A complex network analysis of ethnic conflicts and human rights violations
A complex network analysis of ethnic conflicts and human rights violations"
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT News reports in media contain records of a wide range of socio-economic and political events in time. Using a publicly available, large digital database of news records, and
aggregating them over time, we study the network of ethnic conflicts and human rights violations. Complex network analyses of the events and the involved actors provide important insights on
the engaging actors, groups, establishments and sometimes nations, pointing at their long range effect over space and time. We find power law decays in distributions of actor mentions,
co-actor mentions and degrees and dominance of influential actors and groups. Most influential actors or groups form a giant connected component which grows in time, and is expected to
encompass all actors globally in the long run. We demonstrate how targeted removal of actors may help stop spreading unruly events. We study the cause-effect relation between types of
events, and our quantitative analysis confirm that ethnic conflicts lead to human rights violations, while it does not support the converse. SIMILAR CONTENT BEING VIEWED BY OTHERS THE
DRIVERS OF GLOBAL NEWS SPREADING PATTERNS Article Open access 17 January 2024 EVENT TRIGGERS AND OPINION LEADERS SHAPE CLIMATE CHANGE DISCOURSE ON WEIBO Article Open access 24 February 2025
NO ECHO IN THE CHAMBERS OF POLITICAL INTERACTIONS ON REDDIT Article Open access 02 February 2021 INTRODUCTION The quantitative analyses of the gigantic amount of data associated with human
social conditions have gained much momenta in the recent years, especially through the multidisciplinary tools and approaches. The traditional theories of social science together with
complex network analysis1,2,3 and addition of new tools and paradigms from several science disciplines like theoretical physics, applied mathematics, computer science, as well as psychology,
have developed into what is presently known as computational social science4 and have helped uncover new patterns of social behavior, including social dynamics5, 6. Data made available
digitally, has drawn attention of researchers across disciplines who have collaborated and contributed in their own ways to scientifically analyze and understand complex social phenomena in
the recent years, previously not known to the present scale of detail. Social behavior, conditions, events, organizations, which have given shape to the history of human civilization, have
often been positive or constructive – building societies, shaping cultures, and at other times negative or destructive – conflicts, wars and battles followed by reorganization of countries
or nations. Human civilization has evolved in a complicated manner and created a variety in ethnic characters and cultures, in languages, beliefs and customs. It is widely understood7 that
historically, certain groups pay priority to their linguistic, cultural, racial, and religious ties of individuals within the groups, which are then passed down through generations. Ethnic
violence arises when groups attempt to maintain their boundaries against pressure from historical enemies. In another possible scenario, when the authority of a multi-ethnic state declines,
the central regime ceases to protect the interests of ethnic groups, creating a void in which ethnic groups start competing to establish and control a new regime that will protect their
interests. Socio-political tension in such a situation is likely to incite violence. Ethnic heterogeneity is a characteristic feature observed in most countries and regions worldwide. With
time, these variations often reduce locally, where socio-economic and political forces are less dominant in favor of ethnic mixing. However, the course of political history along with that
of religion and culture often encounters conflicts at various scales. Ethnic conflicts are comparatively frequent in certain regions and rare elsewhere. Ethnic heterogeneity does not
necessarily breed war and its absence does not ensure peace. Even today, ethnic wars continue to be globally the most common form of armed conflicts, but the mechanisms that lead a society
down the path of ethnic conflict are yet to be fully understood. What is intriguing, is the connection between democratization and the occurrence of ethnic conflict. While stable democracies
are unlikely to wage war with other democracies, a country that is socio-politically unstable may very well find conflicts between groups with opposing interests8. Human rights are
internationally agreed values, standards or rules regulating the conduct of states towards their own citizens and towards non-citizens. Interestingly, the violation of human rights appears
to be more associated with ethnic conflicts than abuses of economic and social rights9. Other political, economic and social preconditions may also influence the causes of ethnic conflicts,
