Synthetic evolution | Nature Biotechnology
Synthetic evolution | Nature Biotechnology"
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT The combination of modern biotechnologies such as DNA synthesis, λ red recombineering, CRISPR-based editing and next-generation high-throughput sequencing increasingly enables
precise manipulation of genes and genomes. Beyond rational design, these technologies also enable the targeted, and potentially continuous, introduction of multiple mutations. While this
might seem to be merely a return to natural selection, the ability to target evolution greatly reduces fitness burdens and focuses mutation and selection on those genes and traits that best
contribute to a desired phenotype, ultimately throwing evolution into fast forward. Access through your institution Buy or subscribe This is a preview of subscription content, access via
your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days
cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *
Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional
subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS POLYMERASE-GUIDED BASE EDITING ENABLES IN VIVO MUTAGENESIS AND RAPID PROTEIN ENGINEERING
Article Open access 11 March 2021 RECOMBINEERING AND MAGE Article 14 January 2021 DIRECTED EVOLUTION IN MAMMALIAN CELLS Article 07 April 2021 REFERENCES * Thomason, L. C., Sawitzke, J. A.,
Li, X., Costantino, N. & Court, D. L. Recombineering: genetic engineering in bacteria using homologous recombination. _Curr. Protoc. Mol. Biol._ 106, 1.16.11–11.16.39 (2014). Article
Google Scholar * Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. _Science_ 339, 819–823 (2013). Article CAS PubMed PubMed Central Google Scholar * Doudna, J. A.
& Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. _Science_ 346, 1258096 (2014). Article PubMed CAS Google Scholar * Jinek, M. et al. A
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. _Science_ 337, 816–821 (2012). Article CAS PubMed PubMed Central Google Scholar * Kumar, S. et al. Advanced
selection methodologies for DNAzymes in sensing and healthcare applications. _Trends Biochem. Sci._ 44, 190–213 (2019). Article CAS PubMed Google Scholar * Popović, M., Fliss, P. S.
& Ditzler, M. A. In vitro evolution of distinct self-cleaving ribozymes in diverse environments. _Nucleic Acids Res._ 43, 7070–7082 (2015). Article PubMed PubMed Central CAS Google
Scholar * Aquino-Jarquin, G. & Toscano-Garibay, J. D. RNA aptamer evolution: two decades of SELEction. _Int. J. Mol. Sci._ 12, 9155–9171 (2011). Article CAS PubMed PubMed Central
Google Scholar * Kaur, H. Recent developments in cell-SELEX technology for aptamer selection. _Biochim. Biophys. Acta Gen. Subj._ 1862, 2323–2329 (2018). Article CAS PubMed Google
Scholar * Liu, R., Li, X. & Lam, K. S. Combinatorial chemistry in drug discovery. _Curr. Opin. Chem. Biol._ 38, 117–126 (2017). Article CAS PubMed PubMed Central Google Scholar *
Singh, H., Sharma, N., Khinchi, M., Gautam, S. & Kumawat, A. Combinatorial chemistry: a review. _Asian J. Pharm. Res. Dev_. (2017). * Dietrich, J. A., McKee, A. E. & Keasling, J. D.
High-throughput metabolic engineering: advances in small-molecule screening and selection. _Annu. Rev. Biochem._ 79, 563–590 (2010). Article CAS PubMed Google Scholar * Reidhaar-Olson,
J. F. & Sauer, R. T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. _Science_ 241, 53–57 (1988). Article CAS PubMed Google Scholar *
Oliphant, A. R. & Struhl, K. An efficient method for generating proteins with altered enzymatic properties: application to beta-lactamase. _Proc. Natl Acad. Sci. USA_ 86, 9094–9098
(1989). Article CAS PubMed PubMed Central Google Scholar * Palzkill, T. & Botstein, D. Identification of amino acid substitutions that alter the substrate specificity of TEM-1
beta-lactamase. _J. Bacteriol._ 174, 5237–5243 (1992). Article CAS PubMed PubMed Central Google Scholar * Evnin, L. B., Vásquez, J. R. & Craik, C. S. Substrate specificity of
trypsin investigated by using a genetic selection. _Proc. Natl Acad. Sci. USA_ 87, 6659–6663 (1990). Article CAS PubMed PubMed Central Google Scholar * Graham, L. D. et al. Random
mutagenesis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificities. _Biochemistry_ 32, 6250–6258 (1993). Article
CAS PubMed Google Scholar * Beckman, R. A., Mildvan, A. S. & Loeb, L. A. On the fidelity of DNA replication: manganese mutagenesis in vitro. _Biochemistry_ 24, 5810–5817 (1985).
