Sodb facilitates comprehensive exploration of spatial omics data

Nature

Sodb facilitates comprehensive exploration of spatial omics data"


Play all audios:

Loading...

ABSTRACT Spatial omics technologies generate wealthy but highly complex datasets. Here we present Spatial Omics DataBase (SODB), a web-based platform providing both rich data resources and a


suite of interactive data analytical modules. SODB currently maintains >2,400 experiments from >25 spatial omics technologies, which are freely accessible as a unified data format


compatible with various computational packages. SODB also provides multiple interactive data analytical modules, especially a unique module, Spatial Omics View (SOView). We conduct


comprehensive statistical analyses and illustrate the utility of both basic and advanced analytical modules using multiple spatial omics datasets. We demonstrate SOView utility with brain


spatial transcriptomics data and recover known anatomical structures. We further delineate functional tissue domains with associated marker genes that were obscured when analyzed using


previous methods. We finally show how SODB may efficiently facilitate computational method development. The SODB website is https://gene.ai.tencent.com/SpatialOmics/. The command-line


package is available at https://pysodb.readthedocs.io/en/latest/. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time


Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our


FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NEUROMAPS: STRUCTURAL AND FUNCTIONAL INTERPRETATION OF BRAIN MAPS Article Open access 06 October 2022 DECIPHERING


SPATIAL DOMAINS FROM SPATIAL MULTI-OMICS WITH SPATIALGLUE Article Open access 21 June 2024 INTRACELLULAR SPATIAL TRANSCRIPTOMIC ANALYSIS TOOLKIT (INSTANT) Article Open access 06 September


2024 DATA AVAILABILITY All the primary links of raw data are provided on the web page of datasets. All processed data can be downloaded via the SODB website


(https://gene.ai.tencent.com/SpatialOmics/) or pysodb package (https://pysodb.readthedocs.io/en/latest/). CODE AVAILABILITY The SODB website is available at


https://gene.ai.tencent.com/SpatialOmics/. Code for the SODB project is available at https://github.com/yuanzhiyuan/SODB_analysis/. Code for pysodb is available at


https://github.com/TencentAILabHealthcare/pysodb. Please refer to Supplementary Table 9 for detailed information on code and resources. CHANGE HISTORY * _ 17 MARCH 2023 A Correction to this


paper has been published: https://doi.org/10.1038/s41592-023-01844-9 _ REFERENCES * Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial


transcriptomics. _Science_ 353, 78–82 (2016). Article  CAS  PubMed  Google Scholar  * Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high


spatial resolution. _Science_ 363, 1463 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. Y. & Zhuang, X. W.


Spatially resolved, highly multiplexed RNA profiling in single cells. _Science_ https://doi.org/10.1126/science.aaa6090 (2015). * Angelo, M. et al. Multiplexed ion beam imaging of human


breast tumors. _Nat. Med._ 20, 436–442 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular


resolution by mass cytometry. _Nat. Methods_ 11, 417–422 (2014). Article  CAS  PubMed  Google Scholar  * Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX


multiplexed imaging. _Cell_ 174, 968–981.e15 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sun, C. et al. Spatially resolved metabolomics to discover tumor-associated


metabolic alterations. _Proc. Natl Acad. Sci. USA_ 116, 52–57 (2019). Article  CAS  PubMed  Google Scholar  * Rappez, L. et al. SpaceM reveals metabolic states of single cells. _Nat.


Methods_ 18, 799–805 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Passarelli, M. K. et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution


and high mass-resolving power. _Nat. Methods_ 14, 1175–1183 (2017). Article  CAS  PubMed  Google Scholar  * Zhao, T. et al. Spatial genomics enables multi-modal study of clonal


heterogeneity in tissues. _Nature_ 601, 85–91 (2022). Article  CAS  PubMed  Google Scholar  * Marx, V. Method of the year: spatially resolved transcriptomics. _Nat. Methods_ 18, 9–14 (2021).


Article  CAS  PubMed  Google Scholar  * Moses, L. & Pachter, L. Museum of spatial transcriptomics. _Nat. Methods_ 19, 534–546 (2022). Article  CAS  PubMed  Google Scholar  * Moffitt, J.