and the conscious promotion by the political actors of any polarizing dimension based on these factors is sufficient to lead to conflict. It is often seen that changes in political regime
can lead to conflicts which are often ethnic in various parts of the world, sparking human rights violations. Therefore, spatio-temporal analyses of regional conflict formations and
political dynamics, and the statistical studies of the different variables are important. Temporal data of events like human to human communications and physical contacts/proximity has been
studied in recent years (see e.g., Holme and Saramäki)10 in connection to study of epidemics and contagion, spreading of information using mobile phone communication data11 as well as data
from proximity sensors carried by human entities12. Here we provide a quantitative analysis of the scale and topology of ethnic tensions, related conflicts and violations of human rights,
using the reports in digital media. We look at data from a publicly accessible database, which keeps account of events from news available in media. We particularly focus on ethnic conflicts
(EC) and human rights violations (HR) by suitably filtering keywords present in the digital text transcript of the news. With the availability of high precision data containing precise
spatio-temporal information, one can look towards finding correlations between events, involved actors (individuals, groups, organizations or states), the geographical pattern of spreading
of conflicts etc. Although there have been studies on conflicts, wars and terror attacks13,14,15,16, and speculation of ethnic conflicts using census data for segregated population17, a
comprehensive study of the actors involved in ethnic conflicts and human rights violation has been lacking. In this work, for the first time, we provide a quantitative and qualitative
understanding of the relative activity of the actors, frequently engaging actor pairs, the network of actors, and give insights into the static and dynamical aspects of the actor network in
a scenario involving ethnic conflicts and human rights violations. RESULTS GDELT Event Database18 contains the database of news articles from all over the world in several languages. Using a
query, it is possible to extract data for events, about ethnic conflicts (EC) and human rights violations (HR) happening around the world, spanning over a large time scale. Each event data
contains information such as the pair of _actors_ involved, a unique time stamp, names of individuals, organizations or groups, the location information of the event, as well as latitude,
longitude data of actors and the event. The news event and subsequently the data serves as a proxy for the actual event and its intensity (in terms of number of reports). Although we do not
analyze the actual news reports, we consider a report on EC to be an actual instance of ethnic conflict or its possibility, and similarly for HR. We analyzed 28,055 events of EC and 36,470
of HR for a 15 year period (2001–2015). The number of news entries _n_ per day is a stochastic variable, and often there is a burst of activity noted (Fig. 1a,b). The amount of data
cataloged is also observed to have increased since the late 2000’s. The number of news entries/reports on a single day _n_ has a broad distribution due to the large inter-day fluctuations in
the number of reports and bursty nature of the data. Figure 1c shows the complementary cumulative distribution function (CCDF) that a day has more than _n_ news reports, _Q_(_n_). For EC,
the distribution has a short lognormal body with a rather prominent power law tail (decay exponent close to 2.54 ± 0.03); for HR, the bulk of the distribution fits to a stretched exponential
(exp[−_an_ _b_] with _a_ = 0.44 ± 0.12 and _b_ = 0.62 ± 0.01). The details of the database, data extraction and different attributes are described in Supplementary Information. In our
study, we focus on a relatively recent time span (2001–2015) and extract the data for actor pairs and geographical location of events from the database. STATIC PROPERTIES OF THE NETWORK We
construct the aggregate network over a given period of time, for the entire 15 year period (2001–2015) as well as for each of the 15 individual years, for the two datasets. Each event is
visualized as a link between the actors involved, which are the nodes, thus creating a network of actors connected by events. The details of the construction is given in the Methods section.
A schematic representation of the network construction is given in Fig. 2a and a typical network is shown in Fig. 2b for EC data aggregated over the year 2001. In our study, the temporal
granularity of the data is one day. We extracted (i) the number of mentions _m_ of each individual actor and (ii) the number of co-mentions _w_ of an unique pair of actors (actor pair
mentions), as well as the number of unique actors _k_, one actor is involved with. In terms of the network, _m_ measures node strength, _w_ the link weight and _k_ the degree of a node.