Article CAS PubMed Google Scholar * Cadwell, R. C. & Joyce, G. F. Randomization of genes by PCR mutagenesis. _PCR Methods Appl._ 2, 28–33 (1992). Article CAS PubMed Google Scholar
* Leung, D. W. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. _Technique_ 1, 11–15 (1989). Google Scholar * Zaccolo, M., Williams, D.
M., Brown, D. M. & Gherardi, E. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. _J. Mol. Biol._ 255, 589–603 (1996). Article
CAS PubMed Google Scholar * Chen, K. Q. & Arnold, F. H. Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media.
_Bio/Technology_ 9, 1073–1077 (1991). Article CAS Google Scholar * Bloom, J. D. et al. Evolving strategies for enzyme engineering. _Curr. Opin. Struct. Biol._ 15, 447–452 (2005). Article
CAS PubMed Google Scholar * Chen, W. & Struhl, K. Saturation mutagenesis of a yeast his3 “TATA element”: genetic evidence for a specific TATA-binding protein. _Proc. Natl Acad. Sci.
USA_ 85, 2691–2695 (1988). Article CAS PubMed PubMed Central Google Scholar * Beaudry, A. A. & Joyce, G. F. Directed evolution of an RNA enzyme. _Science_ 257, 635–641 (1992).
Article CAS PubMed Google Scholar * Service, R. F. Protein evolution earns chemistry Nobel. _Science_ 362, 142 (2018). Article CAS PubMed Google Scholar * Tawfik, D. S. &
Griffiths, A. D. Man-made cell-like compartments for molecular evolution. _Nat. Biotechnol._ 16, 652–656 (1998). Article CAS PubMed Google Scholar * Ghadessy, F. J., Ong, J. L. &
Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. _Proc. Natl Acad. Sci. USA_ 98, 4552–4557 (2001). Article CAS PubMed PubMed Central Google
Scholar * d’Abbadie, M. et al. Molecular breeding of polymerases for amplification of ancient DNA. _Nat. Biotechnol._ 25, 939–943 (2007). Article PubMed PubMed Central CAS Google
Scholar * Loakes, D., Gallego, J., Pinheiro, V. B., Kool, E. T. & Holliger, P. Evolving a polymerase for hydrophobic base analogues. _J. Am. Chem. Soc._ 131, 14827–14837 (2009). Article
CAS PubMed PubMed Central Google Scholar * Ellefson, J. W. et al. Synthetic evolutionary origin of a proofreading reverse transcriptase. _Science_ 352, 1590–1593 (2016). Article CAS
PubMed Google Scholar * Williams, R. et al. Amplification of complex gene libraries by emulsion PCR. _Nat. Methods_ 3, 545–550 (2006). Article CAS PubMed Google Scholar * Ellefson, J.
W. et al. Directed evolution of genetic parts and circuits by compartmentalized partnered replication. _Nat. Biotechnol._ 32, 97–101 (2014). Article CAS PubMed Google Scholar * Meyer, A.
J., Ellefson, J. W. & Ellington, A. D. Directed evolution of a panel of orthogonal T7 RNA polymerase variants for in vivo or in vitro synthetic circuitry. _ACS Synth. Biol._ 4,
1070–1076 (2015). Article CAS PubMed Google Scholar * Ellefson, J. W., Ledbetter, M. P. & Ellington, A. D. Directed evolution of a synthetic phylogeny of programmable Trp repressors.