R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. _Nat. Rev. Genet._ 23, 741–759 (2022). Article  CAS  PubMed  Google Scholar  * Moffitt, J. R. et


al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. _Proc. Natl Acad. Sci. USA_ 113, 11046–11051 (2016). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. _Nat. Methods_ 15, 932–935 (2018). Article  CAS  PubMed


  Google Scholar  * Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. _Cell_ 174, 363–376.e16 (2018). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. _Science_ https://doi.org/10.1126/science.aat5691 (2018). * Stickels, R. R. et


al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. _Nat. Biotechnol._ 39, 313–319 (2020). Article  PubMed  PubMed Central  Google Scholar  * Gracia


Villacampa, E. et al. Genome-wide spatial expression profiling in formalin-fixed tissues. _Cell Genomics_ https://doi.org/10.1016/j.xgen.2021.100065 (2021). * Rao, A., Barkley, D., Franca,


G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. _Nature_ 596, 211–220 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lewis, S. M. et al.


Spatial omics and multiplexed imaging to explore cancer biology. _Nat. Methods_ 18, 997–1012 (2021). Article  CAS  PubMed  Google Scholar  * Vickovic, S. et al. High-definition spatial


transcriptomics for in situ tissue profiling. _Nat. Methods_ 16, 987–990 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, A. et al. Spatiotemporal transcriptomic atlas


of mouse organogenesis using DNA nanoball-patterned arrays. _Cell_ 185, 1777–1792 (2022). Article  CAS  PubMed  Google Scholar  * Hickey, J. W. et al. Spatial mapping of protein composition


and tissue organization: a primer for multiplexed antibody-based imaging. _Nat. Methods_ 19, 284–295 (2021). Article  PubMed  PubMed Central  Google Scholar  * Lundberg, E. & Borner, G.


H. H. Spatial proteomics: a powerful discovery tool for cell biology. _Nat. Rev. Mol. Cell Biol._ 20, 285–302 (2019). Article  CAS  PubMed  Google Scholar  * Lin, J.-R. et al. Highly


multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. _eLife_ 7, e31657 (2018). Article  PubMed  PubMed Central  Google


Scholar  * Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. _Science_ https://doi.org/10.1126/science.aar7042 (2018). *


Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. _Sci. Adv._ https://doi.org/10.1126/sciadv.aax5851 (2019). * Damond, N. et al. A


map of human type 1 diabetes progression by imaging mass cytometry. _Cell Metab._ 29, 755–768.e55 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yuan, Z. et al. SEAM is a


spatial single nuclear metabolomics method for dissecting tissue microenvironment. _Nat. Methods_ 18, 1223–1232 (2021). Article  CAS  PubMed  Google Scholar  * Eisenstein, M. Seven


technologies to watch in 2022. _Nature_ 601, 658–661 (2022). Article  CAS  PubMed  Google Scholar  * Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding


in tissue. _Cell_ 183, 1665–1681 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fan, R. et al. Spatial-CITE-seq: spatially resolved high-plex protein and whole


transcriptome co-mapping. Preprint at _Res. Sq._ https://doi.org/10.21203/rs.3.rs-1499315/v1 (2022). * Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed


tissue. _Nat. Biotechnol._ 38, 586–599 (2020). Article  CAS  PubMed  Google Scholar  * Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. _Nat.


Commun._ https://doi.org/10.1038/s41467-022-28445-y (2022). * Fan, R. et al. Spatially resolved epigenome-transcriptome co-profiling of mammalian tissues at the cellular level. Prerpint at


_Res_. _Sq_. https://doi.org/10.21203/rs.3.rs-1728747/v1 (2022). * Chung, H. et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. _Nat. Methods_ 18, 1204–1212 (2021).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. _Cell_ 182, 976–991.e19 (2020).


Article  CAS  PubMed  Google Scholar  * Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. _Science_ 364, 89–93 (2019). Article  CAS  PubMed


  Google Scholar  * Marshall, J. L. et al. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. _iScience_ 25, 104097


(2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, H. et al. Dissecting mammalian spermatogenesis using spatial transcriptomics. _Cell Rep._ 37, 109915 (2021). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. _Cell_ 182, 497–514.e22 (2020).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Berglund, E. et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. _Nat. Commun._ 9,


2419 (2018). Article  PubMed  PubMed Central  Google Scholar  * Hunter, M. V., Moncada, R., Weiss, J. M., Yanai, I. & White, R. M. Spatially resolved transcriptomics reveals the


architecture of the tumor-microenvironment interface. _Nat. Commun._ 12, 6278 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Keren, L. et al. A structured tumor-immune


microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. _Cell_ 174, 1373–1387 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, R. et


al. Comprehensive analysis of spatial architecture in primary liver cancer. _Sci. Adv._ 7, eabg3750 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hartmann, F. J. et al.


