Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration

Nature

Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration"


Play all audios:

Loading...

ABSTRACT Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of


disease-defining markers in conditions such as Alzheimer disease (amyloid-β and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do


not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major


neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have


revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but


the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other ‘omics’


technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal


validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance. KEY POINTS *


Neurodegenerative diseases are a group of serious and incurable conditions in which astrocytes both cause and respond to neuroinflammation. * A better understanding of how neuroinflammation


and astrocyte function are linked in neurodegeneration is likely to lead to new therapeutic strategies. * To gain this understanding, researchers are using a range of techniques and data


sets, including transcriptomic studies at the single-cell and single-nuclei levels, and the findings are being validated using both human and animal models across different stages of


neurodegenerative diseases. * Transcriptomic studies of reactive astrocytes in human and animal models of disease have revealed the co-existence of many pathology-related reactive sub-states


of astrocytes. * Future priorities for this research field include the determination of functional changes in transcriptomically defined reactive astrocyte sub-states. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio


journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per


year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS REVISITING THE


CRITICAL ROLES OF REACTIVE ASTROCYTES IN NEURODEGENERATION Article 10 April 2023 ASTROCYTE CONTRIBUTION TO DYSFUNCTION, RISK AND PROGRESSION IN NEURODEGENERATIVE DISORDERS Article 31


October 2022 ASTROCYTE TRANSCRIPTOMIC CHANGES ALONG THE SPATIOTEMPORAL PROGRESSION OF ALZHEIMER’S DISEASE Article Open access 11 November 2024 REFERENCES * Virchow, R. & Chance, F.


_Cellular Pathology as Based Upon Physiological and Pathological Histology: Twenty Lectures Delivered in the Pathological Institute of Berlin During the Months of February, March and April,


1858_ (John Churchill, 1860). * Han, R. T., Kim, R. D., Molofsky, A. V. & Liddelow, S. A. Astrocyte-immune cell interactions in physiology and pathology. _Immunity_ 54, 211–224 (2021).


Article  CAS  PubMed  Google Scholar  * Ransohoff, R. M., Schafer, D., Vincent, A., Blachere, N. E. & Bar-Or, A. Neuroinflammation: ways in which the immune system affects the brain.


_Neurotherapeutics_ 12, 896–909 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Goverman, J. Autoimmune T cell responses in the central nervous system. _Nat. Rev. Immunol._


9, 393–407 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guttenplan, K. A. & Liddelow, S. A. Astrocytes and microglia: models and tools. _J. Exp. Med._ 216, 71–83


(2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. _Immunity_ 46,


957–967 (2017). Article  CAS  PubMed  Google Scholar  * Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. _Neuron_ 108, 608–622 (2020). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. _Nature_ 541, 481–487 (2017). THE FIRST


TRANSCRIPTOMIC AND FUNCTIONAL CHARACTERIZATION OF A REACTIVE ASTROCYTE SUB-STATE IN A CELL-BASED IN VITRO ASSAY. VALIDATION IN HUMAN CELLS WAS REPORTED BY BARBAR ET AL. IN 2020 (REF. 36).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Guttenplan, K. A. et al. Neurotoxic reactive astrocytes drive neuronal death after retinal injury. _Cell Rep._ 31, 107776 (2020).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. _Nat. Med._ 24,


931–938 (2018). THE FIRST DESCRIPTION OF THE THERAPEUTIC BENEFITS OF TARGETING A SPECIFIC SUB-STATE OF REACTIVE ASTROCYTES. THIS STUDY USED THE GLUCAGON-LIKE 1 PEPTIDE RECEPTOR AGONIST NYL01


IN A MOUSE MODEL OF PD. CLINICAL TRIALS IN HUMANS ARE ONGOING. Article  CAS  PubMed  PubMed Central  Google Scholar  * Di Giorgio, F. P., Carrasco, M. A., Siao, M. C., Maniatis, T. &


Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. _Nat. Neurosci._ 10, 608–614 (2007). Article  PubMed  PubMed Central  Google Scholar


  * Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. _Nat. Neurosci._ 10, 615–622 (2007). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Sun, S. et al. Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. _Proc. Natl


Acad. Sci. USA_ 112, E6993–E7002 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites.


_Nature_ 557, 724–728 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Matyash, V. & Kettenmann, H. Heterogeneity in astrocyte morphology and physiology. _Brain Res. Rev._


63, 2–10 (2010). Article  CAS  PubMed  Google Scholar  * Kohler, S., Winkler, U. & Hirrlinger, J. Heterogeneity of astrocytes in grey and white matter. _Neurochem. Res._ 46, 3–14


(2021). Article  PubMed  Google Scholar  * Uyeda, C. T., Eng, L. F. & Bignami, A. Immunological study of the glial fibrillary acidic protein. _Brain Res._ 37, 81–89 (1972). Article  CAS


  PubMed  Google Scholar  * Bignami, A., Eng, L. F., Dahl, D. & Uyeda, C. T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. _Brain Res._ 43,


429–435 (1972). Article  CAS  PubMed  Google Scholar  * Jessen, K. R., Thorpe, R. & Mirsky, R. Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an


immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes. _J. Neurocytol._ 13, 187–200 (1984). Article  CAS  PubMed  Google Scholar  *


McDermott, K. W. & Lantos, P. L. The distribution of glial fibrillary acidic protein and vimentin in postnatal marmoset (_Callithrix jacchus_) brain. _Brain Res. Dev. Brain Res._ 45,


