Causes and consequences of rna polymerase ii stalling during transcript elongation
Causes and consequences of rna polymerase ii stalling during transcript elongation"
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript elongation is discontinuous and can be perturbed by intrinsic regulatory
barriers, such as promoter-proximal pausing, nucleosomes, RNA secondary structures and the underlying DNA sequence. More substantial blocking of Pol II translocation can be caused by other
physiological circumstances and extrinsic obstacles, including other transcribing polymerases, the replication machinery and several types of DNA damage, such as bulky lesions and DNA
double-strand breaks. Although numerous different obstacles cause Pol II stalling or arrest, the cell somehow distinguishes between them and invokes different mechanisms to resolve each
roadblock. Resolution of Pol II blocking can be as straightforward as temporary backtracking and transcription elongation factor S-II (TFIIS)-dependent RNA cleavage, or as drastic as
premature transcription termination or degradation of polyubiquitylated Pol II and its associated nascent RNA. In this Review, we discuss the current knowledge of how these different Pol II
stalling contexts are distinguished by the cell, how they overlap with each other, how they are resolved and how, when unresolved, they can cause genome instability. Access through your
institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio
journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per
year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated
during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS RAPA OPENS THE
RNA POLYMERASE CLAMP TO DISRUPT POST-TERMINATION COMPLEXES AND PREVENT CYTOTOXIC R-LOOP FORMATION Article 08 January 2025 RNA 3′END TAILING SAFEGUARDS CELLS AGAINST PRODUCTS OF PERVASIVE
TRANSCRIPTION TERMINATION Article Open access 01 December 2024 MECHANISM OF POLYADENYLATION-INDEPENDENT RNA POLYMERASE II TERMINATION Article Open access 18 October 2024 REFERENCES *
Bentley, D. L. & Groudine, M. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. _Nature_ 321, 702–706 (1986). CAS PubMed
Google Scholar * Eick, D. & Bornkamm, G. W. Transcriptional arrest within the first exon is a fast control mechanism in c-myc gene expression. _Nucleic Acids Res._ 14, 8331–8346 (1986).
CAS PubMed PubMed Central Google Scholar * Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. _Genes Dev._ 33, 960–982 (2019). CAS
PubMed PubMed Central Google Scholar * Garcia-Muse, T. & Aguilera, A. Transcription-replication conflicts: how they occur and how they are resolved. _Nat. Rev. Mol. Cell Biol._ 17,
553–563 (2016). CAS PubMed Google Scholar * Martinez-Rucobo, F. W. & Cramer, P. Structural basis of transcription elongation. _Biochim. Biophys. Acta_ 1829, 9–19 (2013). CAS PubMed
Google Scholar * Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. _Nat. Rev. Mol. Cell Biol._ 17, 227–239 (2016). CAS PubMed
Google Scholar * Dangkulwanich, M. et al. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. _eL__ife_ 2,
e00971 (2013). PubMed PubMed Central Google Scholar * Nudler, E. RNA polymerase backtracking in gene regulation and genome instability. _Cell_ 149, 1438–1445 (2012). CAS PubMed Google
Scholar * Bar-Nahum, G. et al. A ratchet mechanism of transcription elongation and its control. _Cell_ 120, 183–193 (2005). CAS PubMed Google Scholar * Abbondanzieri, E. A., Greenleaf,
W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. _Nature_ 438, 460–465 (2005). CAS PubMed PubMed Central Google Scholar
* Liu, X., Bushnell, D. A. & Kornberg, R. D. RNA polymerase II transcription: structure and mechanism. _Biochim. Biophys. Acta_ 1829, 2–8 (2013). CAS PubMed Google Scholar *
Brueckner, F. et al. Structure-function studies of the RNA polymerase II elongation complex. _Acta Crystallogr. D Biol. Crystallogr._ 65, 112–120 (2009). CAS PubMed PubMed Central Google
Scholar * Adelman, K. et al. Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. _Proc. Natl Acad. Sci. USA_ 99, 13538–13543 (2002). CAS PubMed PubMed
Central Google Scholar * Galburt, E. A. et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. _Nature_ 446, 820–823 (2007). CAS PubMed Google
Scholar * Ishibashi, T. et al. Transcription factors IIS and IIF enhance transcription efficiency by differentially modifying RNA polymerase pausing dynamics. _Proc. Natl Acad. Sci. USA_
111, 3419–3424 (2014). CAS PubMed PubMed Central Google Scholar * Conaway, R. C. & Conaway, J. W. The hunt for RNA polymerase II elongation factors: a historical perspective. _Nat.