_Nat. Chem. Biol._ 14, 361–367 (2018). Article CAS PubMed Google Scholar * Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. _Escherichia coli_ “Marionette”
strains with 12 highly optimized small-molecule sensors. _Nat. Chem. Biol._ 15, 196–204 (2019). Article CAS PubMed Google Scholar * Abil, Z., Ellefson, J. W., Gollihar, J. D., Watkins,
E. & Ellington, A. D. Compartmentalized partnered replication for the directed evolution of genetic parts and circuits. _Nat. Protoc._ 12, 2493–2512 (2017). Article CAS PubMed PubMed
Central Google Scholar * Stemmer, W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. _Proc. Natl Acad. Sci. USA_ 91, 10747–10751
(1994). Article CAS PubMed PubMed Central Google Scholar * Stemmer, W. P. C. Rapid evolution of a protein in vitro by DNA shuffling. _Nature_ 370, 389–391 (1994). Article CAS PubMed
Google Scholar * Crameri, A., Raillard, S.-A., Bermudez, E. & Stemmer, W. P. C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. _Nature_ 391,
288–291 (1998). Article CAS PubMed Google Scholar * Nixon, A. E., Ostermeier, M. & Benkovic, S. J. Hybrid enzymes: manipulating enzyme design. _Trends Biotechnol._ 16, 258–264
(1998). Article CAS PubMed Google Scholar * Ostermeier, M., Nixon, A. E., Shim, J. H. & Benkovic, S. J. Combinatorial protein engineering by incremental truncation. _Proc. Natl Acad.
Sci. USA_ 96, 3562–3567 (1999). Article CAS PubMed PubMed Central Google Scholar * Ostermeier, M., Shim, J. H. & Benkovic, S. J. A combinatorial approach to hybrid enzymes
independent of DNA homology. _Nat. Biotechnol._ 17, 1205–1209 (1999). Article CAS PubMed Google Scholar * Hiraga, K. & Arnold, F. H. General method for sequence-independent
site-directed chimeragenesis. _J. Mol. Biol._ 330, 287–296 (2003). Article CAS PubMed Google Scholar * Kikuchi, M., Ohnishi, K. & Harayama, S. Novel family shuffling methods for the
in vitro evolution of enzymes. _Gene_ 236, 159–167 (1999). Article CAS PubMed Google Scholar * Peisajovich, S. G., Rockah, L. & Tawfik, D. S. Evolution of new protein topologies
through multistep gene rearrangements. _Nat. Genet._ 38, 168–174 (2006). Article CAS PubMed Google Scholar * Meyer, A. J., Ellefson, J. W. & Ellington, A. D. Library generation by
gene shuffling. _Curr. Protoc. Mol. Biol._ 105, 15.12 (2014). Article Google Scholar * Abil, Z. & Ellington, A. D. Compartmentalized self-replication for evolution of a DNA polymerase.
_Curr. Protoc. Chem. Biol._ 10, 1–17 (2018). Article CAS PubMed Google Scholar * Alper, H. & Stephanopoulos, G. Global transcription machinery engineering: a new approach for
improving cellular phenotype. _Metab. Eng._ 9, 258–267 (2007). Article CAS PubMed Google Scholar * Tan, F. et al. Using global transcription machinery engineering (gTME) to improve
ethanol tolerance of _Zymomonas mobilis_. _Microb. Cell Fact._ 15, 4 (2016). Article PubMed PubMed Central CAS Google Scholar * Alper, H., Moxley, J., Nevoigt, E., Fink, G. R. &
Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. _Science_ 314, 1565–1568 (2006). Article CAS PubMed Google Scholar * Park,
K.-S. et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. _Nat. Biotechnol._ 21, 1208–1214 (2003). Article CAS PubMed Google
Scholar * Auerbach, C. Chemical mutagenesis. _Biol. Rev. Camb. Philos. Soc._ 24, 355–391 (1949). Article CAS PubMed Google Scholar * Muller, H. J. Artificial transmutation of the gene.
