Synthetic evolution | Nature Biotechnology

Nature

Synthetic evolution | Nature Biotechnology"


Play all audios:

Loading...

ABSTRACT The combination of modern biotechnologies such as DNA synthesis, λ red recombineering, CRISPR-based editing and next-generation high-throughput sequencing increasingly enables


precise manipulation of genes and genomes. Beyond rational design, these technologies also enable the targeted, and potentially continuous, introduction of multiple mutations. While this


might seem to be merely a return to natural selection, the ability to target evolution greatly reduces fitness burdens and focuses mutation and selection on those genes and traits that best


contribute to a desired phenotype, ultimately throwing evolution into fast forward. Access through your institution Buy or subscribe This is a preview of subscription content, access via


your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days


cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS POLYMERASE-GUIDED BASE EDITING ENABLES IN VIVO MUTAGENESIS AND RAPID PROTEIN ENGINEERING


Article Open access 11 March 2021 RECOMBINEERING AND MAGE Article 14 January 2021 DIRECTED EVOLUTION IN MAMMALIAN CELLS Article 07 April 2021 REFERENCES * Thomason, L. C., Sawitzke, J. A.,


Li, X., Costantino, N. & Court, D. L. Recombineering: genetic engineering in bacteria using homologous recombination. _Curr. Protoc. Mol. Biol._ 106, 1.16.11–11.16.39 (2014). Article 


Google Scholar  * Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. _Science_ 339, 819–823 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Doudna, J. A.


& Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. _Science_ 346, 1258096 (2014). Article  PubMed  CAS  Google Scholar  * Jinek, M. et al. A


programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. _Science_ 337, 816–821 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kumar, S. et al. Advanced


selection methodologies for DNAzymes in sensing and healthcare applications. _Trends Biochem. Sci._ 44, 190–213 (2019). Article  CAS  PubMed  Google Scholar  * Popović, M., Fliss, P. S.


& Ditzler, M. A. In vitro evolution of distinct self-cleaving ribozymes in diverse environments. _Nucleic Acids Res._ 43, 7070–7082 (2015). Article  PubMed  PubMed Central  CAS  Google


Scholar  * Aquino-Jarquin, G. & Toscano-Garibay, J. D. RNA aptamer evolution: two decades of SELEction. _Int. J. Mol. Sci._ 12, 9155–9171 (2011). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Kaur, H. Recent developments in cell-SELEX technology for aptamer selection. _Biochim. Biophys. Acta Gen. Subj._ 1862, 2323–2329 (2018). Article  CAS  PubMed  Google


Scholar  * Liu, R., Li, X. & Lam, K. S. Combinatorial chemistry in drug discovery. _Curr. Opin. Chem. Biol._ 38, 117–126 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Singh, H., Sharma, N., Khinchi, M., Gautam, S. & Kumawat, A. Combinatorial chemistry: a review. _Asian J. Pharm. Res. Dev_. (2017). * Dietrich, J. A., McKee, A. E. & Keasling, J. D.


High-throughput metabolic engineering: advances in small-molecule screening and selection. _Annu. Rev. Biochem._ 79, 563–590 (2010). Article  CAS  PubMed  Google Scholar  * Reidhaar-Olson,


J. F. & Sauer, R. T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. _Science_ 241, 53–57 (1988). Article  CAS  PubMed  Google Scholar  *


Oliphant, A. R. & Struhl, K. An efficient method for generating proteins with altered enzymatic properties: application to beta-lactamase. _Proc. Natl Acad. Sci. USA_ 86, 9094–9098


(1989). Article  CAS  PubMed  PubMed Central  Google Scholar  * Palzkill, T. & Botstein, D. Identification of amino acid substitutions that alter the substrate specificity of TEM-1


beta-lactamase. _J. Bacteriol._ 174, 5237–5243 (1992). Article  CAS  PubMed  PubMed Central  Google Scholar  * Evnin, L. B., Vásquez, J. R. & Craik, C. S. Substrate specificity of


trypsin investigated by using a genetic selection. _Proc. Natl Acad. Sci. USA_ 87, 6659–6663 (1990). Article  CAS  PubMed  PubMed Central  Google Scholar  * Graham, L. D. et al. Random


mutagenesis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificities. _Biochemistry_ 32, 6250–6258 (1993). Article


  CAS  PubMed  Google Scholar  * Beckman, R. A., Mildvan, A. S. & Loeb, L. A. On the fidelity of DNA replication: manganese mutagenesis in vitro. _Biochemistry_ 24, 5810–5817 (1985).