While _m_ and _k_ measure the importance, activity or visibility of a single actor, _w_ measures the involvement of an actor pair in inciting an event. These quantities are measured for each
year for the 15 year period (2001–2015) as well as through the whole period (aggregate over 15 years). It is often perceived that certain actors frequently engage in reported events than
others and the same is true for pairs of actors engaging in ethnic conflicts or human rights violations. We computed the complementary cumulative probability distribution (CCDF) for
different quantities for the aggregated network in 2001–2015 (refer to Fig. 3a–c). For the actor mentions, the probability that an actor is mentioned _m_ times or more fits to a power law
for the largest values, \({Q}_{a}(m)\sim {m}^{-{\nu }_{1}}\), with decay exponents 1.23 ± 0.01 for EC and 1.28 ± 0.01 for HR. The exponents are computed, along with the values of the
standard errors (uncertainties) and significances, using Maximum Likelihood Estimates19. The probability that an actor pair is mentioned _w_ times or more fits well to power laws
\({Q}_{ab}(w)\sim {w}^{-{\nu }_{2}}\) with exponents _ν_ 2 as 1.58 ± 0.01 for EC and 1.74 ± 0.03 for HR data. The _actor mentions_ and _actor pair mentions_ are respectively the _node
weights_ and _edge weights_ in network terminology. The probability that an actor was involved with _k_ or more actors during the time span (degree of the actor) fit well to power laws
\(Q(k)\sim {k}^{-{\nu }_{3}}\) with exponents _ν_ 3 as 1.52 ± 0.01 for EC and 1.48 ± 0.01 for HR data. For the individual years, due to less aggregation, the counts are less and data
naturally seems noisy. However, the data still seem to exhibit the power law tail in the probability distributions (see Supplementary Fig. S1). The fitting exponents for the individual years
are given in Supplementary Table S1. The correlation between actor degree and mentions, as well as the relationship between the power law exponents _ν_ 1 and _ν_ 3 are shown in
Supplementary Fig. S2. The above results quantitatively characterize the heterogeneity in the activity of actors, while most actors are relatively less active: the power law distributions
for actor mentions _Q_ _a_ indicate that there are a significant few who constantly engage in ethnic conflicts and human rights violations issues. The power law distributions in actor pair
mentions _Q_ _ab_ indicate similar characteristic for pairs of actors. The broad degree distributions _Q_(_k_) are indicative of the fact that the number of actors engaging with very large
number of actors are also significant. CLUSTERS The aggregated network is found to be composed of several disconnected components or ‘clusters’. Physically this means that the actors
constituting one cluster have never been involved with any actor from a different cluster. For both sets, the largest connected component is 102–103 times the smaller clusters, which are
large in number (see Supplementary Table S2). In fact, the largest cluster _s_ 1 grows superlinearly with the size of the network _N_, as we found (from the data in Supplementary Table S2),
\({s}_{1}\sim {N}^{\delta }\), with _δ_ = 1.17 ± 0.01 for EC and 1.19 ± 0.02 for HR (Supplementary Fig. S3). This tells us that the fraction of nodes in the largest cluster grows with the
total size of the network quite fast so that eventually the fraction of nodes outside the largest cluster will be negligible. We computed the CCDF _Q_(_s_) of cluster size _s_ and find that
it roughly has a power law decay for components except the largest one, with a decay exponent roughly close to 3 (see Fig. 4). The CCDF for individual years has been shown in Supplementary
Fig. S4. The largest clusters in both sets have a slowly decaying clustering coefficient 〈_C_(_k_)〉 with degree _k_ (see Supplementary Fig. S5). NETWORK GROWTH PROPERTIES In order to explore
the dynamics of the process that leads to the broad distribution of the mentions and degrees, we investigate the dynamics of growth for these quantities over the span of 15 years
(2001–2015). For good statistics, we ranked the actors according to the number of mentions and degrees, and analyzed the data for the top 10 actors. We first measured the growth of the
degrees and mentions for the top 10 actors of EC and HR data, with respect to the time _t_ * when they were first mentioned. The long time behavior (asymptotic) indicates a growth law of
(_t_ − _t_*)_β_ with \(\beta \simeq 3\). To extract the rate of growth for a quantity _x_, we computed \({\rm{\Pi }}(x)=\frac{{\rm{\Delta }}x}{{\rm{\Delta }}t}\). Π(_x_) in real data turns
out to be very noisy, so we computed the cumulative integral \(\pi (x)={\int }_{0}^{x}\,{\rm{\Pi }}(x^{\prime} )dx^{\prime} \) which turns out to be less noisy. We observe that data for