169–177 (1989). Article  CAS  PubMed  Google Scholar  * Rasia-Filho, A. A., Xavier, L. L., dos Santos, P., Gehlen, G. & Achaval, M. Glial fibrillary acidic protein immunodetection and


immunoreactivity in the anterior and posterior medial amygdala of male and female rats. _Brain Res. Bull._ 58, 67–75 (2002). Article  CAS  PubMed  Google Scholar  * Torres-Platas, S. G.,


Nagy, C., Wakid, M., Turecki, G. & Mechawar, N. Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in


the thalamus and caudate nucleus of depressed suicides. _Mol. Psychiatry_ 21, 509–515 (2016). Article  CAS  PubMed  Google Scholar  * Bayraktar, O. A. et al. Astrocyte layers in the


mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. _Nat. Neurosci._ 23, 500–509 (2020). THE RESEARCHERS SCREENED 46 ASTROCYTE CANDIDATE GENES IN SITU TO PROVIDE


THE FIRST DESCRIPTION OF CORTICAL LAYER-SPECIFIC ASTROCYTE SUBTYPES IN THE MOUSE BRAIN. Article  CAS  PubMed  PubMed Central  Google Scholar  * Pang, Y., Cai, Z. & Rhodes, P. G. Analysis


of genes differentially expressed in astrocytes stimulated with lipopolysaccharide using cDNA arrays. _Brain Res._ 914, 15–22 (2001). Article  CAS  PubMed  Google Scholar  * Bouton, C. M.,


Hossain, M. A., Frelin, L. P., Laterra, J. & Pevsner, J. Microarray analysis of differential gene expression in lead-exposed astrocytes. _Toxicol. Appl. Pharmacol._ 176, 34–53 (2001).


Article  CAS  PubMed  Google Scholar  * Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and


function. _J. Neurosci._ 28, 264–278 (2008). THE FIRST UNBIASED CELL TYPE-SPECIFIC EXPRESSION PROFILING IN THE BRAIN. THE FINDINGS WERE VALIDATED USING RNA-SEQ BY ZHANG ET AL. IN 2014 (REF.


28) AND 2016 (REF. 29) AND SUBSEQUENTLY IN NUMEROUS SCRNA-SEQ AND SNRNA-SEQ STUDIES. Article  CAS  PubMed  PubMed Central  Google Scholar  * Zamanian, J. L. et al. Genomic analysis of


reactive astrogliosis. _J. Neurosci._ 32, 6391–6410 (2012). THE FIRST SUB-STATE-SPECIFIC SEQUENCING OF REACTIVE ASTROCYTES. FORMED THE BASIS OF ONGOING GENE EXPRESSION PROFILING OF REACTIVE


SUB-STATES AND FUNCTIONAL CHARACTERIZATION OF REACTIVE ASTROCYTES. Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, Y. et al. An RNA-sequencing transcriptome and splicing


database of glia, neurons, and vascular cells of the cerebral cortex. _J. Neurosci._ 34, 11929–11947 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, Y. et al.


Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. _Neuron_ 89, 37–53 (2016). Article  CAS  PubMed 


Google Scholar  * Guttenplan, K. A. et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. _Nat. Commun._ 11, 3753 (2020). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. _Neuron_ 95, 531–549.e9


(2017). COMBINED RNA-SEQ, PROTEOMIC AND FUNCTIONAL (CALCIUM TRANSIENT) CHARACTERIZATION OF ASTROCYTES IN DIFFERENT BRAIN REGIONS. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Heintz, N. Gene expression nervous system atlas (GENSAT). _Nat. Neurosci._ 7, 483 (2004). Article  CAS  PubMed  Google Scholar  * Doyle, J. P. et al. Application of a translational profiling


approach for the comparative analysis of CNS cell types. _Cell_ 135, 749–762 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Heiman, M. et al. A translational profiling


approach for the molecular characterization of CNS cell types. _Cell_ 135, 738–748 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Foo, L. C. et al. Development of a method


for the purification and culture of rodent astrocytes. _Neuron_ 71, 799–811 (2011). THE FIRST REPORT OF SERUM-FREE ASTROCYTE CULTURE TO STUDY SPECIFIC REACTIVE ASTROCYTE FUNCTIONS IN VITRO.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Barbar, L. et al. CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes. _Neuron_ 107, 436–453 (2020).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Jungblut, M. et al. Isolation and characterization of living primary astroglial cells using the new GLAST-specific monoclonal antibody


ACSA-1. _Glia_ 60, 894–907 (2012). Article  PubMed  Google Scholar  * Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell resolution. _Nat. Commun._ 11,


1220 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kantzer, C. G. et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and


adult astrocytes. _Glia_ 65, 990–1004 (2017). Article  PubMed  Google Scholar  * Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent


cellular responses in Alzheimer’s disease. _Nat. Med._ 26, 131–142 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, T. et al. Complement C3 is activated in human AD brain


and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. _Cell Rep._ 28, 2111–2123.e6 (2019). Article  CAS  PubMed  Google Scholar  * Ruffinatti, F. et al.