_Science_ 66, 84–87 (1927). Article CAS PubMed Google Scholar * Ahloowalia, B. S., Maluszynski, M. & Nichterlein, K. Global impact of mutation-derived varieties. _Euphytica_ 135,
187–204 (2004). Article Google Scholar * Gokhale, D. V., Puntambekar, U. S. & Deobagkar, D. N. Protoplast fusion: a tool for intergeneric gene transfer in bacteria. _Biotechnol. Adv._
11, 199–217 (1993). Article CAS PubMed Google Scholar * Peberdy, J. F. Developments in protoplast fusion in fungi. _Microbiol. Sci._ 4, 108–114 (1987). CAS PubMed Google Scholar *
Kao, K. N., Constabel, F., Michayluk, M. R. & Gamborg, O. L. Plant protoplast fusion and growth of intergeneric hybrid cells. _Planta_ 120, 215–227 (1974). Article CAS PubMed Google
Scholar * Zhang, Y.-X. et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. _Nature_ 415, 644–646 (2002). Article CAS PubMed Google Scholar * Quandt, E. M.,
Deatherage, D. E., Ellington, A. D., Georgiou, G. & Barrick, J. E. Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic
innovation in _Escherichia coli_. _Proc. Natl Acad. Sci. USA_ 111, 2217–2222 (2014). Article CAS PubMed Google Scholar * Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D.
L. Recombineering: a homologous recombination-based method of genetic engineering. _Nat. Protoc._ 4, 206–223 (2009). Article CAS PubMed PubMed Central Google Scholar * Ellis, H. M., Yu,
D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. _Proc. Natl Acad. Sci. USA_ 98, 6742–6746
(2001). Article CAS PubMed PubMed Central Google Scholar * Murphy, K. C. Use of bacteriophage lambda recombination functions to promote gene replacement in. _Escherichia coli. J.
Bacteriol._ 180, 2063–2071 (1998). CAS PubMed Google Scholar * Zhang, Y., Buchholz, F., Muyrers, J. P. P. & Stewart, A. F. A new logic for DNA engineering using recombination in
_Escherichia coli_. _Nat. Genet._ 20, 123–128 (1998). Article CAS PubMed Google Scholar * Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution.
_Nature_ 460, 894–898 (2009). Article CAS PubMed PubMed Central Google Scholar * Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of bacterial
genomes using libraries of synthetic DNA. _Nat. Protoc._ 9, 2301–2316 (2014). Article CAS PubMed Google Scholar * Raman, S., Rogers, J. K., Taylor, N. D. & Church, G. M.
Evolution-guided optimization of biosynthetic pathways. _Proc. Natl Acad. Sci. USA_ 111, 17803–17808 (2014). Article CAS PubMed PubMed Central Google Scholar * Nyerges, Á. et al.
Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. _Proc. Natl Acad. Sci. USA_ 115, E5726–E5735 (2018). Article CAS PubMed PubMed Central Google
Scholar * Warner, J. R., Reeder, P. J., Karimpour-Fard, A., Woodruff, L. B. A. & Gill, R. T. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. _Nat.
Biotechnol._ 28, 856–862 (2010). Article CAS PubMed Google Scholar * Wang, H. H. et al. Genome-scale promoter engineering by coselection MAGE. _Nat. Methods_ 9, 591–593 (2012). Article
PubMed PubMed Central CAS Google Scholar * Carr, P. A. et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. _Nucleic Acids Res._ 40, e132
(2012). Article CAS PubMed PubMed Central Google Scholar * Thompson, D. B. et al. The future of multiplexed eukaryotic genome engineering. _ACS Chem. Biol._ 13, 313–325 (2018). Article
CAS PubMed Google Scholar * Kow, Y. W., Bao, G., Reeves, J. W., Jinks-Robertson, S. & Crouse, G. F. Oligonucleotide transformation of yeast reveals mismatch repair complexes to be
differentially active on DNA replication strands. _Proc. Natl Acad. Sci. USA_ 104, 11352–11357 (2007). Article CAS PubMed PubMed Central Google Scholar * Moerschell, R. P., Tsunasawa,
S. & Sherman, F. Transformation of yeast with synthetic oligonucleotides. _Proc. Natl Acad. Sci. USA_ 85, 524–528 (1988). Article CAS PubMed PubMed Central Google Scholar * Storici,
F., Durham, C. L., Gordenin, D. A. & Resnick, M. A. Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. _Proc. Natl Acad.
