonance reveals early- and late-onset changes to in vivo


pyruvate metabolism in the failing heart. _Eur. J. Heart Fail._ 15, 130–140 (2013). Article  CAS  PubMed  Google Scholar  * Saito, Y. et al. Direct epicardial assist device using artificial


rubber muscle in a swine model of pediatric dilated cardiomyopathy. _Int. J. Artif. Organs_ 38, 588–594 (2015). Article  CAS  PubMed  Google Scholar  * Tanaka, Y. et al. Diffuse fibrosis


leads to a decrease in unipolar voltage: validation in a swine model of premature ventricular contraction-induced cardiomyopathy. _Heart Rhythm_ 13, 547–554 (2016). Article  PubMed  Google


Scholar  * Hirai, K. et al. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. _Sci. Transl. Med._ 12, eabb3336 (2020). Article  CAS  PubMed 


Google Scholar  * Crespo-Leiro, M. G. et al. Heart transplantation: focus on donor recovery strategies, left ventricular assist devices, and novel therapies. _Eur. Heart J._ 43, 2237–2246


(2022). Article  CAS  PubMed  Google Scholar  * Russo, M. J. et al. The effect of ischemic time on survival after heart transplantation varies by donor age: an analysis of the United Network


for Organ Sharing database. _J. Thorac. Cardiovasc. Surg._ 133, 554–559 (2007). Article  PubMed  Google Scholar  * Thomas, S. S. & D’Alessandro, D. A. Traumatic brains and broken


hearts: mending the donor shortage in cardiac transplantation. _J. Am. Coll. Cardiol._ 70, 1259–1261 (2017). Article  PubMed  Google Scholar  * Pahuja, M., Case, B. C., Molina, E. J. &


Waksman, R. Overview of the FDA’s Circulatory System Devices Panel virtual meeting on the TransMedics Organ Care System (OCS) Heart—portable extracorporeal heart perfusion and monitoring


system. _Am. Heart J._ 247, 90–99 (2022). Article  PubMed  Google Scholar  * Ardehali, A. et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a


prospective, open-label, multicentre, randomised non-inferiority trial. _Lancet_ 385, 2577–2584 (2015). Article  PubMed  Google Scholar  * García Sáez, D. et al. Ex vivo heart perfusion


after cardiocirculatory death; a porcine model. _J. Surg. Res._ 195, 311–314 (2015). Article  PubMed  Google Scholar  * Mohiuddin, M. M., Reichart, B., Byrne, G. W. & McGregor, C. G. A.


Current status of pig heart xenotransplantation. _Int. J. Surg._ 23, 234–239 (2015). Article  PubMed  PubMed Central  Google Scholar  * Zhu, Y. et al. The Stanford experience of heart


transplantation over five decades. _Eur. Heart J._ 42, 4934–4943 (2021). Article  PubMed  Google Scholar  * Pepper, J. R., Khagani, A. & Yacoub, M. Heart transplantation. _J. Antimicrob.


Chemother._ 36, 23–38 (1995). Article  CAS  PubMed  Google Scholar  * Singh, T. P. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and


Lung Transplantation: Twenty-fourth pediatric heart transplantation report - 2021; focus on recipient characteristics. _J. Heart Lung Transplant._ 40, 1050–1059 (2021). Article  PubMed 


PubMed Central  Google Scholar  * Stehlik, J. et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report—2012. _J. Heart


Lung Transplant._ 31, 1052–1064 (2012). Article  PubMed  Google Scholar  * Messer, S. et al. Human heart transplantation from donation after circulatory-determined death donors using


normothermic regional perfusion and cold storage. _J. Heart Lung Transplant._ 37, 865–869 (2018). Article  PubMed  Google Scholar  * Gao, S. Z. et al. Prevalence of accelerated coronary


artery disease in heart transplant survivors. Comparison of cyclosporine and azathioprine regimens. _Circulation_ 80, Iii100–Iii105 (1989). CAS  PubMed  Google Scholar  * Madariaga, M. L. et


al. Induction of cardiac allograft tolerance across a full MHC barrier in miniature swine by donor kidney cotransplantation. _Am. J. Transplant._ 13, 2558–2566 (2013). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Yamada, K. et al. The effect of thymectomy on tolerance induction and cardiac allograft vasculopathy in a miniature swine heart/kidney transplantation


model. _Transplantation_ 68, 485–491 (1999). Article  CAS  PubMed  Google Scholar  * Schwarze, M. L. et al. Effects of mycophenolate mofetil on cardiac allograft survival and cardiac


allograft vasculopathy in miniature swine. _Ann. Thorac. Surg._ 80, 1787–1793 (2005). Article  PubMed  Google Scholar  * Madsen, J. C., Sachs, D. H., Fallon, J. T. & Weissman, N. J.