Article  CAS  PubMed  Google Scholar  * Cadwell, R. C. & Joyce, G. F. Randomization of genes by PCR mutagenesis. _PCR Methods Appl._ 2, 28–33 (1992). Article  CAS  PubMed  Google Scholar


  * Leung, D. W. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. _Technique_ 1, 11–15 (1989). Google Scholar  * Zaccolo, M., Williams, D.


M., Brown, D. M. & Gherardi, E. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. _J. Mol. Biol._ 255, 589–603 (1996). Article


  CAS  PubMed  Google Scholar  * Chen, K. Q. & Arnold, F. H. Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media.


_Bio/Technology_ 9, 1073–1077 (1991). Article  CAS  Google Scholar  * Bloom, J. D. et al. Evolving strategies for enzyme engineering. _Curr. Opin. Struct. Biol._ 15, 447–452 (2005). Article


  CAS  PubMed  Google Scholar  * Chen, W. & Struhl, K. Saturation mutagenesis of a yeast his3 “TATA element”: genetic evidence for a specific TATA-binding protein. _Proc. Natl Acad. Sci.


USA_ 85, 2691–2695 (1988). Article  CAS  PubMed  PubMed Central  Google Scholar  * Beaudry, A. A. & Joyce, G. F. Directed evolution of an RNA enzyme. _Science_ 257, 635–641 (1992).


Article  CAS  PubMed  Google Scholar  * Service, R. F. Protein evolution earns chemistry Nobel. _Science_ 362, 142 (2018). Article  CAS  PubMed  Google Scholar  * Tawfik, D. S. &


Griffiths, A. D. Man-made cell-like compartments for molecular evolution. _Nat. Biotechnol._ 16, 652–656 (1998). Article  CAS  PubMed  Google Scholar  * Ghadessy, F. J., Ong, J. L. &


Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. _Proc. Natl Acad. Sci. USA_ 98, 4552–4557 (2001). Article  CAS  PubMed  PubMed Central  Google


Scholar  * d’Abbadie, M. et al. Molecular breeding of polymerases for amplification of ancient DNA. _Nat. Biotechnol._ 25, 939–943 (2007). Article  PubMed  PubMed Central  CAS  Google


Scholar  * Loakes, D., Gallego, J., Pinheiro, V. B., Kool, E. T. & Holliger, P. Evolving a polymerase for hydrophobic base analogues. _J. Am. Chem. Soc._ 131, 14827–14837 (2009). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Ellefson, J. W. et al. Synthetic evolutionary origin of a proofreading reverse transcriptase. _Science_ 352, 1590–1593 (2016). Article  CAS 


PubMed  Google Scholar  * Williams, R. et al. Amplification of complex gene libraries by emulsion PCR. _Nat. Methods_ 3, 545–550 (2006). Article  CAS  PubMed  Google Scholar  * Ellefson, J.


W. et al. Directed evolution of genetic parts and circuits by compartmentalized partnered replication. _Nat. Biotechnol._ 32, 97–101 (2014). Article  CAS  PubMed  Google Scholar  * Meyer, A.


J., Ellefson, J. W. & Ellington, A. D. Directed evolution of a panel of orthogonal T7 RNA polymerase variants for in vivo or in vitro synthetic circuitry. _ACS Synth. Biol._ 4,


1070–1076 (2015). Article  CAS  PubMed  Google Scholar  * Ellefson, J. W., Ledbetter, M. P. & Ellington, A. D. Directed evolution of a synthetic phylogeny of programmable Trp repressors.


_Nat. Chem. Biol._ 14, 361–367 (2018). Article  CAS  PubMed  Google Scholar  * Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. _Escherichia coli_ “Marionette”


strains with 12 highly optimized small-molecule sensors. _Nat. Chem. Biol._ 15, 196–204 (2019). Article  CAS  PubMed  Google Scholar  * Abil, Z., Ellefson, J. W., Gollihar, J. D., Watkins,


E. & Ellington, A. D. Compartmentalized partnered replication for the directed evolution of genetic parts and circuits. _Nat. Protoc._ 12, 2493–2512 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Stemmer, W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. _Proc. Natl Acad. Sci. USA_ 91, 10747–10751


