Military spending crowding out health and education spending: which views are valid in egypt?
Military spending crowding out health and education spending: which views are valid in egypt?"
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT This study examines the relationship between government spending, specifically military spending, government spending on health, government spending on education, and economic
growth in Egypt over the period from 1980 to 2021. The paper utilizes a Granger causality test to detect the directional relationship between spending components and GDP growth. Furthermore,
an autoregressive distributed lag (ARDL) model, including error-correction models, was established to determine the long- and short-term relationships among these variables. The study
contrasts Wagner’s versus Keynes’s views of the government spending relationship with economic growth, with a greater emphasis on Keynes’s argument for military spending enhancing economic
growth. While previous studies have investigated the relationship between aggregate spending and economic growth from a single or two-way direction of causality, the present study
contributes to the literature by exploring the possibility of military spending crowding out spending on health and education and detecting this causality and dynamic relationship. The
empirical results support the Keynesian view of causality from all government spending components to economic growth. However, short- and long-term analyses revealed a negative relationship
between military spending and economic growth. Moreover, the short-term impact of government spending on education and health on economic growth is negative, but positive in the long-term.
Finally, the causality test revealed that military spending influences health and education spending. Additionally, a unidirectional relationship exists between military spending and health
expenditure, which requires further research. The policy implication of this study shows that although spending is exogenous to economic growth, it does not align with the Keynesian view of
inducing growth. Instead, spending has negative current and future implications for economic development. SIMILAR CONTENT BEING VIEWED BY OTHERS IS GOVERNMENT SPENDING IN THE EDUCATION AND
HEALTH SECTOR NECESSARY FOR HUMAN CAPITAL DEVELOPMENT? Article Open access 16 February 2023 EFFECT OF GOVERNMENT EXPENDITURE ON REAL ECONOMIC GROWTH IN ECOWAS: ASSESSING THE MODERATING ROLE
OF CORRUPTION AND CONFLICT Article Open access 17 June 2024 A SYSTEMATIC REVIEW OF INVESTMENT INDICATORS AND ECONOMIC GROWTH IN NIGERIA Article Open access 11 August 2023 INTRODUCTION
Wagner’s law is a principle named after German economist Adolph Wagner (1958), who established the law of expanding state expenditure. This law emphasizes the importance of government
spending as an endogenous variable that tends to grow with other economic aggregates to feature a “progressive state” (Wagner, 1958). The law also postulates that government spending is an
outcome of economic growth and has a causal relationship that moves in this single direction. In contrast, Keynes (1937) identified government spending as an exogenous factor that stimulates
economic growth, viewing the reverse relationship between public spending and economic growth. A preponderance of studies shows great interest to both academics and policymakers in the
aforementioned nexus. However, a new trend in economic analysis emerged that attempts to view government spending not only as an aggregate but also as an aggregate with different spending
components. The argument made was that this latter view adds to the holistic view of the relationship between economic growth and government spending (Dritsakis and Adamopoulos, 2004; Gupta,
1969; Hondroyiannis and Papapetrou, 1995). Similarly, political economic arguments that focused precisely on the impact of military spending on economic growth contributed to the same
investigation into whether this impact is exogenous or endogenous to the growth model (Abdelfattah et al., 2014). Egypt, for instance, according to the World Bank (2021), has experienced
significant changes in military spending. It reached its highest point between 1967 and 1973 due to the Arab–Israeli war, then fell from 56 to 14% between 1974 and 1981. In 1991, the U.S.
released $7 billion in military debts on Egypt. Finally, military spending reached its peak in 2011 during the political uprising (Abdelfattah et al., 2014), and continued in 2012 to support
the war against terrorism and secure the Egyptian borders with Gaza and Libya. Furthermore, to add analytical depth, both education and health components of human development are included
to determine the dynamic causal relationship between them, military spending, and economic growth. The assumption is that Egypt, which has undergone different stages of political conflict,
had a preference for military spending that negatively impacted economic and human development over the past decades. The share of education in government spending was at its maximum in
2010, at 3.3%, but experienced a significant drop from 2.2% in 2011 to 1.7% in 2014, which was a period of political transition and unrest. Afterward, education expenditure started to
increase, reaching 3.2% in 2017. As for government spending on health, Egypt has witnessed a low budget share for health compared to other spending components, averaging 3.7% of GDP. The
Ministry of Health and Population has increased government spending on health from 2.2% in 1996 to 3.3% in 2001 (Gericke et al., 2018). Similarly, the share of health in government
expenditure dropped from a peak of 2.3% in 2010 to 1.7% in 2016, and then increased to 3.2% in 2017. The existing literature on the relationship between military spending and economic growth
in Egypt has primarily focused on examining the impact of military spending on political instability and overall economic growth (Maher and Zhao, 2022). However, these studies have not
thoroughly investigated the relationship between military spending and specific components of government spending, such as education and health. Additionally, they have not explored the
reverse relationship between military spending and health and education expenditures. For instance, Maher and Zhao (2022) did not allocate their variables to budgetary spending components,
limiting their analysis. In contrast, Lin et al. (2015) conducted a comprehensive study across 29 member countries of the Organization for Economic Cooperation and Development (OECD) to
investigate the trade-off between military spending and social welfare spending, specifically health and education expenditures. Their findings suggested that as military spending increased
in these countries, there was also an increase in health and education spending, supporting the Keynesian view of military spending. This suggests that military spending may promote economic
growth and enable governments to allocate more resources to these crucial areas. However, this study was not specific to Egypt and did not directly examine the relationship between military
spending and economic growth in the country. Furthermore, previous research conducted by (Ali, 2011) on Egypt’s military spending and economic growth found inconclusive evidence to support
his hypothesis. Similarly, Eldemerdash and Ahmed (2019) investigated the alternating views of Wagner and Keynes on the effect of military spending on Egyptian economic growth but focused
solely on the overall government spending-to-GDP ratio without delving into the specific impact on health and education expenditures. While their contributions align with other empirical
studies, they did not detect causality from government spending to GDP, supporting Wagner’s main hypothesis (Ghazy et al., 2021; Abu-Bader and Abu-Qarn, 2003). This research contribution is
innovative in its attempt to narrow the research gap in studies investigating the effect of government spending on economic growth. First, one contribution is investigating this relationship