Cardiac allograft vasculopathy in partially inbred miniature swine. I. Time course, pathology, and dependence on immune mechanisms. _J. Thorac. Cardiovasc. Surg._ 111, 1230–1239 (1996).


Article  CAS  PubMed  Google Scholar  * Sachs, D. H. et al. Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. _Transplantation_ 22, 559–567 (1976).


Article  CAS  PubMed  Google Scholar  * Badiwala, M. V. et al. Donor pretreatment with hypertonic saline attenuates primary allograft dysfunction: a pilot study in a porcine model.


_Circulation_ 120, S206–S214 (2009). Article  CAS  PubMed  Google Scholar  * Ribeiro, R. V. P., Badiwala, M. V., Ramzy, D., Tumiati, L. C. & Rao, V. Recipient hypertonic saline infusion


prevents cardiac allograft dysfunction. _J. Thorac. Cardiovasc. Surg._ 157, 615–625.e1 (2019). Article  CAS  PubMed  Google Scholar  * Watson, A. J. et al. Enhanced preservation of pig


cardiac allografts by combining erythropoietin with glyceryl trinitrate and zoniporide. _Am. J. Transplant._ 13, 1676–1687 (2013). Article  CAS  PubMed  Google Scholar  * Grant, A. A. et al.


In vivo resuscitation, perfusion, and transplantation of a porcine cardiac allograft donated after circulatory death. _J. Card. Surg._ 35, 300–303 (2020). Article  PubMed  Google Scholar  *


Cooper, D. K. C. & Pierson, R. N. 3rd The future of cardiac xenotransplantation. _Nat. Rev. Cardiol._ 19, 281–282 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Griffith, B. P. et al. Genetically modified porcine-to-human cardiac xenotransplantation. _N. Engl. J. Med._ 387, 35–44 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Singh,


A. K. et al. Cardiac xenotransplantation: progress in preclinical models and prospects for clinical translation. _Transpl. Int._ 35, 10171 (2022). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Phelps, C. J. et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. _Science_ 299, 411–414 (2003). Article  CAS  PubMed  Google Scholar  * Kuwaki, K. et al.


Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. _Nat. Med._ 11, 29–31 (2005). Article  CAS  PubMed  Google Scholar  *


Tector, A. J., Mosser, M., Tector, M. & Bach, J. M. The possible role of anti-Neu5Gc as an obstacle in xenotransplantation. _Front. Immunol._ 11, 622 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Byrne, G., Ahmad-Villiers, S., Du, Z. & McGregor, C. B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen. _Xenotransplantation_ 25,


e12394 (2018). Article  PubMed  PubMed Central  Google Scholar  * Lutz, A. J. et al. Double knockout pigs deficient in _N_-glycolylneuraminic acid and galactose α-1,3-galactose reduce the


humoral barrier to xenotransplantation. _Xenotransplantation_ 20, 27–35 (2013). Article  PubMed  Google Scholar  * McGregor, C. G. et al. Human CD55 expression blocks hyperacute rejection


and restricts complement activation in Gal knockout cardiac xenografts. _Transplantation_ 93, 686–692 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Iwase, H. et al.


Pig-to-baboon heterotopic heart transplantation–exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based


regimens. _Xenotransplantation_ 22, 211–220 (2015). Article  PubMed  PubMed Central  Google Scholar  * Mohiuddin, M. M. et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for


long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. _Nat. Commun._ 7, 11138 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Abicht, J. M. et al. Multiple


genetically modified GTKO/hCD46/HLA-E/hβ2-mg porcine hearts are protected from complement activation and natural killer cell infiltration during ex vivo perfusion with human blood.