Transcriptional remodeling in primary hippocampal astrocytes from an Alzheimer’s disease mouse model. _Curr. Alzheimer Res._ 15, 986–1004 (2018). Article  CAS  PubMed  Google Scholar  *


Ziff, O. J. et al. Meta-analysis of human and mouse ALS astrocytes reveals multi-omic signatures of inflammatory reactive states. _Genome Res._ 32, 71–84 (2022). THIS STUDY SHOWS THAT


ALS-ASSOCIATED MUTATIONS ALTER INFLAMMATORY RESPONSES IN ASTROCYTES, HIGHLIGHTING GENETICS AS WELL AS SECONDARY INSULTS AS DRIVERS OF ASTROCYTE REACTIVITY. Article  PubMed  PubMed Central 


Google Scholar  * Peng, A. Y. T. et al. Loss of TDP-43 in astrocytes leads to motor deficits by triggering A1-like reactive phenotype and triglial dysfunction. _Proc. Natl Acad. Sci. USA_


117, 29101–29112 (2020). Article  PubMed  PubMed Central  Google Scholar  * Jiang, L. L. et al. Membralin deficiency dysregulates astrocytic glutamate homeostasis leading to ALS-like


impairment. _J. Clin. Invest._ 129, 3103–3120 (2019). Article  PubMed  PubMed Central  Google Scholar  * Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. _Nature_ 578,


593–599 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Diaz-Castro, B., Gangwani, M. R., Yu, X., Coppola, G. & Khakh, B. S. Astrocyte molecular signatures in


Huntington’s disease. _Sci. Transl Med._ 11, eaaw8546 (2019). Article  CAS  PubMed  Google Scholar  * Song, S. et al. Activation of endothelial Wnt/β-catenin signaling by protective


astrocytes repairs BBB damage in ischemic stroke. _Prog. Neurobiol._ 199, 101963 (2021). Article  CAS  PubMed  Google Scholar  * Boghdadi, A. G. et al. NogoA-expressing astrocytes limit


peripheral macrophage infiltration after ischemic brain injury in primates. _Nat. Commun._ 12, 6906 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hasel, P., Rose, I. V. L.,


Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. _Nat. Neurosci._ 24, 1475–1487 (2021). Article  CAS  PubMed  Google Scholar  *


Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. _Nature_ 532, 195–200 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Boisvert,


M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. J. The aging astrocyte transcriptome from multiple regions of the mouse brain. _Cell Rep._ 22, 269–285 (2018). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Clarke, L. E. et al. Normal aging induces A1-like astrocyte reactivity. _Proc. Natl Acad. Sci. USA_ 115, E1896–E1905 (2018). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. _Science_ 347, 1138–1142 (2015). Article  CAS 


PubMed  Google Scholar  * Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. _Cell_ 174, 1015–1030.e6 (2018). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. _Neuron_ 110, 1788–1805 (2022).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Diaz-Castro, B., Bernstein, A. M., Coppola, G., Sofroniew, M. V. & Khakh, B. S. Molecular and functional properties of cortical


astrocytes during peripherally induced neuroinflammation. _Cell Rep._ 36, 109508 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wheeler, M. A. et al. Environmental control


of astrocyte pathogenic activities in CNS inflammation. _Cell_ 176, 581–596.e18 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Habib, N. et al. Disease-associated astrocytes


in Alzheimer’s disease and aging. _Nat. Neurosci._ 23, 701–706 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Clark, I. C. et al. Barcoded viral tracing of single-cell


interactions in central nervous system inflammation. _Science_ 372, eabf1230 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK


cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. _Nature_ 590, 473–479 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mathys, H. et al. Single-cell transcriptomic


analysis of Alzheimer’s disease. _Nature_ 570, 332–337 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Grubman, A. et al. A single-cell atlas of entorhinal cortex from


individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. _Nat. Neurosci._ 22, 2087–2097 (2019). Article  CAS  PubMed  Google Scholar  * Absinta, M. et al.


A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. _Nature_ 597, 709–714 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Khrameeva, E. et al.


Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. _Genome Res._ 30, 776–789 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sheng, L.


et al. Social reprogramming in ants induces longevity-associated glia remodeling. _Sci. Adv._ 6, eaba9869 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vicidomini, R.,


Nguyen, T. H., Choudhury, S. D., Brody, T. & Serpe, M. Assembly and exploration of a single cell atlas of the _Drosophila_ larval ventral cord. identification of rare cell types. _Curr.


Protoc._ 1, e37 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, J., Poskanzer, K. E., Freeman, M. R. & Monk, K. R. Live-imaging of astrocyte morphogenesis and


function in zebrafish neural circuits. _Nat. Neurosci._ 23, 1297–1306 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wilkinson, M. D. et al. The FAIR Guiding Principles for


scientific data management and stewardship. _Sci. Data_ 3, 160018 (2016). Article  PubMed  PubMed Central  Google Scholar  * FAIR. FAIR principles._ GO FAIR_


https://www.go-fair.org/fair-principles/ (2016). * Liddelow, S. A., Marsh, S. E. & Stevens, B. Microglia and astrocytes in disease: dynamic duo or partners in crime? _Trends Immunol._


41, 820–835 (2020). Article  CAS  PubMed  Google Scholar  * Burda, J. E. et al. Divergent transcriptional regulation of astrocyte reactivity across disorders. _Nature_ 606, 557–564 (2022).


Article  CAS  PubMed  PubMed Central  Google Scholar  * de Paiva Lopes, K. et al. Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies.


_Nat. Genet._ 54, 4–17 (2022). Article  PubMed Central  Google Scholar  * Kenigsbuch, M. et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. _Nat.