(1994). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stemmer, W. P. C. Rapid evolution of a protein in vitro by DNA shuffling. _Nature_ 370, 389–391 (1994). Article  CAS  PubMed 


Google Scholar  * Crameri, A., Raillard, S.-A., Bermudez, E. & Stemmer, W. P. C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. _Nature_ 391,


288–291 (1998). Article  CAS  PubMed  Google Scholar  * Nixon, A. E., Ostermeier, M. & Benkovic, S. J. Hybrid enzymes: manipulating enzyme design. _Trends Biotechnol._ 16, 258–264


(1998). Article  CAS  PubMed  Google Scholar  * Ostermeier, M., Nixon, A. E., Shim, J. H. & Benkovic, S. J. Combinatorial protein engineering by incremental truncation. _Proc. Natl Acad.


Sci. USA_ 96, 3562–3567 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ostermeier, M., Shim, J. H. & Benkovic, S. J. A combinatorial approach to hybrid enzymes


independent of DNA homology. _Nat. Biotechnol._ 17, 1205–1209 (1999). Article  CAS  PubMed  Google Scholar  * Hiraga, K. & Arnold, F. H. General method for sequence-independent


site-directed chimeragenesis. _J. Mol. Biol._ 330, 287–296 (2003). Article  CAS  PubMed  Google Scholar  * Kikuchi, M., Ohnishi, K. & Harayama, S. Novel family shuffling methods for the


in vitro evolution of enzymes. _Gene_ 236, 159–167 (1999). Article  CAS  PubMed  Google Scholar  * Peisajovich, S. G., Rockah, L. & Tawfik, D. S. Evolution of new protein topologies


through multistep gene rearrangements. _Nat. Genet._ 38, 168–174 (2006). Article  CAS  PubMed  Google Scholar  * Meyer, A. J., Ellefson, J. W. & Ellington, A. D. Library generation by


gene shuffling. _Curr. Protoc. Mol. Biol._ 105, 15.12 (2014). Article  Google Scholar  * Abil, Z. & Ellington, A. D. Compartmentalized self-replication for evolution of a DNA polymerase.


_Curr. Protoc. Chem. Biol._ 10, 1–17 (2018). Article  CAS  PubMed  Google Scholar  * Alper, H. & Stephanopoulos, G. Global transcription machinery engineering: a new approach for


improving cellular phenotype. _Metab. Eng._ 9, 258–267 (2007). Article  CAS  PubMed  Google Scholar  * Tan, F. et al. Using global transcription machinery engineering (gTME) to improve


ethanol tolerance of _Zymomonas mobilis_. _Microb. Cell Fact._ 15, 4 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Alper, H., Moxley, J., Nevoigt, E., Fink, G. R. &


Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. _Science_ 314, 1565–1568 (2006). Article  CAS  PubMed  Google Scholar  * Park,


K.-S. et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. _Nat. Biotechnol._ 21, 1208–1214 (2003). Article  CAS  PubMed  Google


Scholar  * Auerbach, C. Chemical mutagenesis. _Biol. Rev. Camb. Philos. Soc._ 24, 355–391 (1949). Article  CAS  PubMed  Google Scholar  * Muller, H. J. Artificial transmutation of the gene.


_Science_ 66, 84–87 (1927). Article  CAS  PubMed  Google Scholar  * Ahloowalia, B. S., Maluszynski, M. & Nichterlein, K. Global impact of mutation-derived varieties. _Euphytica_ 135,


187–204 (2004). Article  Google Scholar  * Gokhale, D. V., Puntambekar, U. S. & Deobagkar, D. N. Protoplast fusion: a tool for intergeneric gene transfer in bacteria. _Biotechnol. Adv._


11, 199–217 (1993). Article  CAS  PubMed  Google Scholar  * Peberdy, J. F. Developments in protoplast fusion in fungi. _Microbiol. Sci._ 4, 108–114 (1987). CAS  PubMed  Google Scholar  *


Kao, K. N., Constabel, F., Michayluk, M. R. & Gamborg, O. L. Plant protoplast fusion and growth of intergeneric hybrid cells. _Planta_ 120, 215–227 (1974). Article  CAS  PubMed  Google


Scholar  * Zhang, Y.-X. et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. _Nature_ 415, 644–646 (2002). Article  CAS  PubMed  Google Scholar  * Quandt, E. M.,


Deatherage, D. E., Ellington, A. D., Georgiou, G. & Barrick, J. E. Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic


innovation in _Escherichia coli_. _Proc. Natl Acad. Sci. USA_ 111, 2217–2222 (2014). Article  CAS  PubMed  Google Scholar  * Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D.