_Xenotransplantation_ 25, e12390 (2018). Article  PubMed  Google Scholar  * Chan, J. L. et al. Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac


xenotransplantation model. _Xenotransplantation_ 24, e12330 (2017). Article  Google Scholar  * Khush, K. K. et al. The International Thoracic Organ Transplant Registry of the International


Society for Heart and Lung Transplantation: 37th adult heart transplantation report-2020; focus on deceased donor characteristics. _J. Heart Lung Transplant._ 39, 1003–1015 (2020). Article 


PubMed  PubMed Central  Google Scholar  * Salter, B. S. et al. Temporary mechanical circulatory support devices: practical considerations for all stakeholders. _Nat. Rev. Cardiol._ 20,


263–277 (2023). * Vincent, F. et al. Arterial pulsatility and circulating von Willebrand factor in patients on mechanical circulatory support. _J. Am. Coll. Cardiol._ 71, 2106–2118 (2018).


Article  CAS  PubMed  Google Scholar  * Sonntag, S. J. et al. Virtual implantations to transition from porcine to bovine animal models for a total artificial heart. _Artif. Organs_ 44,


384–393 (2020). Article  PubMed  Google Scholar  * Lawton, J. S. et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: a report of the American College


of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. _Circulation_ 145, e4–e17 (2022). PubMed  Google Scholar  * Hocum Stone, L. L. et al. Magnetic


resonance imaging assessment of cardiac function in a swine model of hibernating myocardium 3 months following bypass surgery. _J. Thorac. Cardiovasc. Surg._ 153, 582–590 (2017). Article 


PubMed  Google Scholar  * Itoda, Y. et al. Novel anastomotic device for distal coronary anastomosis: preclinical results from swine off-pump coronary artery bypass model. _Ann. Thorac.


Surg._ 101, 736–741 (2016). Article  PubMed  Google Scholar  * Hocum Stone, L. et al. Cardiac strain in a swine model of regional hibernating myocardium: effects of CoQ10 on contractile


reserve following bypass surgery. _J. Cardiovasc. Transl. Res._ 9, 368–373 (2016). Article  PubMed  Google Scholar  * Hocum Stone, L. L. et al. Recovery of hibernating myocardium using stem


cell patch with coronary bypass surgery. _J. Thorac. Cardiovasc. Surg._ 162, e3–e16 (2021). Article  PubMed  Google Scholar  * Veres, G. et al. Is internal thoracic artery resistant to


reperfusion injury? Evaluation of the storage of free internal thoracic artery grafts. _J. Thorac. Cardiovasc. Surg._ 156, 1460–1469 (2018). Article  PubMed  Google Scholar  * Tomášek, P. et


al. Histological mapping of porcine carotid arteries—an animal model for the assessment of artificial conduits suitable for coronary bypass grafting in humans. _Ann. Anat._ 228, 151434


(2020). Article  PubMed  Google Scholar  * Grajciarová, M. et al. Are ovine and porcine carotid arteries equivalent animal models for experimental cardiac surgery: a quantitative


histological comparison. _Ann. Anat._ 242, 151910 (2022). Article  PubMed  Google Scholar  * Garoffolo, G. et al. Coronary artery mechanics induces human saphenous vein remodelling via


recruitment of adventitial myofibroblast-like cells mediated by Thrombospondin-1. _Theranostics_ 10, 2597–2611 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dahan, N. et


al. Dynamic autologous reendothelialization of small-caliber arterial extracellular matrix: a preclinical large animal study. _Tissue Eng. Part A_ 23, 69–79 (2017). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Fukushima, S. et al. A reproducible swine model of a surgically created saccular thoracic aortic aneurysm. _Exp. Anim._ 70, 257–263 (2021). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Takano, T., Katada, Y., Komaki, N., Onozawa, S. & Yokoyama, H. A technique for creating an experimental type Ia endoleak model in the thoracic


aorta of swine. _Jpn. J. Radiol._ 39, 1127–1132 (2021). Article  PubMed  Google Scholar  * Argenta, R., Perini, S. C. & Pereira, A. H. Thoracic aortic aneurysm. An experimental model in


pigs. _Acta Cir. Bras._ 36, e360602 (2021). Article  PubMed  PubMed Central  Google Scholar  * Boufi, M. et al. Endovascular creation and validation of acute in vivo animal model for type A


aortic dissection. _J. Surg. Res._ 225, 21–28 (2018). Article  PubMed  Google Scholar  * Lugenbiel, P. et al. Atrial myofibroblast activation and connective tissue formation in a porcine