Neurosci._ 25, 876–886 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. _Cell_


182, 976–991.e19 (2020). Article  CAS  PubMed  Google Scholar  * Castranio, E. et al. INPP5D limits plaque formation and glial reactivity in the APP/PS1 mouse model of Alzheimer’s disease.


_Alzheimers Dement._ https://doi.org/10.1002/alz.12821 (2022). Article  PubMed  Google Scholar  * Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. _J. Neurosci._


29, 3276–3287 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning


in adult mice. _Cell Stem Cell_ 12, 342–353 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Frazel, P. et al. Early stage differentiation of glia in human and mouse. Preprint


at _bioRxiv_ https://doi.org/10.1101/2021.12.07.471509 (2021). Article  Google Scholar  * Li, J. et al. Conservation and divergence of vulnerability and responses to stressors between human


and mouse astrocytes. _Nat. Commun._ 12, 3958 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hertz, L., Lovatt, D., Goldman, S. A. & Nedergaard, M. Adrenoceptors in


brain: cellular gene expression and effects on astrocytic metabolism and [Ca2+]i. _Neurochem. Int._ 57, 411–420 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nolle, A. et


al. Enrichment of glial cells from human post-mortem tissue for transcriptome and proteome analysis using immunopanning. _Front. Cell Neurosci._ 15, 772011 (2021). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Patani, R. et al. Investigating the utility of human embryonic stem cell-derived neurons to model ageing and neurodegenerative disease using whole-genome


gene expression and splicing analysis. _J. Neurochem._ 122, 738–751 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Miller, J. D. et al. Human iPSC-based modeling of


late-onset disease via progerin-induced aging. _Cell Stem Cell_ 13, 691–705 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gatto, N. et al. Directly converted astrocytes


retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. _Aging Cell_ 20, e13281 (2021). Article  CAS  PubMed  Google


Scholar  * Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. _Neuron_ 95, 779–790.e776 (2017). Article  CAS 


PubMed  PubMed Central  Google Scholar  * McCarthy, K. D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. _J. Cell Biol._


85, 890–902 (1980). THE FIRST PURIFICATION AND CULTURE METHODS FOR ASTROCYTES. MOST PHYSIOLOGICAL ASTROCYTE FUNCTIONS WERE DISCOVERED USING THESE METHODS. Article  CAS  PubMed  Google


Scholar  * Stogsdill, J. A. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. _Nature_ 551, 192–197 (2017). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Allen, N. J. & Eroglu, C. Cell biology of astrocyte-synapse interactions. _Neuron_ 96, 697–708 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Qiu, J. et al.


Mixed-species RNA-seq for elucidation of non-cell-autonomous control of gene transcription. _Nat. Protoc._ 13, 2176–2199 (2018). Article  CAS  PubMed  Google Scholar  * Hasel, P. et al.


Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. _Nat. Commun._ 8, 15132 (2017). MIXED-SPECIES CULTURE AND NEURON–ASTROCYTE


INTERACTIONS DEMONSTRATED IN A DISH. AMONG THE FIRST STUDIES TO SHOW THAT CELL–CELL CONTACT, IN ADDITION TO SECRETED MOLECULES, IS IMPORTANT FOR ASTROCYTE MORPHOLOGY, GENE EXPRESSION AND


FUNCTION. Article  PubMed  PubMed Central  Google Scholar  * Hansson, E. Co-cultivation of astroglial and neuronal primary cultures from rat brain. _Brain Res._ 366, 159–168 (1986). Article


  CAS  PubMed  Google Scholar  * Swanson, R. A. et al. Neuronal regulation of glutamate transporter subtype expression in astrocytes. _J. Neurosci._ 17, 932–940 (1997). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Baxter, P. S. et al. Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. _Cell Rep._ 34,


108882 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. _Nature_ 599, 102–107


(2021). DEFINITION OF A NEUROTOXIC LIPID SECRETED BY THE INFLAMMATION-INDUCED REACTIVE ASTROCYTE SUB-STATE DEFINED BY THIS GROUP IN 2017. THIS STUDY BROUGHT TOGETHER IN VITRO, IN VIVO AND


MULTIPLE OMICS APPROACHES TO DEFINE A SPECIFIC TOXIC MOLECULE RELEASED BY ASTROCYTES. Article  CAS  PubMed  Google Scholar  * Leng, K. et al. Molecular characterization of selectively


vulnerable neurons in Alzheimer’s disease. _Nat. Neurosci._ 24, 276–287 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Leng, K. et al. CRISPRi screens in human iPSC-derived


astrocytes elucidate regulators of distinct inflammatory reactive states. _Nat. Neurosci._ 25, 1528–1542 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rothstein, J. D. et


al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. _Neuron_ 16, 675–686 (1996). Article  CAS  PubMed  Google


Scholar  * Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. _Nature_ 549, 523–527 (2017). Article  PubMed  PubMed Central  Google


Scholar  * Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. _Nat. Neurosci._ 21, 941–951 (2018). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Liang, Y. et al. Upregulation of Alzheimer’s disease amyloid-β protein precursor in astrocytes both in vitro and in vivo. _J. Alzheimers Dis._ 76, 1071–1082