L. Recombineering: a homologous recombination-based method of genetic engineering. _Nat. Protoc._ 4, 206–223 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ellis, H. M., Yu,


D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. _Proc. Natl Acad. Sci. USA_ 98, 6742–6746


(2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Murphy, K. C. Use of bacteriophage lambda recombination functions to promote gene replacement in. _Escherichia coli. J.


Bacteriol._ 180, 2063–2071 (1998). CAS  PubMed  Google Scholar  * Zhang, Y., Buchholz, F., Muyrers, J. P. P. & Stewart, A. F. A new logic for DNA engineering using recombination in


_Escherichia coli_. _Nat. Genet._ 20, 123–128 (1998). Article  CAS  PubMed  Google Scholar  * Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution.


_Nature_ 460, 894–898 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of bacterial


genomes using libraries of synthetic DNA. _Nat. Protoc._ 9, 2301–2316 (2014). Article  CAS  PubMed  Google Scholar  * Raman, S., Rogers, J. K., Taylor, N. D. & Church, G. M.


Evolution-guided optimization of biosynthetic pathways. _Proc. Natl Acad. Sci. USA_ 111, 17803–17808 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nyerges, Á. et al.


Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. _Proc. Natl Acad. Sci. USA_ 115, E5726–E5735 (2018). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Warner, J. R., Reeder, P. J., Karimpour-Fard, A., Woodruff, L. B. A. & Gill, R. T. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. _Nat.


Biotechnol._ 28, 856–862 (2010). Article  CAS  PubMed  Google Scholar  * Wang, H. H. et al. Genome-scale promoter engineering by coselection MAGE. _Nat. Methods_ 9, 591–593 (2012). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Carr, P. A. et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. _Nucleic Acids Res._ 40, e132


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thompson, D. B. et al. The future of multiplexed eukaryotic genome engineering. _ACS Chem. Biol._ 13, 313–325 (2018). Article


  CAS  PubMed  Google Scholar  * Kow, Y. W., Bao, G., Reeves, J. W., Jinks-Robertson, S. & Crouse, G. F. Oligonucleotide transformation of yeast reveals mismatch repair complexes to be


differentially active on DNA replication strands. _Proc. Natl Acad. Sci. USA_ 104, 11352–11357 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Moerschell, R. P., Tsunasawa,


S. & Sherman, F. Transformation of yeast with synthetic oligonucleotides. _Proc. Natl Acad. Sci. USA_ 85, 524–528 (1988). Article  CAS  PubMed  PubMed Central  Google Scholar  * Storici,


F., Durham, C. L., Gordenin, D. A. & Resnick, M. A. Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. _Proc. Natl Acad.


Sci. USA_ 100, 14994–14999 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * DiCarlo, J. E. et al. Yeast oligo-mediated genome engineering (YOGE). _ACS Synth. Biol._ 2, 741–749


(2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Barbieri, E. M., Muir, P., Akhuetie-Oni, B. O., Yellman, C. M. & Isaacs, F. J. Precise editing at DNA replication forks


enables multiplex genome engineering in eukaryotes. _Cell_ 171, 1453–1467.e13 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Knott, G. J. & Doudna, J. A. CRISPR-Cas


guides the future of genetic engineering. _Science_ 361, 866–869 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ran, F. A. et al. Genome engineering using the CRISPR-Cas9


system. _Nat. Protoc._ 8, 2281–2308 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of


bacterial genomes using CRISPR-Cas systems. _Nat. Biotechnol._ 31, 233–239 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ronda, C., Pedersen, L. E., Sommer, M. O. A. &


Nielsen, A. T. CRMAGE: CRISPR optimized MAGE recombineering. _Sci. Rep._ 6, 19452 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, Y. et al. Metabolic engineering of


_Escherichia coli_ using CRISPR-Cas9 meditated genome editing. _Metab. Eng._ 31, 13–21 (2015). Article  PubMed  CAS  Google Scholar  * Garst, A. D. et al. Genome-wide mapping of mutations at


single-nucleotide resolution for protein, metabolic and genome engineering. _Nat. Biotechnol._ 35, 48–55 (2017). Article  CAS  PubMed  Google Scholar  * Liu, R. et al. Iterative genome


editing of _Escherichia coli_ for 3-hydroxypropionic acid production. _Metab. Eng._ 47, 303–313 (2018). Article  CAS  PubMed  Google Scholar  * DiCarlo, J. E. et al. Genome engineering in