Sci. USA_ 100, 14994–14999 (2003). Article CAS PubMed PubMed Central Google Scholar * DiCarlo, J. E. et al. Yeast oligo-mediated genome engineering (YOGE). _ACS Synth. Biol._ 2, 741–749
(2013). Article CAS PubMed PubMed Central Google Scholar * Barbieri, E. M., Muir, P., Akhuetie-Oni, B. O., Yellman, C. M. & Isaacs, F. J. Precise editing at DNA replication forks
enables multiplex genome engineering in eukaryotes. _Cell_ 171, 1453–1467.e13 (2017). Article CAS PubMed PubMed Central Google Scholar * Knott, G. J. & Doudna, J. A. CRISPR-Cas
guides the future of genetic engineering. _Science_ 361, 866–869 (2018). Article CAS PubMed PubMed Central Google Scholar * Ran, F. A. et al. Genome engineering using the CRISPR-Cas9
system. _Nat. Protoc._ 8, 2281–2308 (2013). Article CAS PubMed PubMed Central Google Scholar * Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of
bacterial genomes using CRISPR-Cas systems. _Nat. Biotechnol._ 31, 233–239 (2013). Article CAS PubMed PubMed Central Google Scholar * Ronda, C., Pedersen, L. E., Sommer, M. O. A. &
Nielsen, A. T. CRMAGE: CRISPR optimized MAGE recombineering. _Sci. Rep._ 6, 19452 (2016). Article CAS PubMed PubMed Central Google Scholar * Li, Y. et al. Metabolic engineering of
_Escherichia coli_ using CRISPR-Cas9 meditated genome editing. _Metab. Eng._ 31, 13–21 (2015). Article PubMed CAS Google Scholar * Garst, A. D. et al. Genome-wide mapping of mutations at
single-nucleotide resolution for protein, metabolic and genome engineering. _Nat. Biotechnol._ 35, 48–55 (2017). Article CAS PubMed Google Scholar * Liu, R. et al. Iterative genome
editing of _Escherichia coli_ for 3-hydroxypropionic acid production. _Metab. Eng._ 47, 303–313 (2018). Article CAS PubMed Google Scholar * DiCarlo, J. E. et al. Genome engineering in
_Saccharomyces cerevisiae_ using CRISPR-Cas systems. _Nucleic Acids Res._ 41, 4336–4343 (2013). Article CAS PubMed PubMed Central Google Scholar * Jakočiūnas, T., Pedersen, L. E., Lis,
A. V., Jensen, M. K. & Keasling, J. D. CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. _Metab. Eng._ 48, 288–296 (2018). Article PubMed
CAS Google Scholar * Roy, K. R. et al. Multiplexed precision genome editing with trackable genomic barcodes in yeast. _Nat. Biotechnol._ 36, 512–520 (2018). Article CAS PubMed PubMed
Central Google Scholar * Sadhu, M. J. et al. Highly parallel genome variant engineering with CRISPR-Cas9. _Nat. Genet._ 50, 510–514 (2018). Article CAS PubMed PubMed Central Google
Scholar * Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. _Nat. Biotechnol._ 35, 463–474 (2017). Article CAS
PubMed PubMed Central Google Scholar * Ma, L. et al. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. _Proc. Natl Acad. Sci.
USA_ 114, 11751–11756 (2017). Article CAS PubMed PubMed Central Google Scholar * Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. _Nature_
562, 217–222 (2018). Article CAS PubMed PubMed Central Google Scholar * Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in
genomic DNA without double-stranded DNA cleavage. _Nature_ 533, 420–424 (2016). Article CAS PubMed PubMed Central Google Scholar * Gaudelli, N. M. et al. Programmable base editing of
A•T to G•C in genomic DNA without DNA cleavage. _Nature_ 551, 464–471 (2017). Article CAS PubMed PubMed Central Google Scholar * Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM)
enables efficient genomic diversification in mammalian cells. _Nat. Methods_ 13, 1029–1035 (2016). Article CAS PubMed Google Scholar * Hess, G. T. et al. Directed evolution using
dCas9-targeted somatic hypermutation in mammalian cells. _Nat. Methods_ 13, 1036–1042 (2016). Article CAS PubMed PubMed Central Google Scholar * Halperin, S. O. et al. CRISPR-guided DNA
polymerases enable diversification of all nucleotides in a tunable window. _Nature_ 560, 248–252 (2018). Article CAS PubMed Google Scholar * Greener, A., Callahan, M. & Jerpseth, B.
in In _Vitro Mutagenesis Protocols_ (ed. Trower, M.K.) 375–385 (Humana, 1996). * Rasila, T. S., Pajunen, M. I. & Savilahti, H. Critical evaluation of random mutagenesis by error-prone
polymerase chain reaction protocols, _Escherichia coli_ mutator strain, and hydroxylamine treatment. _Anal. Biochem._ 388, 71–80 (2009). Article CAS PubMed Google Scholar * Cumbers, S.