(2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, X. et al. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in


spinal astrocytes. _PLoS ONE_ 8, e75804 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kucukdereli, H. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted


proteins Hevin and SPARC. _Proc. Natl Acad. Sci. USA_ 108, E440–E449 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Christopherson, K. S. et al. Thrombospondins are


astrocyte-secreted proteins that promote CNS synaptogenesis. _Cell_ 120, 421–433 (2005). Article  CAS  PubMed  Google Scholar  * Allen, N. J. et al. Astrocyte glypicans 4 and 6 promote


formation of excitatory synapses via GluA1 AMPA receptors. _Nature_ 486, 410–414 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chung, W. S. et al. Astrocytes mediate


synapse elimination through MEGF10 and MERTK pathways. _Nature_ 504, 394–400 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hong, S. et al. Complement and microglia mediate


early synapse loss in Alzheimer mouse models. _Science_ 352, 712–716 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Maragakis, N. J. & Rothstein, J. D. Glutamate


transporters: animal models to neurologic disease. _Neurobiol. Dis._ 15, 461–473 (2004). Article  CAS  PubMed  Google Scholar  * Sasaki, S., Komori, T. & Iwata, M. Excitatory amino acid


transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. _Acta Neuropathol._ 100, 138–144 (2000). Article  CAS  PubMed  Google Scholar  * D’Erchia, A. M. et


al. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. _Sci. Rep._ 7, 10046 (2017). Article  PubMed  PubMed Central 


Google Scholar  * Lee, D. H. et al. Fingolimod effects in neuroinflammation: regulation of astroglial glutamate transporters? _PLoS ONE_ 12, e0171552 (2017). Article  PubMed  PubMed Central


  Google Scholar  * Volterra, A., Liaudet, N. & Savtchouk, I. Astrocyte Ca2+ signalling: an unexpected complexity. _Nat. Rev. Neurosci._ 15, 327–335 (2014). Article  CAS  PubMed  Google


Scholar  * Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. _Neuron_ 109, 576–596 (2021). Article  CAS  PubMed  Google Scholar  * Yu, X., Nagai, J. &


Khakh, B. S. Improved tools to study astrocytes. _Nat. Rev. Neurosci._ 21, 121–138 (2020). Article  CAS  PubMed  Google Scholar  * Panattoni, G. et al. Diverse inflammatory threats modulate


astrocytes Ca2+ signaling via connexin43 hemichannels in organotypic spinal slices. _Mol. Brain_ 14, 159 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dong, Q. et al.


Mechanism and consequence of abnormal calcium homeostasis in Rett syndrome astrocytes. _eLife_ 7, e33417 (2018). Article  PubMed  PubMed Central  Google Scholar  * Heuser, K. et al. Ca2+


signals in astrocytes facilitate spread of epileptiform activity. _Cereb. Cortex_ 28, 4036–4048 (2018). Article  PubMed  PubMed Central  Google Scholar  * Jiang, R., Diaz-Castro, B., Looger,


L. L. & Khakh, B. S. Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington’s disease model mice. _J. Neurosci._ 36, 3453–3470 (2016). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Shah, D. et al. Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer’s disease. _Cell Rep._ 40, 111280 (2022). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Shigetomi, E., Patel, S. & Khakh, B. S. Probing the complexities of astrocyte calcium signaling. _Trends Cell Biol._ 26, 300–312 (2016). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Dong, Q. P., He, J. Q. & Chai, Z. Astrocytic Ca2+ waves mediate activation of extrasynaptic NMDA receptors in hippocampal neurons to


aggravate brain damage during ischemia. _Neurobiol. Dis._ 58, 68–75 (2013). Article  CAS  PubMed  Google Scholar  * Duffy, S. & MacVicar, B. A. In vitro ischemia promotes calcium influx


and intracellular calcium release in hippocampal astrocytes. _J. Neurosci._ 16, 71–81 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xu, Q. et al. Astrocytes contribute to


pain gating in the spinal cord. _Sci. Adv._ 7, eabi6287 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Reichenbach, N. et al. P2Y1 receptor blockade normalizes network


dysfunction and cognition in an Alzheimer’s disease model. _J. Exp. Med._ 215, 1649–1663 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stackhouse, T. L. & Mishra, A.


Neurovascular coupling in development and disease: focus on astrocytes. _Front. Cell Dev. Biol._ 9, 702832 (2021). Article  PubMed  PubMed Central  Google Scholar  * Cvetkovic, C. et al.


Assessing Gq-GPCR-induced human astrocyte reactivity using bioengineered neural organoids. _J. Cell Biol._ 221, e202107135 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Zhou, Z., Ikegaya, Y. & Koyama, R. The astrocytic cAMP pathway in health and disease. _Int. J. Mol. Sci._ 20, 779 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hertz,


L. et al. Astrocytic glycogenolysis: mechanisms and functions. _Metab. Brain Dis._ 30, 317–333 (2015). Article  CAS  PubMed  Google Scholar  * Gavrilyuk, V. et al. Norepinephrine increases


IκBα expression in astrocytes. _J. Biol. Chem._ 277, 29662–29668 (2002). Article  CAS  PubMed  Google Scholar  * Ceyzeriat, K., Abjean, L., Carrillo-de Sauvage, M. A., Ben Haim, L. &


Escartin, C. The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway? _Neuroscience_ 330, 205–218 (2016). Article  CAS  PubMed  Google Scholar  *


LeComte, M. D., Shimada, I. S., Sherwin, C. & Spees, J. L. Notch1-STAT3-ETBR signaling axis controls reactive astrocyte proliferation after brain injury. _Proc. Natl Acad. Sci. USA_ 112,


8726–8731 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hung, C. C. et al. Soluble epoxide hydrolase modulates immune responses in activated astrocytes involving


regulation of STAT3 activity. _J. Neuroinflammation_ 16, 123 (2019). Article  PubMed  PubMed Central  Google Scholar  * Zheng, J. Y. et al. Selective deletion of apolipoprotein E in


astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. _Neurobiol. Aging_ 54, 112–132 (2017).