_Saccharomyces cerevisiae_ using CRISPR-Cas systems. _Nucleic Acids Res._ 41, 4336–4343 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jakočiūnas, T., Pedersen, L. E., Lis,


A. V., Jensen, M. K. & Keasling, J. D. CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. _Metab. Eng._ 48, 288–296 (2018). Article  PubMed 


CAS  Google Scholar  * Roy, K. R. et al. Multiplexed precision genome editing with trackable genomic barcodes in yeast. _Nat. Biotechnol._ 36, 512–520 (2018). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Sadhu, M. J. et al. Highly parallel genome variant engineering with CRISPR-Cas9. _Nat. Genet._ 50, 510–514 (2018). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. _Nat. Biotechnol._ 35, 463–474 (2017). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Ma, L. et al. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. _Proc. Natl Acad. Sci.


USA_ 114, 11751–11756 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. _Nature_


562, 217–222 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in


genomic DNA without double-stranded DNA cleavage. _Nature_ 533, 420–424 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gaudelli, N. M. et al. Programmable base editing of


A•T to G•C in genomic DNA without DNA cleavage. _Nature_ 551, 464–471 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM)


enables efficient genomic diversification in mammalian cells. _Nat. Methods_ 13, 1029–1035 (2016). Article  CAS  PubMed  Google Scholar  * Hess, G. T. et al. Directed evolution using


dCas9-targeted somatic hypermutation in mammalian cells. _Nat. Methods_ 13, 1036–1042 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Halperin, S. O. et al. CRISPR-guided DNA


polymerases enable diversification of all nucleotides in a tunable window. _Nature_ 560, 248–252 (2018). Article  CAS  PubMed  Google Scholar  * Greener, A., Callahan, M. & Jerpseth, B.


in In _Vitro Mutagenesis Protocols_ (ed. Trower, M.K.) 375–385 (Humana, 1996). * Rasila, T. S., Pajunen, M. I. & Savilahti, H. Critical evaluation of random mutagenesis by error-prone


polymerase chain reaction protocols, _Escherichia coli_ mutator strain, and hydroxylamine treatment. _Anal. Biochem._ 388, 71–80 (2009). Article  CAS  PubMed  Google Scholar  * Cumbers, S.


J. et al. Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. _Nat. Biotechnol._ 20, 1129–1134 (2002). Article  CAS  PubMed  Google Scholar


  * Wang, L., Jackson, W. C., Steinbach, P. A. & Tsien, R. Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. _Proc. Natl Acad. Sci. USA_ 101, 16745–16749


(2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Camps, M., Naukkarinen, J., Johnson, B. P. & Loeb, L. A. Targeted gene evolution in _Escherichia coli_ using a highly


error-prone DNA polymerase I. _Proc. Natl Acad. Sci. USA_ 100, 9727–9732 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ravikumar, A., Arrieta, A. & Liu, C. C. An


orthogonal DNA replication system in yeast. _Nat. Chem. Biol._ 10, 175–177 (2014). Article  CAS  PubMed  Google Scholar  * Ravikumar, A., Arzumanyan, G. A., Obadi, M. K. A., Javanpour, A. A.


& Liu, C. C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. _Cell_ 175, 1946–1957.e13 (2018). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. _Nat. Commun._ 6, 8425 (2015). Article  CAS  PubMed  Google


Scholar  * Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. _Nature_ 472, 499–503 (2011). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. _Nat. Chem. Biol._


10, 216–222 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Packer, M. S., Rees, H. A. & Liu, D. R. Phage-assisted continuous evolution of proteases with altered


substrate specificity. _Nat. Commun._ 8, 956 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Pu, J., Zinkus-Boltz, J. & Dickinson, B. C. Evolution of a split RNA


polymerase as a versatile biosensor platform. _Nat. Chem. Biol._ 13, 432–438 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bryson, D. I. et al. Continuous directed


evolution of aminoacyl-tRNA synthetases. _Nat. Chem. Biol._ 13, 1253–1260 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hu, J. H. et al. Evolved Cas9 variants with broad


PAM compatibility and high DNA specificity. _Nature_ 556, 57–63 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Badran, A. H. et al. Continuous evolution of _Bacillus


thuringiensis_ toxins overcomes insect resistance. _Nature_ 533, 58–63 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, T., Badran, A. H., Huang, T. P. & Liu, D. R.