J. et al. Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. _Nat. Biotechnol._ 20, 1129–1134 (2002). Article CAS PubMed Google Scholar
* Wang, L., Jackson, W. C., Steinbach, P. A. & Tsien, R. Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. _Proc. Natl Acad. Sci. USA_ 101, 16745–16749
(2004). Article CAS PubMed PubMed Central Google Scholar * Camps, M., Naukkarinen, J., Johnson, B. P. & Loeb, L. A. Targeted gene evolution in _Escherichia coli_ using a highly
error-prone DNA polymerase I. _Proc. Natl Acad. Sci. USA_ 100, 9727–9732 (2003). Article CAS PubMed PubMed Central Google Scholar * Ravikumar, A., Arrieta, A. & Liu, C. C. An
orthogonal DNA replication system in yeast. _Nat. Chem. Biol._ 10, 175–177 (2014). Article CAS PubMed Google Scholar * Ravikumar, A., Arzumanyan, G. A., Obadi, M. K. A., Javanpour, A. A.
& Liu, C. C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. _Cell_ 175, 1946–1957.e13 (2018). Article CAS PubMed PubMed Central Google
Scholar * Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. _Nat. Commun._ 6, 8425 (2015). Article CAS PubMed Google
Scholar * Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. _Nature_ 472, 499–503 (2011). Article CAS PubMed PubMed Central
Google Scholar * Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. _Nat. Chem. Biol._
10, 216–222 (2014). Article CAS PubMed PubMed Central Google Scholar * Packer, M. S., Rees, H. A. & Liu, D. R. Phage-assisted continuous evolution of proteases with altered
substrate specificity. _Nat. Commun._ 8, 956 (2017). Article PubMed PubMed Central CAS Google Scholar * Pu, J., Zinkus-Boltz, J. & Dickinson, B. C. Evolution of a split RNA
polymerase as a versatile biosensor platform. _Nat. Chem. Biol._ 13, 432–438 (2017). Article CAS PubMed PubMed Central Google Scholar * Bryson, D. I. et al. Continuous directed
evolution of aminoacyl-tRNA synthetases. _Nat. Chem. Biol._ 13, 1253–1260 (2017). Article CAS PubMed PubMed Central Google Scholar * Hu, J. H. et al. Evolved Cas9 variants with broad
PAM compatibility and high DNA specificity. _Nature_ 556, 57–63 (2018). Article CAS PubMed PubMed Central Google Scholar * Badran, A. H. et al. Continuous evolution of _Bacillus
thuringiensis_ toxins overcomes insect resistance. _Nature_ 533, 58–63 (2016). Article CAS PubMed PubMed Central Google Scholar * Wang, T., Badran, A. H., Huang, T. P. & Liu, D. R.
Continuous directed evolution of proteins with improved soluble expression. _Nat. Chem. Biol._ 14, 972–980 (2018). Article CAS PubMed PubMed Central Google Scholar * Tschulena, U.,
Peterson, K. R., Gonzalez, B., Fedosyuk, H. & Barbas, C. F. III Positive selection of DNA-protein interactions in mammalian cells through phenotypic coupling with retrovirus production.
_Nat. Struct. Mol. Biol._ 16, 1195–1199 (2009). Article CAS PubMed PubMed Central Google Scholar * Berman, C. M. et al. An adaptable platform for directed evolution in human cells. _J.
Am. Chem. Soc._ 140, 18093–18103 (2018). Article CAS PubMed PubMed Central Google Scholar * Kalhor, R., Mali, P. & Church, G. M. Rapidly evolving homing CRISPR barcodes. _Nat.
Methods_ 14, 195–200 (2017). Article CAS PubMed Google Scholar * Kalhor, R. et al. Developmental barcoding of whole mouse via homing CRISPR. _Science_ 361, eaat9804 (2018). Article
PubMed PubMed Central CAS Google Scholar * van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in
microorganisms. _Nat. Methods_ 6, 767–772 (2009). Article PubMed PubMed Central CAS Google Scholar * Crook, N. et al. In vivo continuous evolution of genes and pathways in yeast. _Nat.