Article  CAS  PubMed  Google Scholar  * Wang, J. et al. Astrocyte-derived estrogen regulates reactive astrogliosis and is neuroprotective following ischemic brain injury. _J. Neurosci._ 40,


9751–9771 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, S. H. et al. TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in


mouse models of Alzheimer disease. _Cell Rep._ 37, 110158 (2021). Article  CAS  PubMed  Google Scholar  * Kim, H. et al. Reactive astrocytes transduce inflammation in a blood-brain barrier


model through a TNFα-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. _Nat. Commun._ 3, 6581 (2022). Article  Google Scholar  * Lu, T. Y. et al. Axon degeneration induces


glial responses through Draper-TRAF4-JNK signalling. _Nat. Commun._ 8, 14355 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ceyzeriat, K. et al. Modulation of astrocyte


reactivity improves functional deficits in mouse models of Alzheimer’s disease. _Acta Neuropathol. Commun._ 6, 104 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guillemaud,


O. et al. Complex roles for reactive astrocytes in the triple transgenic mouse model of Alzheimer disease. _Neurobiol. Aging_ 90, 135–146 (2020). Article  CAS  PubMed  Google Scholar  *


Abjean, L. et al. Reactive astrocytes promote proteostasis in Huntington’s disease through the JAK2-STAT3 pathway. _Brain_ 146, 149–166 (2023). Article  PubMed  Google Scholar  * Zamboni,


M., Llorens-Bobadilla, E., Magnusson, J. P. & Frisen, J. A widespread neurogenic potential of neocortical astrocytes is induced by injury. _Cell Stem Cell_ 27, 605–617.e5 (2020). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Iyer, A. et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. _PLoS ONE_ 7, e44789 (2012). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Wang, C. Y., Yang, S. H. & Tzeng, S. F. MicroRNA-145 as one negative regulator of astrogliosis. _Glia_ 63, 194–205 (2015). Article  PubMed  Google


Scholar  * Pogue, A. I. et al. Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. _Neurosci. Lett._ 476, 18–22 (2010). Article  CAS  PubMed  Google Scholar  *


Jiwaji, Z. et al. Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Ass pathology. _Nat. Commun._ 13, 135 (2022). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Koffie, R. M. et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. _Proc.


Natl Acad. Sci. USA_ 106, 4012–4017 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dong, H., Martin, M. V., Chambers, S. & Csernansky, J. G. Spatial relationship between


synapse loss and β-amyloid deposition in Tg2576 mice. _J. Comp. Neurol._ 500, 311–321 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hammond, T. R. et al. Single-cell RNA


sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. _Immunity_ 50, 253–271.e6 (2019). Article  CAS  PubMed  Google Scholar  *


Xia, M. Q., Bacskai, B. J., Knowles, R. B., Qin, S. X. & Hyman, B. T. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive


astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. _J. Neuroimmunol._ 108, 227–235 (2000). Article  CAS  PubMed  Google Scholar  * Sorensen, T. L. et al. Expression of


specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. _J. Clin. Invest._ 103, 807–815 (1999). Article  CAS  PubMed  PubMed Central  Google


Scholar  * La Manno, G. et al. RNA velocity of single cells. _Nature_ 560, 494–498 (2018). Article  PubMed  PubMed Central  Google Scholar  * Bergen, V., Lange, M., Peidli, S., Wolf, F. A.


& Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. _Nat. Biotechnol._ 38, 1408–1414 (2020). Article  CAS  PubMed  Google Scholar  * Bergen, V.,


Soldatov, R. A., Kharchenko, P. V. & Theis, F. J. RNA velocity-current challenges and future perspectives. _Mol. Syst. Biol._ 17, e10282 (2021). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Brenner, M. et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. _Nat. Genet._ 27, 117–120 (2001). Article  CAS 


PubMed  Google Scholar  * Serio, A. et al. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. _Proc. Natl Acad. Sci.


USA_ 110, 4697–4702 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hall, C. E. et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell


model of VCP-related ALS. _Cell Rep._ 19, 1739–1749 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ziff, O. J. et al. Reactive astrocytes in ALS display diminished intron


retention. _Nucleic Acids Res._ 49, 3168–3184 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Taha, D. M. et al. Astrocytes display cell autonomous and diverse early reactive


states in familial amyotrophic lateral sclerosis. _Brain_ 145, 481–489 (2022). THE FIRST STUDY TO SHOW THAT ALS-ASSOCIATED MUTATIONS ARE SUFFICIENT TO INDUCE CELL-AUTONOMOUS REACTIVE


PHENOTYPES IN ASTROCYTES (DEFINED TRANSCRIPTIONALLY, AT THE PROTEIN LEVEL AND FUNCTIONALLY BY AN ABERRANT SECRETOME). Article  PubMed  PubMed Central  Google Scholar  * Zhao, C. et al.


Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology. _Glia_ 68, 1046–1064 (2020). Article  PubMed  Google Scholar  * Selvaraj, B. T. et al.