degree _π_(_k_) has a shorter span and is noisier than that for mentions _π_(_m_). The plots suggest that both _π_(_m_) and _π_(_k_) are superlinear functions of their respective arguments,
i.e., \(\pi (x)\sim {x}^{\alpha }\) with _α_ ~ 1.2–1.4 (see Fig. 5 for mentions and Supplementary Fig. S6 for degree). Thus the asymptotic growth rate \({\rm{\Pi }}(x)\sim {x}^{\alpha -1}\)
is still weakly dependent on the respective arguments. We thus identify that the growth rate of the system (network) is not independent of the size of the node (degree or mentions). The
growth exponents are computed using Maximum Likelihood Estimates19 and tabulated in Supplementary Table S4. A superlinear growth rate implies that the network will, in the long run, consist
of a very large ‘condensate’ with a small fraction of nodes in isolated smaller clusters, which is consistent with our analysis of the cluster size distribution. TOLERANCE TO ATTACK AND
FAILURE We also study how the network breaks down under attack, in order to investigate the possibility of preventing unruly events to spread20. The largest connected component of the
network is subjected to targeted attack by removal of the most connected nodes. We start by removing the node with the highest degree, followed by the next highest and so on. This results in
rapid fragmentation or destruction of the network. We compute the fraction of nodes _G_ present in the largest cluster, which is observed to decrease very quickly (Fig. 6a). In fact, the
network of actors can be destroyed by targeted attack just by removing much less than 10% of the nodes compared to when randomly selected nodes are removed (random failure) one after another
(Fig. 6b). This exercise indicates that targeted intervention may help stop spreading of ethnic conflicts and human rights violations. MEASURING CAUSALITY Considering that we have time
series data for the number of mentions of ethnic conflicts and human rights violations from news articles it would be interesting to study if there is a clear cause and effect relation
between these events with time. To determine the causal effect purely from the observations of the past data, we apply Granger Causality21 which estimates the causal relationship by
observing the changes in the distribution of the variables over time. Let us consider two random variables depicting counts of EC and HR. To say that EC causes HR, Granger causality computes
a regression of variable HR on the past values of itself and the past values of EC and then tests the significance of coefficient estimates associated with EC. We consider a bivariate
linear autoregressive model on EC and HR, and assume the L.H.S. to be dependent on the history of EC and HR, $$H{R}_{t}={a}_{0}+{a}_{1}E{C}_{t-1}+\cdots
+{a}_{h}E{C}_{t-h}+{b}_{1}H{R}_{t-1}+\cdots +{b}_{h}H{R}_{t-h}+{E}_{t}$$ where _h_ is the maximum number of lagged observations (for both EC and HR). The coefficients _a_ _i_ , _b_ _i_ are
the contributions of each lagged observation to the predicted value of _EC_ _t_−_i_ and _HR_ _t_−_i_ respectively and _E_ _t_ is the prediction error. We set up a null hypothesis and to test
the significance of the coefficients, compute the _p_ value. If the _p_-value is less than 0.05, one can reject the null hypothesis. We tested the counts for year wise as well as month wise
mentions. Comparing the _p_ values for both cases, we found that: (a) one cannot conclude that HR causes EC, but (b) EC causes HR. Hence, we can confirm that ethnic conflicts cause human
rights violations, while human rights violations are not responsible for ethnic conflicts. The details of the analysis are provided in the Supplementary Information. DISCUSSIONS News reports
serve as a reasonable proxy for the importance and intensity of events. The intensity is reflected by the number of reports and lingering span of time through which the reports follow. Our
study focuses on events that pointed at ethnic conflicts and human rights violations. The GDELT data is unique in the sense that it records events and actors involved in them. The US
government had recently funded in a large-scale project, the Integrated Conflict Early Warning System (ICEWS)22, which makes use of quantitative data and statistical methods in order to
forecast events of political instability, which include international and domestic crises, ethnic and religious violence, rebellion and insurgency. We have chosen the GDELT data instead of
the ICEWS data to get a more global perspective23, 24. The frequencies of mentions of actors and their co-mentions with others can be treated well as proxies for their importance and
influence, as well as involvement with others. The aggregate data enables us to construct a network of actors, and even finding disconnected groups. In fact, our study reveals that most