with respect to military spending using two different theoretical frameworks (Wagner and Keynes), unlike most studies that adopt the Keynesian school called Military Keynesians (Atesoglu,
2002; Dunne, 2012; Hossein-zadeh, 2009; Nordhaus, 2002). Second, this study analyzes the effect of military spending on economic growth and investigates whether military spending has a
crowding-out effect on other aspects of human development contributing to economic growth, namely health and education spending. The remainder of this paper is organized as follows. The
first section introduces this topic. The second section presents a literature review on the theoretical framework and empirical studies. The third section provides research methodology. The
fourth section presents a summary of the empirical results, and section five discusses the model results. The final section concludes the paper. LITERATURE REVIEW THEORETICAL BACKGROUND
Wagner (1958) asserts a direct causal relationship between economic growth and government spending in the same direction. The first formulation was introduced by (Goffman and Mahar, 1971;
Oates, 2005; Peacock and Wiseman, 1961). Quantified extensions of Wagner’s law were subsequently introduced and summarized by (Akitoby et al., 2006; Kibara Manyeki and Kotosz, 2017; Uppal
and Glazer, 2015). In a different vein, Keynes (1963) stated that market economies could not generate full employment; therefore, government expenditures are a catalyst for boosting
aggregate demand, which determines the amount of output and income. This view was supported by by Barro (1990), who stated that government expenditure also affects the production function
through an endogenous growth hypothesis. The Keynesian view was further developed to establish the “Military Keynesians” line of political economic thought that views the impact of military
spending as stimulating aggregate demand, investment, and employment (Atesoglu, 2002; Nordhaus, 2002). Alternatively, other scholarly arguments do not support this positive effect. A study
of the U.S. economy by Melman (1978) asserted the damaging effect of increasing military spending by creating a lack of competitiveness, increasing bureaucracy, investment disincentives,
externalities, and the negative spillover effects directed from the military to the civil sector. Similarly, (Dunne, 2012; Hossein-zadeh, 2009) argued that the increase in government
spending allocation toward military spending in the United States has crowded out both physical and human investments, which, in turn, negatively affect economic growth. Finally, (Dunne,
2012; Gold, 2005; Kinsella, 1990; Payne and Ross, 1992) argue that military spending has a negative or insignificant effect on economic growth, although not in the context of the Keynesian
spending model. Studying Wagner’s Law versus the Keynesian view was not isolated from inspecting the causal relationship between growth and different components of government spending,
including military spending. The argument made was that empirical studies were deficient in that they only viewed government spending in aggregate, which does not capture the effect of
spending on development sectors, such as health, education, administration, and other aspects of development, without analyzing how spending is allocated (Dritsakis and Adamopoulos, 2004;
Gupta, 1969; Hondroyiannis and Papapetrou, 1995). Samudram et al. (2009) used the ARDL model and bounded tests for the Malaysian economy to provide evidence of a long-term relationship
between total expenditures allocated to military spending, education, development, and agriculture and gross national product (GNP). Their structural break analysis at a cut-off point in
1998 revealed that this long-term causality is bi-directional between GNP and spending on the administration and health sectors; therefore, it supports both Wagner’s law and the Keynesian
view. In contrast, only Wagner’s Law was supported by the unidirectional causality relationship between the GNP and other spending allocations, including military spending. Abu-Bader and
Abu-Qarn (2003) was in the same vein as studies that attempted to test the validity of Wagner’s law in Egypt in relation to military spending; they tested the causal relationship between
economic growth and civilian versus military spending. Their focus was on countries involved in Arab–Israeli military conflict, including Egypt. However, this study differs from the current
study regarding the desegregation of civilian expenditures into different components affecting human capital, namely education and health. This study provides a comparative analysis of these
components in relation to military spending. It also investigates the directional relationship between military spending and spending on health and education to determine whether the
allocation of resources between these sectors affected human capital, a major catalyst for growth and development. Moreover, their study provides additional insights into the share of
military spending that seems minor relative to the share of health and education in public spending, and that can have a long-term impact on economic growth. Abdelfattah et al. (2014)
asserted that most existing studies adopted the Keynesian and classical approach to the growth expenditure model, as shown from their literature survey on the effect of military spending on
economic growth—unlike the present study, which analyzes this relationship that tests Wagner’s law and the Keynesian hypothesis. Therefore, this study fills a research gap by incorporating
Wagner’s law and disaggregated spending into the analysis. EMPIRICAL REVIEW The Keynesian view of military spending has three main empirical applications, as summarized in (Dunne, 2013). The
first applies Granger causality methods that conduct simple bivariate relations between military spending and growth and examines the long-run relationship between both variables through a
cointegration analysis and vector autoregression model (Dunne and Vougas, 1999). The second considers structural models established using the original Keynesian IS–LM model (Atesoglu, 2002;
Pieroni et al., 2008; Smith and Tuttle, 2008). These studies used the log of real GDP, military spending, civil spending, and real interest rate, and their results suggested a long-term
relationship between GDP growth and military spending. The third, by Dunne and Nikolaidou (2005) estimate Keynesian models using the aggregate production function to capture effective
demand, for which output was regressed as a function of military spending, in addition to the share of non-military spending to GDP and the share of investment in GDP as independent
variables. This method was applied to three EU countries, Greece, Portugal, and Spain, for which the direction of causality from military spending to output was evident only in Greece,
whereas the reverse of causality from output to military spending was evident for the three countries. With respect to the other variables used in the model, no conclusive growth showed that
a causality relationship exists between military and non-military spending and investment as a share of GDP. Numerous empirical studies on Wagner’s law for aggregate government spending
using the ARDL model for different countries proved its validity (Atilgan et al., 2017; Burney, 2002; Islam, 2001; Kesavarajah, 2012; Magazzino, 2012; Manamperi, 2016; Narayan et al., 2008;
Samudram et al., 2009). Another group with the same research objective used a cross-country analysis to find evidence of Wagner’s law, as in (Karagianni and Pempetzoglou, 2009; Shelton,
2007). A third group investigated Wagner’s law and the Keynesian view to test whether they are valid for other countries’ economies (Ghazy et al., 2021; Paparas et al., 2019). More recently,
various studies have explored the crowding-out effect of military spending on different aspects of government expenditure. Jesmy et al. (2015) investigated the impact of military
expenditure on education in five South Asian countries from 1980 to 2013, using panel regression methods. They found a negative relationship between military spending and the quality of