C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity. _Nat. Commun._ 9, 347 (2018). Article  PubMed  PubMed Central  Google


Scholar  * Mehta, A. R. et al. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. _Acta Neuropathol._ 141,


257–279 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Smethurst, P. et al. Distinct responses of neurons and astrocytes to TDP-43 proteinopathy in amyotrophic lateral


sclerosis. _Brain_ 143, 430–440 (2020). Article  PubMed  PubMed Central  Google Scholar  * Smethurst, P., Franklin, H., Clarke, B. E., Sidle, K. & Patani, R. The role of astrocytes in


prion-like mechanisms of neurodegeneration. _Brain_ 145, 17–26 (2022). Article  PubMed  PubMed Central  Google Scholar  * Tcw, J. et al. Cholesterol and matrisome pathways dysregulated in


astrocytes and microglia. _Cell_ 185, 2213–2233.e25 (2022). Article  CAS  PubMed  Google Scholar  * Jones, V. C., Atkinson-Dell, R., Verkhratsky, A. & Mohamet, L. Aberrant iPSC-derived


human astrocytes in Alzheimer’s disease. _Cell Death Dis._ 8, e2696 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Oksanen, M. et al. PSEN1 Mutant iPSC-derived model reveals


severe astrocyte pathology in Alzheimer’s disease. _Stem Cell Rep._ 9, 1885–1897 (2017). Article  CAS  Google Scholar  * Kondo, T. et al. Modeling Alzheimer’s disease with iPSCs reveals


stress phenotypes associated with intracellular Aβ and differential drug responsiveness. _Cell Stem Cell_ 12, 487–496 (2013). Article  CAS  PubMed  Google Scholar  * Lin, Y. T. et al. APOE4


causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. _Neuron_ 98, 1141–1154.e7 (2018). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Booth, H. D. E. et al. RNA sequencing reveals MMP2 and TGFB1 downregulation in LRRK2 G2019S Parkinson’s iPSC-derived astrocytes. _Neurobiol. Dis._


129, 56–66 (2019). Article  CAS  PubMed  Google Scholar  * di Domenico, A. et al. Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson’s


disease. _Stem Cell Rep._ 12, 213–229 (2019). Article  Google Scholar  * Garcia, V. J. et al. Huntington’s disease patient-derived astrocytes display electrophysiological impairments and


reduced neuronal support. _Front. Neurosci._ 13, 669 (2019). Article  PubMed  PubMed Central  Google Scholar  * Juopperi, T. A. et al. Astrocytes generated from patient induced pluripotent


stem cells recapitulate features of Huntington’s disease patient cells. _Mol. Brain_ 5, 17 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Franklin, H., Clarke, B. E. &


Patani, R. Astrocytes and microglia in neurodegenerative diseases: lessons from human in vitro models. _Prog. Neurobiol._ 200, 101973 (2021). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Brosh, R. et al. A versatile platform for locus-scale genome rewriting and verification. _Proc. Natl Acad. Sci. USA_ 118, e2023952118 (2021). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Zhang, W. et al. Mouse genomic rewriting and tailoring: synthetic _Trp53_ and humanized _ACE2_. Preprint at _bioRxiv_ https://doi.org/10.1101/2022.06.22.495814 (2022).


Article  PubMed  PubMed Central  Google Scholar  * Agnew-Svoboda, W. et al. A genetic tool for the longitudinal study of a subset of post-inflammatory reactive astrocytes. _Cell Rep.


Methods_ 2, 100276 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, Z. et al. Ultrasensitive single extracellular vesicle detection using high throughput droplet digital


enzyme-linked immunosorbent assay. _Nano Lett._ 22, 4315–4324 (2022). TECHNICAL ADVANCES IN LABELLING AND COLLECTION ENABLE RNA SEQUENCING OF INDIVIDUAL CELLULAR COMPONENTS SUCH AS SINGLE


VESICLES OR MITOCHONDRIA. Article  CAS  PubMed  PubMed Central  Google Scholar  * Murdock, M. H. & Tsai, L. H. Insights into Alzheimer’s disease from single-cell genomic approaches.


_Nat. Neurosci._ 26, 181–195 (2023). Article  CAS  PubMed  Google Scholar  * Gibson, E. M. et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies


chemotherapy-related cognitive impairment. _Cell_ 176, 43–55.e13 (2019). Article  CAS  PubMed  Google Scholar  * Hartmann, K. et al. Complement 3+-astrocytes are highly abundant in prion


diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. _Acta Neuropathol. Commun._ 7, 83 (2019). Article  PubMed  PubMed Central  Google


Scholar  * Sterling, J. K. et al. GLP-1 receptor agonist NLY01 reduces retinal inflammation and neuron death secondary to ocular hypertension. _Cell Rep._ 33, 108271 (2020). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Kim, J. H. et al. Gamma subunit of complement component 8 is a neuroinflammation inhibitor. _Brain_ 144, 528–552 (2021). Article  PubMed  Google


Scholar  * Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. _Nature_ 427, 355–360 (2004). Article  CAS  PubMed  Google


Scholar  * Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. _Science_ 296, 346–349 (2002). Article  CAS  PubMed  Google Scholar  *


Foster, C. A. et al. Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis:


consequences for mode of action in multiple sclerosis. _J. Pharmacol. Exp. Ther._ 323, 469–475 (2007). Article  CAS  PubMed  Google Scholar  * Bigaud, M. et al. Siponimod (BAF312)


penetrates, distributes, and acts in the central nervous system: preclinical insights. _Mult. Scler. J. Exp. Transl. Clin._ 7, 20552173211049168 (2021). PubMed  Google Scholar  * Bhusal, A.