model of atrial fibrillation and reduced left ventricular function. _Life Sci._ 181, 1–8 (2017). Article  CAS  PubMed  Google Scholar  * Boulate, D. et al. Induction and phenotyping of acute


right heart failure in a large animal model of chronic thromboembolic pulmonary hypertension. _J. Vis. Exp._ 181, e58057 (2022). Google Scholar  * Christiansen, J. G. et al. Systemic


inflammatory response and local cytokine expression in porcine models of endocarditis. _Apmis_ 122, 292–300 (2014). Article  CAS  PubMed  Google Scholar  * Cruz, F. M. et al. Exercise


triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. _J. Am. Coll. Cardiol._ 65, 1438–1450 (2015). Article  CAS  PubMed  Google Scholar 


Download references ACKNOWLEDGEMENTS This work was supported by the National Natural Science Fund for Distinguished Young Scholars of China (82125004; to J.S.) and the Frontier Biotechnology


Key Project of National Key R & D Program of the Ministry of Science and Technology of China (2023YFC3404300; to J.S.). AUTHOR INFORMATION Author notes * These authors contributed


equally: Hao Jia, Yuan Chang. AUTHORS AND AFFILIATIONS * Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre,


National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China Hao Jia, Yuan


Chang & Jiangping Song * Sanya Institute of China Agricultural University, Sanya, China Jiangping Song Authors * Hao Jia View author publications You can also search for this author


inPubMed Google Scholar * Yuan Chang View author publications You can also search for this author inPubMed Google Scholar * Jiangping Song View author publications You can also search for


this author inPubMed Google Scholar CONTRIBUTIONS J.S. contributed to the article’s conceptualization. H.J. was instrumental in drafting and revising the manuscript. Y.C. was responsible for


drafting the manuscript and designing the figure. CORRESPONDING AUTHOR Correspondence to Jiangping Song. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests.


PEER REVIEW PEER REVIEW INFORMATION _Lab Animal_ thanks Verónica Crisóstomo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL


INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or


its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the


accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Jia, H., Chang, Y. & Song, J. The pig as an optimal animal model for cardiovascular research. _Lab Anim_ 53, 136–147 (2024). https://doi.org/10.1038/s41684-024-01377-4 Download citation


* Received: 02 September 2022 * Accepted: 22 April 2024 * Published: 21 May 2024 * Issue Date: June 2024 * DOI: https://doi.org/10.1038/s41684-024-01377-4 SHARE THIS ARTICLE Anyone you share


the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative


Trending News

Only title fitting for once-proud bruins: also-rans

OK, time for some Pacific 10 bookkeeping. UCLA has won 27 conference basketball titles in its illustrious history. You c...

Temperature control of physiological dwarfing in peach seedlings

ABSTRACT ONE of the key problems in germination physiology is the mechanism of embryo ‘dormancy’ or rest. One aspect of ...

Kodi crackdown - police make arrest, seize stash of fully-loaded boxes

Police have arrested a 53 year-old man and seized a stash of some 40 Android-powered set-top boxes preloaded with the Ko...

'Emma'

DÍAS DE CINE  'EMMA' 'Emma' Disponible hasta 21-02-2222 30/10/2020 00:03:27 Recomendado para mayores...

Tory universal credit will push more people into poverty — scottish national party

CONTACT Scottish National Party Gordon Lamb House 3 Jackson's Entry Edinburgh, Scotland EH8 8PJ tel: 0800 633 5432 ...

Latests News

The pig as an optimal animal model for cardiovascular research

ABSTRACT Cardiovascular disease is a worldwide health problem and a leading cause of morbidity and mortality. Preclinica...

Attention Required! | Cloudflare

Please enable cookies. Sorry, you have been blocked You are unable to access defatoonline.com.br Why have I been blocked...

In the world’s ‘sixth extinction,’ are humans the asteroid?

The dinosaurs were killed during the Fifth Extinction — which scientists suspect was caused by an asteroid. Now, we are ...

Yeasts collectively extend the limits of habitable temperatures by secreting glutathione

ABSTRACT The conventional view is that high temperatures cause microorganisms to replicate slowly or die. In this view, ...

Here's why john bel edwards says he can't follow biden on marijuana pardons

President Joe Biden’s plan to ease federal penalties for possession of small amounts of marijuana drew a flurry of respo...

Top