education in these countries, which supports the main hypothesis of this study. Azam (2020) examined the effect of military spending on economic growth in 35 non-OECD countries from 1988 to
2019. Using a multivariate regression model with the augmented production function, he found a negative impact of military spending on economic growth. His causality test results also
revealed a bi-directional causality between military expenses and economic growth. Inal et al. (2022) used panel cointegration tests to determine the long-run relationship between military
expenditures, economic growth, innovation, and labor productivity in countries characterized by Startextensive militarization. Their study concluded that there is a long-run and causal
relationship between military spending and the utilized variables. Ikegami and Wang (2023) investigated the crowding-out effect of military spending on the health sector in 116 countries
from 2000 to 2017. They found that military expenditure had a positive impact on the demand for healthcare but also a significant crowding-out effect on health spending. This result aligns
with the current study’s findings. On the contrary, Biscione and Caruso (2021) and Coutts et al. (2019) found no significant impact of military spending on health expenditure in countries
with transition economies and countries in the Middle East and North Africa (MENA) region, respectively. Becker and Dunne (2023) used data from NATO and the EU on the decomposed items of
military spending for 34 countries over 49 years to identify which component of military spending negatively affected economic growth. Their study concluded that military personnel spending
had a more significant impact than other military operational spending. However, more recent study by Raifu and Aminu (2023) investigated the effect of military spending on economic growth
in MENA countries from 1981 to 2019. They used quantile panel regression via moments and found that military spending positively affects economic growth, confirming the Keynesian theory.
Wang and Su (2021) used the mixed frequency vector autoregression model to find a direct causal effect of crude oil dependence on military expenditure. In another study by Wang et al. (2021)
explored a different causal relationship between crude oil dependence, CO2 emissions, and military expenditure for oil-importing countries. They employed the bootstrap autoregressive
distributed lagged model with a Fourier function and found a cointegration between the three variables in China, Italy, and India. Eventually, the economic effects of government spending on
economic growth and military spending have been extensively studied from various perspectives. However, the literature lacks a consensus on whether military spending aligns with Wagner’s
law, Keynes’ law, or both, in terms of its effects on economic growth. Additionally, there has been no previous investigation into how much military spending affects the budget allocation of
spending on health and education, and the direction of this impact in the short and long terms. Furthermore, there is a significant gap in research on the nexus between military spending
and economic development in Egypt. Hence, this study contributes to the existing literature by specifically examining the directional impact of military spending on other types of
developmental spending. The following sections will discuss the empirical methodology employed and the data used for the study. METHODOLOGY DATA COLLECTION AND TRANSFORMATION This study was
conducted on the Egyptian economy from 1980 to 2021. Secondary data samples were retrieved from the World Bank Indicators, UNICEF, SIPRI Military Expenditure Database, UNESCO, and Ministry
of Finance of Egypt. Some variables for health and education were missing data and were estimated using the interpolation method. The study primarily uses the Pryor (1968) version of
Wagner’s law and follows, in particular, the research methodology of Al Qudah et al. (2020). A theoretical framework of the general macroeconomic model is proposed that considers the
interdependence of economic growth, military spending, and government spending on health and education. All variables used in this study were expressed in natural logarithmic form. One of
the main issues in economics is that the long-run relationship must be estimated for policymaking. As a result, when utilizing variables that are not co-integrated, we would potentially fail
to effectively estimate the long-run relationships and their impacts. The main purpose of adopting the ARDL technique is to use variables with different integration orders and/or variables
that might suffer from unit root problems to a certain extent. Owing to the non-stationarity problem, the transformation of the difference is applied along with the logarithmic
transformation. As a result of that, the mixture between ARDL and the error-correction model (ECM) technique is employed to capture both long-run and short-run effects by estimating the
equilibrium coefficient (Chandio et al., 2019). EMPIRICAL FRAMEWORK First, summary statistics and correlation analysis were used to demonstrate the relations between the variables and to
detect possible multicollinearity, followed by the variance inflation factor (VIF) test to rule out any presence of multicollinearity. It should be noted that if the variable has VIF higher
than the value of 10, it will be considered to cause the problem of multicollinearity and could be excluded (Alin, 2010). Two unit root tests were chosen—Augmented Dickey Fuller (ADF) and
Phillips–Perron (PP)—to determine whether the data are stationary at level or at first difference or both to proceed to the cointegration test by the long-term relationship detection between
variables, followed by the Chaw test for a structural break to determine whether the time series shows any time breaks from 1980 to 2021, which can lead to major forecasting errors and
general model unreliability. The last step before testing for cointegration is to determine the optimal lag selection tests to choose the optimal lags to run the models. Afterward, a
cointegration test for Pesaran et al. (2001) on the long-term relation between variables was employed. To add more depth to the analysis, the Granger causality test was used to determine the
short-term interchangeable relationship between military government spending and government spending on both health and education. Finally, to capture both short- and long-term effects, the
ECM within the ARDL was applied based on the direction of causality identified in the Granger causality test. EMPIRCAL ANALYSIS SUMMARY STATISTICS AND CORRELATIONS Table 1 presents a brief
descriptive analysis of these correlations. The descriptive analysis shows the distribution properties of the individual variables and the correlation matrix shows the relationship between
these variables in our proposed model. According to Table 1, the mean of Egypt’s GDP is $156 billion, with a standard deviation of $64.2 billion, which is very high, indicating that the data
deviate from the mean, as shown by the minimum value of $24.8 billion and a maximum value of $52.6 billion. The maximum occurred in 1982 because of the open-door policy implemented in
Egypt, which significantly increased the national income. The lowest income occurred in 2011, when Egypt faced a revolution that significantly affected its economy. The mean of government
expenditures is $26.7 billion, with a low standard deviation of $16.4 billion that indicates a small gap between the minimum and maximum values of the government expenditure variable. The
minimum is $41.4 billion, and the maximum is $47.2 billion. The minimum in 1991 was the result of a reduction in government revenues after the oil price crash during 1985–1986. A comparison
of the different government expenditures for military, health, and education showed that the lowest mean was for the military, at $4.22 billion, with a standard deviation of $1.23 billion.