events are disconnected in very small clusters while very large clusters of frequently engaging actors exist. One can study the geographical localization of events and clusters to procure
detailed information regarding the context, intensity and growth pattern of events25. Identifying important groups of actors, in terms of their intensities of activities, is important for
possible intervention that may prevent the spread of such events. The probability distributions of actor mentions, co-actor mentions and the degree of an actor have power law tails for the
largest values, indicating a strong self-organizing principle behind the events. The growth properties of individual actor nodes indicate that in the long run, very small fraction of
disconnected clusters are left, while most of the actors belong to a giant connected component. The data on ethnic conflicts and human rights violations are found to be strikingly similar in
terms of static and dynamic properties of the network, and even in terms of network stability against failure as well as targeted attack. This may point at a very high degree of correlation
between events. In fact, using a causality analysis, we could quantitatively conclude that ethnic conflicts lead to human rights violations, while the reverse may not be true. These
networks of ethnic conflicts and human rights violations reflect the negative aspects of human behavior and cooperation, and are certainly different from other social networks (friendship,
collaboration, etc.) in the sense that there are not many triangles or closed communities, as observed in the distribution of the average clustering coefficient with degree of the actors.
This detailed scientific study of the network structure, dynamics, function and resilience may help policy makers, specifically in cases where there is a need for preventing the spread of
ethnic tensions and conflicts. There are possibilities of similar analyses using data from online social media, e.g., _Twitter_, etc. We have deliberately avoided mentioning the real names
and other details because the main aim of the paper was to study the network properties and statistical regularities. Since we have just considered the reports as a proxy for the events and
not studied the reports in details to extract further information, it would not be proper to draw any conclusions about the actors, the network relations or the detailed explanations/causes
behind the conflicts or the violations. Certainly, it would be interesting to address such sociological explanations, implications and policies in the future. Specific studies on the
geographical implications of actor networks, the geographical and socio-cultural influence of their robustness under possible intervention will be important issues to study. METHODS DATA
ACQUISITION AND FILTERING GDELT Event Database18 contains the database of news articles from around the world in several languages, hosted through _Google Cloud_. Using _Google BigQuery_ 26,
it is possible to extract data for each event, having an unique time stamp, and providing the data about news about ethnic conflicts (EC) and human rights violations (HR) happening around
the world spanning over a large time scale. The data contains information about a pair of _actors_ involved, the location information of the event, as well as latitude, longitude data of
actors and the event. We procured 45,942 events for EC and 48,295 for HR for a 15 year period, 2001–2015. We filtered out those data for which both actors were mentioned, along with their
respective location information. The GDELT data has a huge fraction of missing entries. We have filtered out and excluded those data rows, which have at least one entry missing corresponding
to the attributes we were interested in. Hence, after cleaning, we analyzed 28,055 events of EC and 36,470 of HR. Details of the CAMEO codes used for filtering the data (along with examples
from the CAMEO codebook)27, data attributes and cleaning are provided in Supplementary Information. NETWORK CONSTRUCTION Given a period of time _T_, we construct the network of ‘connected’
actors in the following way: any two actors _A_ 1 and _A_ 2 mentioned together in an event _E_ 1 reported at time _t_ ∈ [_t_ 0 : _t_ 0 + _T_] are ‘connected’ by a link of unit weight,where
_t_ 0 is the beginning of an interval of time span _T_. If another event _E_ 2 within the same time window involves actors _A_ 2 and _A_ 3, then _A_ 3 is connected to _A_ 2 with a link of
unit weight. Thus _A_ 1 and _A_ 3 are both connected to _A_ 2 (see Fig. 2a). Aggregating all such events over the time window _T_, connected components emerge, with link weights increasing
if the same pair of actors linking them appear in multiple events (actor pair mentions). These connected components form a complex network of nodes (actors) and links (actor pair mentions).