Commun._ 7, 13051 (2016). Article CAS PubMed PubMed Central Google Scholar * Gabriel, A., Willems, M., Mules, E. H. & Boeke, J. D. Replication infidelity during a single cycle of
Ty1 retrotransposition. _Proc. Natl Acad. Sci. USA_ 93, 7767–7771 (1996). Article CAS PubMed PubMed Central Google Scholar * Boutabout, M., Wilhelm, M. & Wilhelm, F. X. DNA
synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. _Nucleic Acids Res._ 29, 2217–2222 (2001). Article CAS PubMed PubMed Central Google Scholar * Lampson,
B. C., Inouye, M. & Inouye, S. Retrons, msDNA, and the bacterial genome. _Cytogenet. Genome Res._ 110, 491–499 (2005). Article CAS PubMed Google Scholar * Farzadfard, F. & Lu, T.
K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. _Science_ 346, 1256272 (2014). Article PubMed PubMed Central CAS Google Scholar *
Simon, A. J., Morrow, B. R. & Ellington, A. D. Retroelement-based genome editing and evolution. _ACS Synth. Biol._ 7, 2600–2611 (2018). Article CAS PubMed Google Scholar * Zetsche,
B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. _Nat. Biotechnol._ 35, 31–34 (2017). Article CAS PubMed Google Scholar * Hupfeld, M. et al. A functional type
II-A CRISPR-Cas system from _Listeria_ enables efficient genome editing of large non-integrating bacteriophage. _Nucleic Acids Res._ 46, 6920–6933 (2018). Article CAS PubMed PubMed
Central Google Scholar * Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. _Cell_ 164, 29–44
(2016). Article CAS PubMed Google Scholar * Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. _Science_ 363, 88–91 (2019). Article CAS PubMed Google Scholar * Wu, L.
et al. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. _Nucleic Acids Res._ 46, 11–24 (2018). Article CAS
PubMed Google Scholar * Zimmerly, S. & Wu, L. An unexplored diversity of reverse transcriptases in bacteria. _Microbiol. Spectr._ 3, MDNA3-0058-2014 (2015). Article PubMed CAS
Google Scholar * Liu, M. et al. Reverse transcriptase-mediated tropism switching in _Bordetella_ bacteriophage. _Science_ 295, 2091–2094 (2002). Article CAS PubMed Google Scholar *
Medhekar, B. & Miller, J. F. Diversity-generating retroelements. _Curr. Opin. Microbiol._ 10, 388–395 (2007). Article CAS PubMed PubMed Central Google Scholar * Doulatov, S. et al.
Tropism switching in _Bordetella_ bacteriophage defines a family of diversity-generating retroelements. _Nature_ 431, 476–481 (2004). Article CAS PubMed Google Scholar * Paul, B. G. et
al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. _Nat. Commun._ 6, 6585 (2015). Article CAS PubMed Google Scholar * Paul, B. G. et al.
Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. _Nat. Microbiol._ 2, 17045 (2017). Article CAS PubMed PubMed Central Google Scholar * Yuan,
T. Z., Overstreet, C. M., Moody, I. S. & Weiss, G. A. Protein engineering with biosynthesized libraries from _Bordetella bronchiseptica_ bacteriophage. _PLoS One_ 8, e55617 (2013).
Article CAS PubMed PubMed Central Google Scholar * Dymond, J. S. et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. _Nature_ 477, 471–476
(2011). Article CAS PubMed PubMed Central Google Scholar * Jia, B. et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. _Nat. Commun._ 9, 1933 (2018). Article
PubMed PubMed Central CAS Google Scholar * Enyeart, P. J. et al. Generalized bacterial genome editing using mobile group II introns and Cre-_lox_. _Mol. Syst. Biol._ 9, 685 (2013).