The highest mean was for education, at $14.56 billion, with a standard deviation of $4.31 billion. A high standard deviation indicates a significant gap between the minimum and maximum
values of education expenditure of $6.23 billion, and the maximum was $19.86 billion. The small standard deviation indicates that the minimum and maximum values of military spending were
$1.5 billion and $5.05 billion. Health expenditures were in the middle, with a mean of $6.73 billion and a standard deviation of $2.20 billion, similar to the military, with minimum and
maximum variables of $4.05 and $8.07 billion, respectively. The reason for the wide gap between the minimum and maximum military spending variables is that the data used started in 1980,
during a period of peace and stability. Subsequently, the 2011 Revolution and various political administrations prompted an increase in military spending. The correlation matrix in Table 1
shows the correlations between GDP, military spending, and government expenditure on health and education. A negative, strong, linear relationship exists between GDP and military
expenditure, which aligns with the theory, given that classical theory states that an increase in military expenditure negatively affects economic growth because it lowers private
investments and domestic savings. This effect leads to lower consumption due to lower aggregate demand because higher military spending increases interest rates and crowds out private
investments. A weak positive relationship exists regarding the correlation between GDP and government expenditure variables on health, as stated in Romer’s growth theory theory (Romer, 1994;
van Zon and Muysken, 2001), because health is an important factor that affects labor productivity and human capital accumulation. The correlation between GDP and government expenditure on
education indicates that they are strongly, positively, and linearly related because government expenditure increases economic growth through knowledge, innovation, research and development
(R&D), and efficiency in human capital, as stated by classical theory. For all values, the _p_-value was less than significant (0.05); therefore, a linear relationship existed between
them. VARIANCE INFLATION VECTOR TEST As shown in Table 2, that all VIF values are less than 10 indicate the absence of multicollinearity between the tested independent variables and the
dependent variable of LGDP. UNIT ROOT TEST As discussed in the methodology section, checking the stationarity of variables is important in the time series to proceed with further testing and
estimation techniques. Table 3 provides the results of an ADF test of the unit root tests conducted for Egypt for the period 1980–2021. The null hypothesis of both the ADF and PP unit root
tests assumes that the series is nonstationary at the level. Table 3 shows that without differentiating the log variables, the null hypothesis of having unit roots cannot be rejected at 1,
5, or 10% significance for LGDP, LMIL, LGOVHEL, and LGOVEDU, respectively. However, when the first difference is obtained for the variables in both the ADF and PP tests, the null hypothesis
of non-stationarity is rejected at the 5% significance level for LGDP and 10% significance level for LMIL, LGOVHEL, and LGOVEDU. STRUCTURAL BREAKS Exogenous shocks in an economy may have a
permanent and immediate impact on many economic variables. Therefore, testing for structural breaks is crucial for avoiding unreliable results. The Chow test is used to examine the
structural breaks in the given time series for the Egyptian economy during 1980–2021, with the dependent variables being LGDP, LGOVMIL, and LGOVHEL LGOVEDU. As observed in Table 4, the
structural break results verify the results of the unit root tests because all variables are stationary at level. The structural breaks selected by the tests at this level were 1990 and 2011
for the variables tested. This finding is understandable because government spending was significantly affected and reached its highest level in 1990 as a result of the Economic Reform and
Structural Adjustment Program (ERSAP), with the main objective of loosening price restrictions, encouraging private investments, and easing industrial investment procedures (Korayem, 1997).
In 2011, Egypt’s revolution, government spending, and GDP declined significantly, and the real GDP growth rate reached a dreadful of 1.78%. To solve this problem, an expansionary fiscal
policy was implemented after the revolution to address political unrest (Khan and Miller, 2016). OPTIMAL LAG SELECTION To determine the optimal number of lags to be utilized in running the
cointegration test and, further, the model, several criteria are estimated for different numbers of lags. The optimal number of lags of one for the model was selected by examining the
optimal lag length chosen from the different information criteria in Table 5. The optimum number of lags agreed upon is one because it has the highest statistical significance. Furthermore,
the same lag length is used to subsequently test the ECM and ARDL models to avoid a lack in the number of observations and loss in degrees of freedom. PESARAN–SMITH COINTEGRATION TEST To
test whether a long-term relationship exists among government spending, military spending, government expenditures on health, government expenditures on education, and GDP, a Pesaran–Smith
cointegration test is used. This test assumes that the null hypothesis is that no relationship or cointegration exists for a certain number of lags. The test shows no cointegration at level,
given that the test statistic is −7.3279 with a _p_-value of 0.9827, reflecting the non-rejection of the null hypothesis in the presence of no cointegration. After taking the first
difference for the logged variables, the test statistic is −28.41 with a _p_-value of 0.0000, indicating that the covariates and dependent variable are co-integrated after the first
difference. DISCUSSION GRANGER CAUSALITY MODEL DISCUSSION The Granger causality test is used to indicate whether the variables used in the model Granger cause each other in the short-term.