An actor may be co-mentioned with several other actors and thus have a larger ‘degree’, measured by the number of distinct co-actors it has. In principle, the network aggregated over a time
period can have several disconnected components or ‘clusters’. Figure 2b shows the aggregated network for one year for actors mentioned in the EC dataset. REFERENCES * Newman, M. E. J.,
Barabási, A.-L. & Watts, D. J. _The structure and dynamics of networks_ (Princeton Univ. Press, Princeton, 2006). * Albert, R. & Barabási, A.-L. Statistical mechanics of complex
networks. _Rev. Mod. Phys._ 74, 47–97 (2002). Article ADS MathSciNet MATH Google Scholar * Barabási, A.-L. _Network Science_ (Cambridge Univ. Press, Cambridge, 2016). * Lazer, D. _et
al_. Computational social science. _Science_ 323, 721–723 (2009). Article CAS PubMed PubMed Central Google Scholar * Castellano, C., Fortunato, S. & Loreto, V. Statistical physics
of social dynamics. _Rev. Mod. Phys._ 81, 591–646 (2009). Article ADS Google Scholar * Sen, P. & Chakrabarti, B. K. _Sociophysics_: _An Introduction_ (Oxford University Press, Oxford,
2013). * Toft, M. D. _The geography of ethnic violence_: _Identity_, _interests_, _and the indivisibility of territory_ (Princeton Univ. Press, Princeton, 2005). * Vorrath, J., Krebs, L. F.
& Senn, D. Linking ethnic conflict & democratization: An assessment of four troubled regions. _National Center of Competence in Research_, _Challenges to Democracy in the 21st
Century_, _Working Paper_ (2007). * Thoms, O. N. T. & Ron, J. Do human rights violations cause internal conflict? _Human Rights Quarterly_ 674–705 (2007). * Holme, P. & Saramäki, J.
(eds) _Temporal networks_ (Springer, 2013). * Onnela, J.-P. _et al_. Structure and tie strengths in mobile communication networks. _Proc. Nat. Acad. Sci._ 104, 7332–7336 (2007). Article ADS
CAS PubMed PubMed Central Google Scholar * Cattuto, C. _et al_. Dynamics of person-to-person interactions from distributed RFID sensor networks. _PloS One_ 5, e11596 (2010). Article
ADS PubMed PubMed Central Google Scholar * Richardson, L. F. _Statistics of deadly quarrels_ (Boxwood Press, Pittsburgh, 1960). * Clauset, A., Young, M. & Gleditsch, K. S. On the
frequency of severe terrorist events. _J. Conflict Resol._ 51, 58–87 (2007). Article Google Scholar * Becerra, Ó., Johnson, N., Meier, P., Restrepo, J. & Spagat, M. Natural disasters,
casualties and power laws: A comparative analysis with armed conflict. In _Proc_. _Ann_. _Meet_. _Am_. _Political Sc_. _Assoc_. (Citeseer, 2012). * Chatterjee, A. & Chakrabarti, B. K.
Fat tailed distributions for deaths in conflicts and disasters. _Rep. Adv. Phys. Sc._ 1, 1740007 (2017). Article Google Scholar * Lim, M., Metzler, R. & Bar-Yam, Y. Global pattern
formation and ethnic/cultural violence. _Science_ 317, 1540–1544 (2007). Article ADS CAS PubMed Google Scholar * The GDELT Project, retreived October, www.gdeltproject.org/ (2016). *
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. _SIAM review_ 51, 661–703 (2009). Article ADS MathSciNet MATH Google Scholar * Albert, R.,
Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. _Nature_ 406, 378–382 (2000). Article ADS CAS PubMed Google Scholar * Granger, C. W. J. Investigating
causal relations by econometric models and cross-spectral methods. _Econometrica_ 37, 424–438 (1969). Article MATH Google Scholar * Ward, M. D. _et al_. Comparing GDELT and ICEWS Event
Data. _Analysis_ 21, 267–297 (2013). Google Scholar * Arva, B. _et al_. Improving Forecasts of International Events of Interest. _Working Paper_ (2013). * Leetaru, K. & Schrodt, P. A.