Single-cell metabolic profiling of human cytotoxic T cells. _Nat. Biotechnol._ 39, 186–197 (2020). Article  PubMed  PubMed Central  Google Scholar  * Risom, T. et al. Transition to invasive


breast cancer is associated with progressive changes in the structure and composition of tumor stroma. _Cell_ 185, 299–310.e18 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Danenberg, E. et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. _Nat. Genet._ 54, 660–669 (2022). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. _Nature_ 578, 615–620 (2020). Article  CAS  PubMed  Google Scholar  * Wu, S. Z. et al.


A single-cell and spatially resolved atlas of human breast cancers. _Nat. Genet_. 53, 1334–1347 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kuett, L. et al.


Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. _Nat. Cancer_ 3, 122–133 (2021). Article  PubMed 


PubMed Central  Google Scholar  * Hildebrandt, F. et al. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. _Nat. Commun._


12, 7046 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cho, C. S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. _Cell_ 184, 3559–3572.e22 (2021).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Srivatsan, S. R. et al. Embryo-scale, single-cell spatial transcriptomics. _Science_ 373, 111–117 (2021). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Goh, J. J. L. et al. Highly specific multiplexed RNA imaging in tissues with split-FISH. _Nat. Methods_ 17, 689–693 (2020). Article  CAS  PubMed  Google


Scholar  * Mantri, M. et al. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. _Nat. Commun._


12, 1771 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. _Cell_ 179,


1647–1660.e19 (2019). Article  CAS  PubMed  Google Scholar  * Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. _Cell_ 184,


810–826.e23 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lohoff, T. et al. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. _Nat.


Biotechnol._ 40, 74–85 (2021). Article  PubMed  PubMed Central  Google Scholar  * Wang, M. et al. High-resolution 3D spatiotemporal transcriptomic maps of developing _Drosophila_ embryos


and larvae. _Dev. Cell_ 57, 1271–1283 (2022). Article  CAS  PubMed  Google Scholar  * Liu, C. et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories


during zebrafish embryogenesis. _Dev. Cell_ 57, 1284–1298 (2022). Article  CAS  PubMed  Google Scholar  * Fan, Z., Chen, R. & Chen, X. SpatialDB: a database for spatially resolved


transcriptomes. _Nucleic Acids Res._ 48, D233–D237 (2019). PubMed Central  Google Scholar  * Li, Y. et al. SOAR: a spatial transcriptomics analysis resource to model spatial variability and


cell type interactions. Preprint at _bioRxiv_ https://doi.org/10.1101/2022.04.17.488596 (2022). * Xu, Z. et al. STOmicsDB: a database of spatial transcriptomic data. Preprint at _bioRxiv_


https://doi.org/10.1101/2022.03.11.481421 (2022). * Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. _Genome Biol._ 19, 15 (2018).


Article  PubMed  PubMed Central  Google Scholar  * Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. _Nat. Methods_ 19, 171–178 (2022). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. _Nature_ 568, 235–239 (2019). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. _Nature_ 598, 137–143 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. _Nat. Methods_ 18, 1352–1362 (2021). Article  PubMed  PubMed Central  Google


Scholar  * Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. _Science_ https://doi.org/10.1126/science.aau5324 (2018). *


Chen, R. et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. _Nat. Neurosci._ 24, 1757–1771 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Ortiz, C. et al. Molecular atlas of the adult mouse brain. _Sci. Adv._ 6, eabb3446 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Halpern, K. B. et al. Single-cell spatial


reconstruction reveals global division of labour in the mammalian liver. _Nature_ 542, 352–356 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Risom, T. et al. Transition to


invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. _Cell_ 185, 299–310 (2022). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Zhang, R. et al. Spatial transcriptome unveils a discontinuous inflammatory pattern in proficient mismatch repair colorectal adenocarcinoma. _Fundamental Res_.


https://doi.org/10.1016/j.fmre.2022.01.036 (2022). * Taylor, M. J., Lukowski, J. K. & Anderton, C. R. Spatially resolved mass spectrometry at the single cell: recent innovations in


proteomics and metabolomics. _J. Am. Soc. Mass Spectrom._ 32, 872–894 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Palmer, A. et al. FDR-controlled metabolite annotation


for high-resolution imaging mass spectrometry. _Nat. Methods_ 14, 57–60 (2017). Article  CAS  PubMed  Google Scholar  * Abdelmoula, W. M. et al. Peak learning of mass spectrometry imaging


data using artificial neural networks. _Nat. Commun._ https://doi.org/10.1038/s41467-021-25744-8 (2021). * Fang, R. et al. Conservation and divergence of cortical cell organization in human


and mouse revealed by MERFISH. _Science_ 377, 56–62 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression


patterns for spatially resolved transcriptomic studies. _Nat. Methods_ 17, 193–200 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pedregosa, F. et al. Scikit-learn: machine


learning in Python. _J. Mach. Learn. Res._ 12, 2825–2830 (2011). Google Scholar  * Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal


cortex. _Nat. Neurosci._ 24, 425–436 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. _Nat.