The test was estimated to last 38 years, as two lags were taken, as suggested by the optimum lag number in Table 6. The null hypothesis for the Granger causality test is that GDP can
Granger-cause LMIL, LGOVHEL, and LGOVEDU, and vice versa. In addition, whether the same independent variables Granger cause each other in terms of military spending might negatively affect
health and education spending, leading to deterring economic development, as shown in Table 6. A causality test was conducted to identify the direction of the relationships among the study
variables—GDP and government spending components of military (LGOVMIL), health (LGOVHEL), and education (LGOVEDU) expenditures. The results indicate a unidirectional relationship between the
government spending components and GDP at the 5% level, thereby supporting the Keynesian view that government spending affects GDP. In contrast, causality is not significant from the
components to GDP at all significance levels, indicating that Wagner’s law is not applicable to the Egyptian economy. However, the direction of the relationship in the short and long terms,
whether positive or negative, is yet to be revealed when both ARDL and ECM models are employed. This supports the empirical results in Ghazy et al. (2021). In addition, military expenditure
Granger causes both health and education spending, as indicated by a significant _p_-value, which indicates rejection of the null hypothesis of no relationship between them in that
direction. By contrast, health and education do not Granger-cause military spending. The results confirm the empirical findings of Inal et al. (2022) and Ikegami and Wang (2023). The
correlation analysis in Table 1 shows that the coefficient of correlation between military spending and spending on health and education is –0.45 and 0.91, respectively. This finding implies
that increasing spending in the military sector negatively affects health but positively affects education. This phenomenon might be the result of the presence of military elementary,
secondary, and higher education in Egypt, which may have a significant share of military spending. The lack of information and data on military budget allocation is a limitation; the
availability of such data would make it an area for further research on how spending on military education can affect Egypt’s education sector. ARDL MODEL DISCUSSION The ARDL with ECM
technique was used to assess the dynamic relationship between the set of independent variables and their impact on real GDP. ECM was used to evaluate both the long- and short-term partial
effects of the independent variables on the dependent variables, as shown in Table 7. The coefficient of the lagged residuals shows that the average adjustment speed to equilibrium is 0.36%,
holding the other variables constant. Regarding the short-term shown in Table 7, when military spending increases by 1%, GDP is expected to decrease by an average of 0.09%, holding other
variables constant, as stated by the theory. Because the _p_-value was less than the significance level (0.01), this parameter was significant. In the long-term, when military expenditures
increase by 1%, GDP is expected to decrease by an average of 6.98%, holding other variables constant, which is a greater burden that the government spills on future generations. When
government expenditure on health increases by 1% in the short-term, the GDP is expected to decrease by an average of 0.06%. However, long-term GDP is expected to increase by 2.43%,
confirming the Romer (1994) endogenous growth model on human capital formation, which suggests further empirical studies van Zon and Muysken (2001) who found that a sharp decline in economic
growth is evident for countries with high rates of health deterioration and poor health sectors, leading to low productivity; hence, the long-run positive association between health
spending and economic growth supports this empirical evidence. The _p_-values for both the long and short terms were less than the significance level. Therefore, these parameters are
significant for this variable. When government expenditure on education increases by 1%, the average GDP is expected to decrease by 0.045% in the short-term because time is needed for
education necessary for developing human capital to influence economic growth. However, the coefficient increases by 5.33% over the long-term. The _p_-values for both the long and short-term
were less than the significance levels. Therefore, the parameters are significant for this variable. The _R_2 value for the model as a whole show that the independent variables explain
59.63% of the variation in the dependent variable, while the rest is the result of errors. CONCLUSION This study examines the validity of Wagner’s Law versus the Keynesian view of the
Egyptian economy from 1980 to 2021. The components of the relationship between government spending and GDP growth were analyzed in terms of the direction of causality and their long- and
short-term relationships. The Granger causality test revealed a unidirectional relationship between government spending and economic growth components, rejecting Wagner’s law and supporting
both the main Keynesian and military Keynesian views regarding the presence of the effect of government spending on GDP. In addition, evidence exists for a causal relationship between
military spending and health and education spending, and the positive association between military spending and education spending suggests areas for further research, provided that the
limitation resulting from unavailable data on the spending channels to which military education is directed is resolved. Moreover, the ARDL and ECM for the disaggregation of government
spending in Egypt show that military spending has a negative effect on GDP in both the short and long terms. However, government spending’s effect on GDP has a negative effect in the
short-term on health and education but a positive effect in the long-term. These results raise important policy implications that suggest that the orientation of government spending to
enhance economic growth should be revisited. Military spending must decrease because it has a negative impact on economic growth in both the short and the long-term. In addition, government
spending on health and education should be increased, because the effect seems negative in the short-term. However, the long-term effect is positive and provides significant benefits to
economic growth through innovation, productivity, R&D, and technology. Egypt will be better off with lower government spending because increases in government spending are mainly used as
a countercyclical tool to smooth the country’s business cycles. Further analysis of the effect of government spending on infrastructure should be incorporated into different models to test
this relationship, because it is a major contributor to economic growth. Regarding recommendations for future research, comparing Egypt to another emerging country that surpassed it through
economic growth, such as South Africa, would provide valuable policy recommendations and add an infrastructure component to assist in fully capturing government spending. DATA AVAILABILITY
All relevant data generated or analyzed in this study are provided as a supplementary file accompanying the manuscript. The data that support part of the findings of this study are available
and freely accessed from UNCTAD available at https://unctadstat.unctad.org/EN/ and World Bank World Development Indicators available at
https://databank.worldbank.org/source/world-development-indicators. REFERENCES * Abdelfattah Y, Abu-Qarn A, Dunne P, Zaher S (2014) The demand for military spending in Egypt. Def Peace Econ
25(3):231–245. https://doi.org/10.1080/10242694.2013.763454 Article Google Scholar * Abu-Bader S, Abu-Qarn AS (2003) Government expenditures, military spending and economic growth:
causality evidence from Egypt, Israel, and Syria. J Policy Model 25(6):567–583. https://doi.org/10.1016/S0161-8938(03)00057-7 Article Google Scholar * Akitoby B, Clements B, Gupta S,
Inchauste G (2006) Public spending, voracity, and Wagner’s law in developing countries. Eur J Polit Econ 22(4):908–924. https://doi.org/10.1016/j.ejpoleco.2005.12.001 Article Google Scholar
* Al Qudah A, Zouaoui A, Aboelsoud ME (2020) Does corruption adversely affect economic growth in Tunisia? ARDL approach. J Money Laund Control 23(1):38–54.
https://doi.org/10.1108/JMLC-12-2018-0076 Article Google Scholar * Ali HE (2011) Military expenditures and human development: guns and butter arguments revisited: a case study from Egypt.