Article CAS PubMed PubMed Central Google Scholar * Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. _Nat. Biotechnol._ 35, 789–792 (2017). Article CAS PubMed
PubMed Central Google Scholar * Mason, D. M. et al. High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis. _Nucleic Acids Res._ 46,
7436–7449 (2018). Article CAS PubMed PubMed Central Google Scholar * Akcakaya, P. et al. In vivo CRISPR editing with no detectable genome-wide off-target mutations. _Nature_ 561,
416–419 (2018). Article CAS PubMed PubMed Central Google Scholar Download references ACKNOWLEDGEMENTS This work was funded by the Air Force Office of Scientific Research
(FA9550-14-1-0089) and by an Arnold O. Beckman Postdoctoral Fellowship held by A.J.S. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Center for Systems and Synthetic Biology and Department of
Molecular Biosciences, University of Texas at Austin, Austin, TX, USA Anna J. Simon, Simon d’Oelsnitz & Andrew D. Ellington * Institute for Cellular and Molecular Biology, University of
Texas at Austin, Austin, TX, USA Simon d’Oelsnitz & Andrew D. Ellington Authors * Anna J. Simon View author publications You can also search for this author inPubMed Google Scholar *
Simon d’Oelsnitz View author publications You can also search for this author inPubMed Google Scholar * Andrew D. Ellington View author publications You can also search for this author
inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Andrew D. Ellington. ETHICS DECLARATIONS COMPETING INTERESTS A.D.E is cofounder and advisor at GRO Biosciences, Inc, which is
using computational protein design and synthetic biology to develop protein therapeutics. A.D.E has filed intellectual property disclosures that reference Compartmentalized Partner
Replication: 6761ELL ‘Thermostable reverse transcriptase based on a thermostable DNA polymerase,’ US 15/410, 211, Japan 2018-538718 and EP 17741900.9, filed on 1/19/17; and 7151 ELL ‘A
method for screening metabolites and their receptors’ PCT/US2018/037818, filed on 6/15/18. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Simon, A.J., d’Oelsnitz, S. &
Ellington, A.D. Synthetic evolution. _Nat Biotechnol_ 37, 730–743 (2019). https://doi.org/10.1038/s41587-019-0157-4 Download citation * Received: 28 January 2019 * Accepted: 15 May 2019 *
Published: 17 June 2019 * Issue Date: July 2019 * DOI: https://doi.org/10.1038/s41587-019-0157-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this
content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
Trending News
Charles' sad wish as he spends another christmas not seeing archie and lilibetKING CHARLES AND HIS ESTRANGED SON PRINCE HARRY MAY BE THOUSANDS OF MILES APART THIS CHRISTMAS, BUT THE MONARCH IS STILL...
Elevated co2 levels promote both carbon and nitrogen cycling in global forestsABSTRACT Forests provide vital ecosystem services, particularly as carbon sinks for nature-based climate solutions. Howe...
Whose side was she on? 'american heiress' revisits patty hearst's kidnappingIn February of 1974, Patty Hearst, the 19-year-old granddaughter of the wealthy newspaper publisher William Randolph Hea...
Antibacterial effect of antibiotic-loaded sba-15 on biofilm formation by staphylococcus aureus and staphylococcus epidermidisABSTRACT _Staphylococcus aureus_ and _Staphylococcus epidermidis_ are human pathogens involved in implant-related infect...
Molecular dynamics simulations on rorγt: insights into its functional agonism and inverse agonismABSTRACT The retinoic acid receptor-related orphan receptor (ROR) γt receptor is a member of nuclear receptors, which is...
Latests News
Synthetic evolution | Nature BiotechnologyABSTRACT The combination of modern biotechnologies such as DNA synthesis, λ red recombineering, CRISPR-based editing and...
Clash's strummer tests '90s waters in spirited showNew bands keep coming along and making a good living from music that’s essentially reheated Clash, so why shouldn’t one ...
The aarp minute: february 17, 2023Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4 G...
Page not found - Eenadu.netడ్రైవర్ అన్నా.. చూసి నడుపు.. ఆర్టీసీ బస్సులపై 5,798 ట్రాఫిక్ చలానాలు కొందరి ర్యాష్ డ్రైవింగ్ ఆర్టీసీ ప్రతిష్ఠను మసకబ...
The association of the room air challenge with long-term outcomes in extremely preterm infantsABSTRACT OBJECTIVE Evaluate the association between results of the room air (RA) challenge and death, respiratory morbid...