Biotechnol._ 39, 1375–1384 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hu, J. et al. SpaGCN: Integrating gene expression, spatial location and histology to identify


spatial domains and spatially variable genes by graph convolutional network. _Nat. Methods_ 18, 1342–1351 (2021). Article  PubMed  Google Scholar  * Wang, Q. et al. The Allen mouse brain


common coordinate framework: a 3D reference atlas. _Cell_ 181, 936–953.e20 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zeng, Z., Li, Y., Li, Y. & Luo, Y. Statistical


and machine learning methods for spatially resolved transcriptomics data analysis. _Genome Biol._ 23, 83 (2022). Article  PubMed  PubMed Central  Google Scholar  * Dries, R. et al. Advances


in spatial transcriptomic data analysis. _Genome Res._ 31, 1706–1718 (2021). Article  PubMed  PubMed Central  Google Scholar  * Palla, G., Fischer, D. S., Regev, A. & Theis, F. J.


Spatial components of molecular tissue biology. _Nat. Biotechnol._ 40, 308–318 (2022). Article  CAS  PubMed  Google Scholar  * Walker, B. L., Cang, Z., Ren, H., Bourgain-Chang, E. & Nie,


Q. Deciphering tissue structure and function using spatial transcriptomics. _Commun. Biol._ 5, 220 (2022). Article  PubMed  PubMed Central  Google Scholar  * Wang, Y. et al. EASI-FISH for


thick tissue defines lateral hypothalamus spatio-molecular organization. _Cell_ 184, 6361–6377.e24 (2021). Article  CAS  PubMed  Google Scholar  * McInnes, L., Healy, J. & Melville, J.


UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at _arXiv_ https://doi.org/10.48550/arXiv.1802.03426 (2018). * Becht, E. et al. Dimensionality reduction


for visualizing single-cell data using UMAP. _Nat. Biotechnol._ 37, 38–44 (2019). Article  CAS  Google Scholar  * Li, B. et al. Benchmarking spatial and single-cell transcriptomics


integration methods for transcript distribution prediction and cell type deconvolution. _Nat. Methods_ 19, 662–670 (2022). Article  CAS  PubMed  Google Scholar  * Li, J., Chen, S., Pan, X.,


Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. _Nat. Comput. Sci._ 2, 399–408 (2022). Article  CAS  Google Scholar  * Zong, Y. et al.


conST: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. Preprint at _bioRxiv_ https://doi.org/10.1101/2022.01.14.476408 (2022). * Cang, Z., Ning, X.,


Nie, A., Xu, M. & Zhang, J. SCAN-IT: domain segmentation of spatial transcriptomics images by graph neural network. In _Proc. 32nd British Machine Vision Conference_ 22–25 November


(2021). * Fu, H. et al. Unsupervised spatial embedded deep representation of spatial transcriptomics. Preprint at _bioRxiv_ https://doi.org/10.1101/2021.06.15.448542 (2021).. * Ren, H.,


Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with SpaceFlow. _Nat. Commun._ 13, 4076 (2022). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. _Nat. Commun._ 13, 1739 (2022).


Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS Z.Y. acknowledges the support from the Shanghai Municipal Science and Technology Major Project (no.


2018SHZDZX01), ZJ Laboratory, Shanghai Center for Brain Science and Brain-Inspired Technology and 111 Project (no. B18015). M.Q.Z. acknowledges support by the Cecil H. and Ida Green


Distinguished Chair. We thank L. Wang of Tencent for technical support. AUTHOR INFORMATION Author notes * These authors contributed equally: Zhiyuan Yuan, Wentao Pan. AUTHORS AND


AFFILIATIONS * Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for


Brain Science, Fudan University, Shanghai, China Zhiyuan Yuan * Tencent AI Lab, Shenzhen, China Zhiyuan Yuan, Wentao Pan, Xuan Zhao, Zhimeng Xu & Jianhua Yao * Shenzhen International


Graduate School, Tsinghua University, Shenzen, China Wentao Pan & Xiu Li * Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China Fangyuan Zhao & Yi Zhao *