GDELT: Global data on events, location, and tone, 1979–2012. _ISA Ann_. _Convention_ 2 (2013). * Gupta, B. _et al_. Spatial analysis of networks of ethnic conflicts and humans rights
violations. _In preparation_. * World’s largest event dataset now publicly available in BigQuery.
https://cloudplatform.googleblog.com/2014/05/worlds-largest-event-dataset-now-publicly-available-in-google-bigquery.html. * GDELT - DATA FORMAT CODEBOOK V 1.03, as on 8/25/2013.
http://data.gdeltproject.org/documentation/GDELT-Data_Format_Codebook.pdf. Download references ACKNOWLEDGEMENTS The authors thank B.K. Chakrabarti and L. Dey for useful comments. AUTHOR
INFORMATION AUTHORS AND AFFILIATIONS * School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India Kiran Sharma & Anirban Chakraborti * TCS
Research, New Delhi, India Gunjan Sehgal, Bindu Gupta, Geetika Sharma, Arnab Chatterjee & Gautam Shroff Authors * Kiran Sharma View author publications You can also search for this
author inPubMed Google Scholar * Gunjan Sehgal View author publications You can also search for this author inPubMed Google Scholar * Bindu Gupta View author publications You can also search
for this author inPubMed Google Scholar * Geetika Sharma View author publications You can also search for this author inPubMed Google Scholar * Arnab Chatterjee View author publications You
can also search for this author inPubMed Google Scholar * Anirban Chakraborti View author publications You can also search for this author inPubMed Google Scholar * Gautam Shroff View
author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.C. and A.C. conceived the experiment. K.S., G. Sehgal and B.G. collected data. K.S., G.
Sehgal, B.G., A.C. and A.C. analyzed data. All authors reviewed the manuscript. CORRESPONDING AUTHOR Correspondence to Arnab Chatterjee. ETHICS DECLARATIONS COMPETING INTERESTS The authors
declare that they have no competing interests. ADDITIONAL INFORMATION PUBLISHER'S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations. ELECTRONIC SUPPLEMENTARY MATERIAL SUPPLEMENTARY INFORMATION RIGHTS AND PERMISSIONS OPEN ACCESS This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Sharma, K., Sehgal, G., Gupta, B. _et al._ A complex network analysis of ethnic
conflicts and human rights violations. _Sci Rep_ 7, 8283 (2017). https://doi.org/10.1038/s41598-017-09101-8 Download citation * Received: 12 May 2017 * Accepted: 21 July 2017 * Published: 15
August 2017 * DOI: https://doi.org/10.1038/s41598-017-09101-8 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a
shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
Trending News
Opbmusic presents: heartless bastards[embedded content] Heartless Bastards released _Restless Ones_, the band's fifth album, last year. That followed a ...
Neuropsychopharmacology - volume 28 issue 5, may 2003Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best expe...
Style : design : special deliveryFew things are as satisfying as solving a good mystery, so when I visited the Long Beach swap meet two years ago, I coul...
Veteran broadcaster larry king dies at 87With his trademark suspenders and deep baritone voice Larry King spoke with presidents, world leaders, celebrities, auth...
Va accredited representative faqs | veterans affairsGet answers to common questions about VA-accredited representatives. VA’s Office of General Counsel accredits 3 types of...
Latests News
A complex network analysis of ethnic conflicts and human rights violationsABSTRACT News reports in media contain records of a wide range of socio-economic and political events in time. Using a p...
The role of placental pathology in the evaluation of interpersonal violence: a case of abdominal gunshot wound in a 27-week gravid uterusABSTRACT We present a 17-year-old G1P0 Asian American woman with a previously undiagnosed pregnancy who sustained an int...
Bepicolombo’s first close-up pictures of mercury’s surface hint at answers to the planet’s secretsThe BepiColombo spacecraft – a joint project by the European and Japanese space agencies – swung by its destination plan...
‘maniyarayile ashokan’ review: jacob gregory is endearing in this romantic entertainerDulquer Salmaan, the producer of the film, turns narrator at the beginning to tell you that Ashokan’s village, full of g...
Page not found - Eenadu.netContents of eenadu.net are copyright protected.Copy and/or reproduction and/or re-use of contents or any part thereof, w...