et al. Cathelicidin-related antimicrobial peptide promotes neuroinflammation through astrocyte-microglia communication in experimental autoimmune encephalomyelitis. _Glia_ 70, 1902–1926


(2022). Article  CAS  PubMed  Google Scholar  * Kim, J. H. et al. Soluble ANPEP released from human astrocytes as a positive regulator of microglial activation and neuroinflammation: brain


renin-angiotensin system in astrocyte-microglia crosstalk. _Mol. Cell Proteom._ 21, 100424 (2022). Article  CAS  Google Scholar  * Sun, W. et al. Glutamate-dependent neuroglial calcium


signaling differs between young and adult brain. _Science_ 339, 197–200 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhu, Y. et al. Hematogenous macrophage depletion


reduces the fibrotic scar and increases axonal growth after spinal cord injury. _Neurobiol. Dis._ 74, 114–125 (2015). Article  CAS  PubMed  Google Scholar  * Zhu, Y., Soderblom, C.,


Trojanowsky, M., Lee, D. H. & Lee, J. K. Fibronectin matrix assembly after spinal cord injury. _J. Neurotrauma_ 32, 1158–1167 (2015). Article  PubMed  PubMed Central  Google Scholar  *


Wu, W. et al. Axonal and glial responses to a mid-thoracic spinal cord hemisection in the _Macaca fascicularis_ monkey. _J. Neurotrauma_ 30, 826–839 (2013). Article  PubMed  Google Scholar 


* Ma, Z. et al. A controlled spinal cord contusion for the rhesus macaque monkey. _Exp. Neurol._ 279, 261–273 (2016). Article  PubMed  Google Scholar  * Ghosh, S. & Hui, S. P. Axonal


regeneration in zebrafish spinal cord. _Regeneration_ 5, 43–60 (2018). Article  PubMed  PubMed Central  Google Scholar  * Labib, D. et al. Proteomic alterations and novel markers of


neurotoxic reactive astrocytes in human induced pluripotent stem cell models. _Front. Mol. Neurosci._ 15, 870085 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  Download


references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK Rickie Patani * The Francis Crick Institute,


Human Stem Cells and Neurodegeneration Laboratory, London, UK Rickie Patani * Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK Giles E. Hardingham * UK Dementia


Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK Giles E. Hardingham * Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK


Giles E. Hardingham * Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA Shane A. Liddelow * Department of Neuroscience & Physiology, NYU Grossman School of


Medicine, New York, NY, USA Shane A. Liddelow * Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA Shane A. Liddelow * Parekh Center for Interdisciplinary


Neurology, NYU Grossman School of Medicine, New York, NY, USA Shane A. Liddelow Authors * Rickie Patani View author publications You can also search for this author inPubMed Google Scholar *


Giles E. Hardingham View author publications You can also search for this author inPubMed Google Scholar * Shane A. Liddelow View author publications You can also search for this author


inPubMed Google Scholar CONTRIBUTIONS The authors contributed equally to all aspects of the article. CORRESPONDING AUTHOR Correspondence to Shane A. Liddelow. ETHICS DECLARATIONS COMPETING


INTERESTS R.P., G.E.H. and S.A.L. maintain a financial interest in AstronauTx. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Neurology_ thanks K. Suk, who co-reviewed with A. Bhusal,


and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to


this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the


terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Patani, R., Hardingham, G.E. & Liddelow, S.A. Functional roles of


reactive astrocytes in neuroinflammation and neurodegeneration. _Nat Rev Neurol_ 19, 395–409 (2023). https://doi.org/10.1038/s41582-023-00822-1 Download citation * Accepted: 11 May 2023 *


Published: 12 June 2023 * Issue Date: July 2023 * DOI: https://doi.org/10.1038/s41582-023-00822-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Patient mutations alter atrx targeting to pml nuclear bodies

ABSTRACT ATRX is a SWI/SNF-like chromatin remodeling protein mutated in several X-linked mental retardation syndromes. G...

How to be happy: 5 easy ways to increase your happiness

Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4  G...

Oat growers to gain from opening of new processing plant - farmers weekly

ABSTRACT Powerful emissions from the centres of nearby galaxies may represent dead quasars. Access through your institut...

Gang invades guerrero town, terrorizes residents for not paying extortion

An armed gang known as Los Cuernudos stormed the community of Barrio Lozano in Guerrero’s Costa Grande region Sunday, te...

Rear viewing system for safe reversing - farmers weekly

26 OCTOBER 2001 ------------------------- REAR VIEWING SYSTEM FOR SAFE REVERSING SPALDINGS has now launched a full colou...

Latests News

Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration

ABSTRACT Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, th...

Man gets prison for diver's drowning death off catalina island

A San Pedro man has been sentenced to four years in prison for endangering a diver who died last year when his breathing...

The temperature conditions in clouds

ABSTRACT As one of those who expressed doubt as to the possibility of the existence of the temperature conditions in a c...

Something went wrong, sorry. :(

×Homeट्रेंडिंग न्यूज़एक्सक्लूसिवबड़ी खबरब्यूरोक्रेट्सराजनीतितरकशमनोरंजनहेल्थधर्म/त्यौहारराशिफल/ज्योतिषिफीचरखेलकूदनेशनलएक्...

A dataset of hidden small non-coding rna in the testis of heat-stressed models revealed by pandora-seq

ABSTRACT Infertility, a worldwide reproductive health concern, impacts approximately one in five couples. Male infertili...

Top