University of Chinese Academy of Sciences, Beijing, China Fangyuan Zhao & Yi Zhao * Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson,


TX, USA Michael Q. Zhang Authors * Zhiyuan Yuan View author publications You can also search for this author inPubMed Google Scholar * Wentao Pan View author publications You can also search


for this author inPubMed Google Scholar * Xuan Zhao View author publications You can also search for this author inPubMed Google Scholar * Fangyuan Zhao View author publications You can


also search for this author inPubMed Google Scholar * Zhimeng Xu View author publications You can also search for this author inPubMed Google Scholar * Xiu Li View author publications You


can also search for this author inPubMed Google Scholar * Yi Zhao View author publications You can also search for this author inPubMed Google Scholar * Michael Q. Zhang View author


publications You can also search for this author inPubMed Google Scholar * Jianhua Yao View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


J.Y., Z.Y. and M.Q.Z. designed the project. Z.Y. performed data collection. Website design was by Z.Y. and X.Z. J.Y., X.L. and Y.Z. provided technical support. Biological interpretation was


by M.Q.Z. and Y.Z. Data statistics were performed by Z.Y. Website implementation was by X.Z. and W.P. Figure generation was by Z.Y. and F.Z. Z.Y. and W.P. wrote the manuscript. Z.X.


maintains the website. J.Y. and M.Q.Z. reviewed the manuscript. All authors approved the final manuscript. CORRESPONDING AUTHORS Correspondence to Zhiyuan Yuan, Michael Q. Zhang or Jianhua


Yao. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Methods_ thanks the anonymous reviewers for their


contributions to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the _Nature Methods_ team. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature


remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–42, Notes 1


and 2 and Tables 7–10. REPORTING SUMMARY SUPPLEMENTARY TABLE 1 Experiment information of SODB. SUPPLEMENTARY TABLE 2 Dataset information of SODB. SUPPLEMENTARY TABLE 3 Biotechnology


information of SODB. SUPPLEMENTARY TABLE 4 Review article containing computational methods. SUPPLEMENTARY TABLE 5 Computational methods and their categories. SUPPLEMENTARY TABLE 6 Datasets


of SODB used by computational methods. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing


agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement


and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Yuan, Z., Pan, W., Zhao, X. _et al._ SODB facilitates comprehensive exploration of spatial omics data. _Nat


Methods_ 20, 387–399 (2023). https://doi.org/10.1038/s41592-023-01773-7 Download citation * Received: 10 August 2022 * Accepted: 06 January 2023 * Published: 16 February 2023 * Issue Date:


March 2023 * DOI: https://doi.org/10.1038/s41592-023-01773-7 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Pesticide peril to ozone may lead to ban

HOLLISTER, Calif. — Every time he uses the potent pesticide methyl bromide to kill the worms on his walnuts, farmer Mark...

Mental Health Care | VA Detroit Health Care | Veterans Affairs

Mental health care VA Detroit health care operates a comprehensive behavioral health program that provides Veteran-focus...

google me business card by ji lee

david lynch artifacts, from movie memorabilia to his own furniture designs, head to auction design 10k views...

Electricity deficit can place EU-Vietnam trade agreement at risk

Vietnam signed a free trade deal with the European Union (EU) on June 8, 2020, which is expected to help increase the co...

Drinking too much tea may be linked to adverse health outcomes such as kidney stones

Plant foods are the pillar of a healthy diet, but while they offer a wealth of antioxidants, they will also contain anti...

Latests News

Sodb facilitates comprehensive exploration of spatial omics data

ABSTRACT Spatial omics technologies generate wealthy but highly complex datasets. Here we present Spatial Omics DataBase...

Money - Financial News and Investment Advice by AARP

Money Get the latest financial news and expert advice on money management to budget effectively, spend wisely, build a n...

Page Not Found

很抱歉,你所访问的页面已不存在了。 如有疑问,请电邮[email protected] 你仍然可选择浏览首页或以下栏目内容 : 新闻 生活 娱乐 财经 体育 视频 播客 新报业媒体有限公司版权所有(公司登记号:202120748H)...

Your world is different from a pigeon’s – but a new theory explains how we can still live in the same reality

Catherine Legg does not work for, consult, own shares in or receive funding from any company or organisation that would ...

Market Focus : Squeeze Play : Saddam Hussein pressures Iraq’s Kurdish minority by undercutting their currency.

IRBIL, Iraq — Wanted, urgently: economist, of sound mind and sounder stomach, military background and knowledge of Kurdi...

Top