Peace Econ Peace Sci Public Policy 17(1). https://doi.org/10.2202/1554-8597.1240 * Alin A (2010) Multicollinearity. WIREs Comput Stat 2(3):370–374. https://doi.org/10.1002/wics.84 Article
Google Scholar * Atesoglu HS (2002) Defense spending promotes aggregate output in the United States–evidence from cointegration analysis. Def Peace Econ 13(1):55–60.
https://doi.org/10.1080/10242690210963 Article Google Scholar * Atilgan E, Kilic D, Ertugrul HM (2017) The dynamic relationship between health expenditure and economic growth: is the
health-led growth hypothesis valid for Turkey? Eur J Health Econ 18(5):567–574. https://doi.org/10.1007/s10198-016-0810-5 Article PubMed Google Scholar * Azam M (2020) Does military
spending stifle economic growth? The empirical evidence from non-OECD countries. Heliyon 6(12):e05853. https://doi.org/10.1016/j.heliyon.2020.e05853 Article PubMed PubMed Central Google
Scholar * Barro RJ (1990) Government spending in a simple model of endogeneous growth. J Polit Econ 98(5, Part 2):103–125. https://doi.org/10.1086/261726 Article Google Scholar * Becker
J, Dunne JP (2023) Military spending composition and economic growth. Def Peace Econ 34(3):259–271. https://doi.org/10.1080/10242694.2021.2003530 Article Google Scholar * Biscione A,
Caruso R (2021) Military expenditures and income inequality evidence from a panel of transition countries (1990-2015). Def Peace Econ 32(1):46–67.
https://doi.org/10.1080/10242694.2019.1661218 Article Google Scholar * Burney NA (2002) Wagner’s hypothesis: evidence from Kuwait using cointegration tests. Appl Econ 34(1):49–57.
https://doi.org/10.1080/00036840010027540 Article Google Scholar * Chandio AA, Jiang Y, Rehman A (2019) Using the ARDL-ECM approach to investigate the nexus between support price and wheat
production. JABES 26(1):139–152. https://doi.org/10.1108/JABES-10-2018-0084 Article Google Scholar * Coutts A, Daoud A, Fakih A, Marrouch W, Reinsberg B (2019) Guns and butter? Military
expenditure and health spending on the eve of the Arab Spring. Def Peace Econ 30(2):227–237. https://doi.org/10.1080/10242694.2018.1497372 Article Google Scholar * Dritsakis N, Adamopoulos
A (2004) A causal relationship between government spending and economic development: an empirical examination of the Greek economy. Appl Econ 36(5):457–464.
https://doi.org/10.1080/00036840410001682151 Article Google Scholar * Dunne JP (2012) Military spending, growth, development and conflict. Def Peace Econ 23(6):549–557.
https://doi.org/10.1080/10242694.2012.663576 Article Google Scholar * Dunne JP (2013) Military keynesianism: an assessment. Cooperation for a peaceful and sustainable world part 2 (vol.
20B). Emerald Group Publishing Limited. 117–129 * Dunne P, Nikolaidou E (2005) Military spending and economic growth in Greece, Portugal and Spain. Working papers 0510. Department of
Accounting, Economics and Finance, Bristol Business School, University of the West of England, Bristol Google Scholar * Dunne P, Vougas D (1999) Military spending and economic growth in
South Africa: a causal analysis. J Conflict Resol 43(4):521–537 Article Google Scholar * Eldemerdash H, Ahmed KIS (2019) Wagner’s law vs. Keynesian hypothesis: new evidence from Egypt. Int
J Arts Commer 8(3):1–18 Google Scholar * Gericke CA, Britain K, Elmahdawy M, Elsisi G (2018) Health system in Egypt. In: van Ginneken E, Busse R (eds.) Health Care Syst Policies. Springer
US, New York, NY, pp. 1–18 Google Scholar * Ghazy NH, Ghoneim H, Paparas D (2021) The validity of Wagner’s law in Egypt from 1960–2018. Rev Econ Polit Sci 6(2):98–117.
https://doi.org/10.1108/REPS-01-2020-0004 Article Google Scholar * Goffman IJ, Mahar DJ (1971) The growth of public expenditures in selected developing nations: six Caribbean countries
1940-65. Public Financ Financ Publiques 26(1):57–74 Google Scholar * Gold D (2005) Does military spending stimulate or retard economic performance? Revisiting an old debate. International
Affairs Working Paper 2005–01 * Gupta SP (1969) Public expenditure and economic development—a cross-section analysis. FinanzArchiv/Public Financ Anal 28(1):26–41 Google Scholar *
Hondroyiannis G, Papapetrou E (1995) An examination of Wagner’s Law for Greece: a cointegration analysis. Public Financ Financ Publiques 50(1):67–79 Google Scholar * Hossein-zadeh I (2009)
Social vs. military spending: how the escalating pentagon budget crowds out public infrastructure and aggravates natural disasters—the case of hurricane Katrina. Rev Soc Econ 67(2):149–173.