Continuous directed evolution of proteins with improved soluble expression. _Nat. Chem. Biol._ 14, 972–980 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tschulena, U.,


Peterson, K. R., Gonzalez, B., Fedosyuk, H. & Barbas, C. F. III Positive selection of DNA-protein interactions in mammalian cells through phenotypic coupling with retrovirus production.


_Nat. Struct. Mol. Biol._ 16, 1195–1199 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Berman, C. M. et al. An adaptable platform for directed evolution in human cells. _J.


Am. Chem. Soc._ 140, 18093–18103 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kalhor, R., Mali, P. & Church, G. M. Rapidly evolving homing CRISPR barcodes. _Nat.


Methods_ 14, 195–200 (2017). Article  CAS  PubMed  Google Scholar  * Kalhor, R. et al. Developmental barcoding of whole mouse via homing CRISPR. _Science_ 361, eaat9804 (2018). Article 


PubMed  PubMed Central  CAS  Google Scholar  * van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in


microorganisms. _Nat. Methods_ 6, 767–772 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Crook, N. et al. In vivo continuous evolution of genes and pathways in yeast. _Nat.


Commun._ 7, 13051 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gabriel, A., Willems, M., Mules, E. H. & Boeke, J. D. Replication infidelity during a single cycle of


Ty1 retrotransposition. _Proc. Natl Acad. Sci. USA_ 93, 7767–7771 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Boutabout, M., Wilhelm, M. & Wilhelm, F. X. DNA


synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. _Nucleic Acids Res._ 29, 2217–2222 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lampson,


B. C., Inouye, M. & Inouye, S. Retrons, msDNA, and the bacterial genome. _Cytogenet. Genome Res._ 110, 491–499 (2005). Article  CAS  PubMed  Google Scholar  * Farzadfard, F. & Lu, T.


K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. _Science_ 346, 1256272 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  *


Simon, A. J., Morrow, B. R. & Ellington, A. D. Retroelement-based genome editing and evolution. _ACS Synth. Biol._ 7, 2600–2611 (2018). Article  CAS  PubMed  Google Scholar  * Zetsche,


B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. _Nat. Biotechnol._ 35, 31–34 (2017). Article  CAS  PubMed  Google Scholar  * Hupfeld, M. et al. A functional type


II-A CRISPR-Cas system from _Listeria_ enables efficient genome editing of large non-integrating bacteriophage. _Nucleic Acids Res._ 46, 6920–6933 (2018). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. _Cell_ 164, 29–44


(2016). Article  CAS  PubMed  Google Scholar  * Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. _Science_ 363, 88–91 (2019). Article  CAS  PubMed  Google Scholar  * Wu, L.


et al. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. _Nucleic Acids Res._ 46, 11–24 (2018). Article  CAS 


PubMed  Google Scholar  * Zimmerly, S. & Wu, L. An unexplored diversity of reverse transcriptases in bacteria. _Microbiol. Spectr._ 3, MDNA3-0058-2014 (2015). Article  PubMed  CAS 


Google Scholar  * Liu, M. et al. Reverse transcriptase-mediated tropism switching in _Bordetella_ bacteriophage. _Science_ 295, 2091–2094 (2002). Article  CAS  PubMed  Google Scholar  *


Medhekar, B. & Miller, J. F. Diversity-generating retroelements. _Curr. Opin. Microbiol._ 10, 388–395 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Doulatov, S. et al.


Tropism switching in _Bordetella_ bacteriophage defines a family of diversity-generating retroelements. _Nature_ 431, 476–481 (2004). Article  CAS  PubMed  Google Scholar  * Paul, B. G. et


al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. _Nat. Commun._ 6, 6585 (2015). Article  CAS  PubMed  Google Scholar  * Paul, B. G. et al.


Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. _Nat. Microbiol._ 2, 17045 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yuan,


T. Z., Overstreet, C. M., Moody, I. S. & Weiss, G. A. Protein engineering with biosynthesized libraries from _Bordetella bronchiseptica_ bacteriophage. _PLoS One_ 8, e55617 (2013).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Dymond, J. S. et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. _Nature_ 477, 471–476


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jia, B. et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. _Nat. Commun._ 9, 1933 (2018). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Enyeart, P. J. et al. Generalized bacterial genome editing using mobile group II introns and Cre-_lox_. _Mol. Syst. Biol._ 9, 685 (2013).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. _Nat. Biotechnol._ 35, 789–792 (2017). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Mason, D. M. et al. High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis. _Nucleic Acids Res._ 46,


7436–7449 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Akcakaya, P. et al. In vivo CRISPR editing with no detectable genome-wide off-target mutations. _Nature_ 561,


416–419 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS This work was funded by the Air Force Office of Scientific Research


(FA9550-14-1-0089) and by an Arnold O. Beckman Postdoctoral Fellowship held by A.J.S. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Center for Systems and Synthetic Biology and Department of


Molecular Biosciences, University of Texas at Austin, Austin, TX, USA Anna J. Simon, Simon d’Oelsnitz & Andrew D. Ellington * Institute for Cellular and Molecular Biology, University of


Texas at Austin, Austin, TX, USA Simon d’Oelsnitz & Andrew D. Ellington Authors * Anna J. Simon View author publications You can also search for this author inPubMed Google Scholar *


Simon d’Oelsnitz View author publications You can also search for this author inPubMed Google Scholar * Andrew D. Ellington View author publications You can also search for this author


inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Andrew D. Ellington. ETHICS DECLARATIONS COMPETING INTERESTS A.D.E is cofounder and advisor at GRO Biosciences, Inc, which is


using computational protein design and synthetic biology to develop protein therapeutics. A.D.E has filed intellectual property disclosures that reference Compartmentalized Partner


Replication: 6761ELL ‘Thermostable reverse transcriptase based on a thermostable DNA polymerase,’ US 15/410, 211, Japan 2018-538718 and EP 17741900.9, filed on 1/19/17; and 7151 ELL ‘A


method for screening metabolites and their receptors’ PCT/US2018/037818, filed on 6/15/18. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Simon, A.J., d’Oelsnitz, S. &


Ellington, A.D. Synthetic evolution. _Nat Biotechnol_ 37, 730–743 (2019). https://doi.org/10.1038/s41587-019-0157-4 Download citation * Received: 28 January 2019 * Accepted: 15 May 2019 *


Published: 17 June 2019 * Issue Date: July 2019 * DOI: https://doi.org/10.1038/s41587-019-0157-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Charles' sad wish as he spends another christmas not seeing archie and lilibet

KING CHARLES AND HIS ESTRANGED SON PRINCE HARRY MAY BE THOUSANDS OF MILES APART THIS CHRISTMAS, BUT THE MONARCH IS STILL...

Elevated co2 levels promote both carbon and nitrogen cycling in global forests

ABSTRACT Forests provide vital ecosystem services, particularly as carbon sinks for nature-based climate solutions. Howe...

Whose side was she on? 'american heiress' revisits patty hearst's kidnapping

In February of 1974, Patty Hearst, the 19-year-old granddaughter of the wealthy newspaper publisher William Randolph Hea...

Antibacterial effect of antibiotic-loaded sba-15 on biofilm formation by staphylococcus aureus and staphylococcus epidermidis

ABSTRACT _Staphylococcus aureus_ and _Staphylococcus epidermidis_ are human pathogens involved in implant-related infect...

Molecular dynamics simulations on rorγt: insights into its functional agonism and inverse agonism

ABSTRACT The retinoic acid receptor-related orphan receptor (ROR) γt receptor is a member of nuclear receptors, which is...

Latests News

Synthetic evolution | Nature Biotechnology

ABSTRACT The combination of modern biotechnologies such as DNA synthesis, λ red recombineering, CRISPR-based editing and...

Clash's strummer tests '90s waters in spirited show

New bands keep coming along and making a good living from music that’s essentially reheated Clash, so why shouldn’t one ...

The aarp minute: february 17, 2023

Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4  G...

Page not found - Eenadu.net

డ్రైవర్‌ అన్నా.. చూసి నడుపు.. ఆర్టీసీ బస్సులపై 5,798 ట్రాఫిక్‌ చలానాలు కొందరి ర్యాష్‌ డ్రైవింగ్‌ ఆర్టీసీ ప్రతిష్ఠను మసకబ...

The association of the room air challenge with long-term outcomes in extremely preterm infants

ABSTRACT OBJECTIVE Evaluate the association between results of the room air (RA) challenge and death, respiratory morbid...

Top