https://doi.org/10.1080/00346760801932718 Article Google Scholar * Ikegami M, Wang Z (2023) Does military expenditure crowd out health-care spending? Cross-country empirics. Qual Quan
57(2):1657–1672. https://doi.org/10.1007/s11135-022-01412-x Article Google Scholar * Inal V, Gurdal T, Degirmenci T, Aydin M (2022) The effects of military expenditures on labor
productivity, innovation and economic growth for the most militarized countries: panel data analysis. Kybernetes, ahead-of-print (ahead-of-print). https://doi.org/10.1108/K-06-2022-0852 *
Islam AM (2001) Wagner’s law revisited: cointegration and exogeneity tests for the USA. Appl Econ Lett 8(8):509–515. https://doi.org/10.1080/13504850010018743 Article ADS Google Scholar *
Jesmy ARS, Karim MZA, Applanaidu SD (2015) Effect of conflict and military expenditure on school performance in South Asia. Int J Humanit Soc Sci 5(12):99–107.
https://doi.org/10.30845/ijhss Article Google Scholar * Karagianni S, Pempetzoglou M (2009) Evidence for non-linear causality between public spending and income in the European Union
countries. J Appl Bus Res (JABR), 25(1). https://doi.org/10.19030/jabr.v25i1.1049 * Keynes JM (1963) On the Theory of a Monetary Economy. Nebraska J Econ Bus 2(2):7–9 Google Scholar *
Keynes JM (1937) The general theory of employment. Q J Econ 51(2):209–223. https://doi.org/10.2307/1882087 Article Google Scholar * Kesavarajah M (2012) Wagner’s Law in Sri Lanka: An
Econometric Analysis. ISRN Econ 2012:573826. https://doi.org/10.5402/2012/573826 Article Google Scholar * Khan M, Miller E (2016) The economic decline of Egypt after the 2011 uprising.
Retrieved from http://www.jstor.org/stable/resrep03663 * Kibara Manyeki J, Kotosz B (2017) Empirical analysis of the Wagner hypothesis of government expenditure growth in Kenya: ARDL
modelling approach. Theor Methodol Pract Club Econ Miskolc 13(02):45–57. https://doi.org/10.18096/TMP.2017.02.05 Article Google Scholar * Kinsella D (1990) Defence spending and economic
performance in the United States: a causal analysis. Def Econ 1(4):295–309. https://doi.org/10.1080/10430719008404669 Article Google Scholar * Korayem K (1997) Egypt’s economic reform and
structural adjustment (ERSAP): Egyptian Center for Economic Studies * Lin ES, Ali HE, Lu Y-L (2015) Does military spending crowd out social welfare expenditures? Evidence from a panel of
OECD countries. Def Peace Econ 26(1):33–48. https://doi.org/10.1080/10242694.2013.848576 Article Google Scholar * Maher M, Zhao Y (2022) Do political instability and military expenditure
undermine economic growth in Egypt? Evidence from the ARDL approach. Def Peace Econ 33(8):956–979. https://doi.org/10.1080/10242694.2021.1943625 Article Google Scholar * Magazzino C (2012)
Wagner versus Keynes: Public spending and national income in Italy. J Policy Model 34(6):890–905. https://doi.org/10.1016/j.jpolmod.2012.05.012 Article Google Scholar * Manamperi N (2016)
Does military expenditure hinder economic growth? Evidence from Greece and Turkey. J Policy Model 38(6):1171–1193. https://doi.org/10.1016/j.jpolmod.2016.04.003 Article Google Scholar *
Melman S (1978) Inflation and unemployment as products of war economy: the trade union stake in economic conversion and industrial reconstruction. Bull Peace Propos 9(4):359–374 Article
Google Scholar * Narayan PK, Nielsen I, Smyth R (2008) Panel data, cointegration, causality and Wagner’s law: Empirical evidence from Chinese provinces. China Econ Rev 19(2):297–307.
https://doi.org/10.1016/j.chieco.2006.11.004 Article Google Scholar * Nordhaus WD (2002) The economic consequences of a war in Iraq. National Bureau of Economic Research Working Paper
Series, No. 9361. https://doi.org/10.3386/w9361 * Oates WE (2005) Toward a second-generation theory of fiscal federalism. Int Tax Public Financ 12(4):349–373.
https://doi.org/10.1007/s10797-005-1619-9 Article Google Scholar * Paparas D, Richter C, Kostakis I (2019) The validity of Wagner’s Law in the United Kingdom during the last two centuries.
Int Econ Econ policy 16(2):269–291. https://doi.org/10.1007/s10368-018-0417-7 Article Google Scholar * Payne JE, Ross KL (1992) Defense spending and the macroeconomy. Def Econ
3(2):161–168. https://doi.org/10.1080/10430719208404724 Article Google Scholar * Peacock AT, Wiseman J (1961) Front matter, the growth of public expenditure in the United Kingdom. The
growth of public expenditure in the United Kingdom. Princeton University Press. pp. 1–32 * Pesaran MH, Shin Y, Smith RJ (2001) Bounds testing approaches to the analysis of level
relationships. J Appl Economet 16(3):289–326. https://doi.org/10.1002/jae.616 Article Google Scholar * Pieroni L, Agostino G, Lorusso M (2008) Can we declare military Keynesianism dead? J
Policy Model 30:675–691 Article Google Scholar * Pryor RJ (1968) A sampling frame for the rural-urban fringe. Prof Geogr 20(4):257–261. https://doi.org/10.1111/j.0033-0124.1968.00257.x
Article Google Scholar * Raifu IA, Aminu A (2023) The effect of military spending on economic growth in MENA: evidence from method of moments quantile regression. Fut Bus J 9(1):7.
https://doi.org/10.1186/s43093-023-00181-9 Article Google Scholar * Romer PM (1994) The origins of endogenous growth. J Econ Perspect 8(1):3–22. https://doi.org/10.1257/jep.8.1.3 Article
Google Scholar * Samudram M, Nair M, Vaithilingam S (2009) Keynes and Wagner on government expenditures and economic development: the case of a developing economy. Empir Econ 36(3):697–712.
https://doi.org/10.1007/s00181-008-0214-1 Article Google Scholar * Shelton CA (2007) The size and composition of government expenditure. J Public Econ 91(11):2230–2260.
https://doi.org/10.1016/j.jpubeco.2007.01.003 Article Google Scholar * Smith JS, Tuttle MH (2008) Does defense spending really promote aggregate output in the United States? Def Peace Econ
19(6):435–447. https://doi.org/10.1080/10242690701701950 Article Google Scholar * Uppal Y, Glazer A (2015) Legislative turnover, fiscal policy, and economic growth: evidence from US state
legislatures. Econ Inquiry 53(1):91–107. https://doi.org/10.1111/ecin.12118 Article Google Scholar * van Zon A, Muysken J (2001) Health and endogenous growth. J Health Econ 20(2):169–185.
https://doi.org/10.1016/S0167-6296(00)00072-2 Article PubMed Google Scholar * Wagner A (1958) Three extracts on public finance. In: Musgrave RA, Peacock AT (eds.) Classics in the theory
of public finance. Palgrave Macmillan UK, London, pp. 1–15 Google Scholar * Wang K-H, Su C-W (2021) Does high crude oil dependence influence Chinese military expenditure decision-making.
Energy Strateg Rev 35:100653. https://doi.org/10.1016/j.esr.2021.100653 Article Google Scholar * Wang K-H, Su C-W, Lobonţ O-R, Umar M (2021) Whether crude oil dependence and CO2 emissions
influence military expenditure in net oil importing countries? Energy Policy 153:112281. https://doi.org/10.1016/j.enpol.2021.112281 Article CAS Google Scholar Download references
ACKNOWLEDGEMENTS The APC was funded through the open-access Transformative Agreement (TA) between Springer Nature, The Science, Technology, and Innovation Funding Authority (STDF), and the
Egyptian Knowledge Bank (EKB). Addition, the funders had no role in the design of the study, data collection, analysis and interpretation, writing the manuscript, or the decision to publish.
FUNDING Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). AUTHOR INFORMATION AUTHORS
AND AFFILIATIONS * Department of Economics, Faculty of Business Administration, Economics, & Political Science, The British University in Egypt, Cairo, Egypt Eman Elish, Hossam Eldien
Ahmed & Mostafa E. AboElsoud * Department of Economics, Faculty of Commerce, Suez Canal University, Ismailia, Egypt Mostafa E. AboElsoud Authors * Eman Elish View author publications You
can also search for this author inPubMed Google Scholar * Hossam Eldien Ahmed View author publications You can also search for this author inPubMed Google Scholar * Mostafa E. AboElsoud
View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Conceptualization: EE; Formal analysis: EE and MA; Investigation, Software: HA and MA;
Methodology: MA and HA; Validation: EE, HA, and MA; Writing—original draft: all authors have read and agreed to the published version of the manuscript. CORRESPONDING AUTHOR Correspondence
to Mostafa E. AboElsoud. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ETHICAL APPROVAL This article does not contain any studies with human
participants or animals performed by any of the authors. INFORMED CONSENT This article does not contain any studies with human participants or animals performed by any of the authors.
DATABASES AND WEBSITES Organization for Economic Cooperation and Development (OECD): https://www.oecd.org. The World Bank Indicators: https://data.worldbank.org/indicator. The United Nations
International Children’s Emergency Fund (UNICEF): https://www.unicef.org/research-and-reports. The SIPRI Military Expenditure Database: https://www.sipri.org/databases. The United Nations
Educational, Scientific and Cultural Organization (UNESCO): https://en.unesco.org/. The Ministry of Finance of Egypt: http://www.mof.gov.eg/english/pages/home.aspx. ADDITIONAL INFORMATION
PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION FINAL DATA WITH LN RIGHTS
AND PERMISSIONS OPEN ACCESS This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Elish, E., Ahmed,
H.E. & AboElsoud, M.E. Military spending crowding out health and education spending: which views are valid in Egypt?. _Humanit Soc Sci Commun_ 10, 435 (2023).
https://doi.org/10.1057/s41599-023-01916-3 Download citation * Received: 12 May 2022 * Accepted: 06 July 2023 * Published: 21 July 2023 * DOI: https://doi.org/10.1057/s41599-023-01916-3
SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to
clipboard Provided by the Springer Nature SharedIt content-sharing initiative
Trending News
Poll shows print newspaper readership on the decline - aarp bulletinAn era in which Americans read a daily newspaper with their morning coffee, or on the subway on their way to work, is fa...
New machines and gadgets | science newsScience News was founded in 1921 as an independent, nonprofit source of accurate information on the latest news of scien...
Family 'heartbroken' after 'harmless' man stabbed to death in 'race hate crime'The family of a "kind-hearted" and "harmless" man who died after being attacked in a 'race-hate...
Washington grown | organic produce preview | season 12 | episode 1207- On the next episode of "Washington Grown" we're learning about organic produce. Val's visiting Lit...
№ 7 — KVnews.ruСообщение об ошибке Вы можете сообщить администрации газеты «Коммерческие вести» об ошибках и неточностях на сайте. Текс...
Latests News
Military spending crowding out health and education spending: which views are valid in egypt?ABSTRACT This study examines the relationship between government spending, specifically military spending, government sp...
Javascript support required...
Liquid-like dynamics in a solid-state lithium electrolyteABSTRACT Superionic materials represent a regime intermediate between the crystalline and liquid states of matter. Despi...
Rage and arthritis: the g82s polymorphism amplifies the inflammatory responseABSTRACT The receptor for advanced glycation end products (RAGE) and its proinflammatory S100/calgranulin ligands are en...
Family : polish leader juggles duty to home, country : with one of his sons on trial after a scuffle with police, president lech walesa finds the balaWARSAW — It has never been possible for Polish President Lech Walesa to separate his public and private lives, despite a...