Struct. Mol. Biol._ 26, 771–776 (2019). CAS PubMed Google Scholar * Nudler, E., Mustaev, A., Lukhtanov, E. & Goldfarb, A. The RNA-DNA hybrid maintains the register of transcription by
preventing backtracking of RNA polymerase. _Cell_ 89, 33–41 (1997). CAS PubMed Google Scholar * Cheung, A. C. & Cramer, P. Structural basis of RNA polymerase II backtracking, arrest
and reactivation. _Nature_ 471, 249–253 (2011). CAS PubMed Google Scholar * Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol
II-DSIF-NELF. _Nature_ 560, 601–606 (2018). CAS PubMed PubMed Central Google Scholar * Sekimizu, K., Kobayashi, N., Mizuno, D. & Natori, S. Purification of a factor from Ehrlich
ascites tumor cells specifically stimulating RNA polymerase II. _Biochem_ 15, 5064–5070 (1976). CAS Google Scholar * Rappaport, J., Reinberg, D., Zandomeni, R. & Weinmann, R.
Purification and functional characterization of transcription factor SII from calf thymus. Role in RNA polymerase II elongation. _J. Biol. Chem._ 262, 5227–5232 (1987). CAS PubMed Google
Scholar * Reinberg, D. & Roeder, R. G. Factors involved in specific transcription by mammalian RNA polymerase II. Transcription factor IIS stimulates elongation of RNA chains. _J. Biol.
Chem._ 262, 3331–3337 (1987). CAS PubMed Google Scholar * Reines, D. Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II. _J. Biol. Chem._ 267,
3795–3800 (1992). CAS PubMed Google Scholar * Reines, D., Chamberlin, M. J. & Kane, C. M. Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a
block to transcription in a human gene in vitro. _J. Biol. Chem._ 264, 10799–10809 (1989). CAS PubMed Google Scholar * Izban, M. G. & Luse, D. S. The RNA polymerase II ternary complex
cleaves the nascent transcript in a 3’–5’ direction in the presence of elongation factor SII. _Genes Dev._ 6, 1342–1356 (1992). CAS PubMed Google Scholar * Izban, M. G. & Luse, D. S.
Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. _J. Biol. Chem._ 267, 13647–13655 (1992). CAS PubMed
Google Scholar * Gu, W. & Reines, D. Identification of a decay in transcription potential that results in elongation factor dependence of RNA polymerase II. _J. Biol. Chem._ 270,
11238–11244 (1995). CAS PubMed Google Scholar * Wang, D. et al. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. _Science_ 324, 1203–1206
(2009). CAS PubMed PubMed Central Google Scholar * Kettenberger, H., Armache, K. J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP
and TFIIS. _Mol. Cell_ 16, 955–965 (2004). CAS PubMed Google Scholar * Kettenberger, H., Armache, K. J. & Cramer, P. Architecture of the RNA polymerase II-TFIIS complex and
implications for mRNA cleavage. _Cell_ 114, 347–357 (2003). CAS PubMed Google Scholar * Lisica, A. et al. Mechanisms of backtrack recovery by RNA polymerases I and II. _Proc. Natl Acad.
Sci. USA_ 113, 2946–2951 (2016). CAS PubMed PubMed Central Google Scholar * Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential
for RNA polymerase II transcription and cell viability. _Mol. Cell_ 38, 202–210 (2010). CAS PubMed PubMed Central Google Scholar * Zatreanu, D. et al. Elongation factor TFIIS prevents
transcription stress and R-loop accumulation to maintain genome stability. _Mol. Cell_ 76, 57–69 (2019). CAS PubMed PubMed Central Google Scholar * Sheridan, R. M., Fong, N.,
D’Alessandro, A. & Bentley, D. L. Widespread backtracking by RNA Pol II is a major effector of gene activation, 5’ pause release, termination, and transcription elongation rate. _Mol.
Cell_ 73, 107–118 e104 (2019). ZATREANU ET AL. (2019) AND SHERIDAN ET AL. (2019) ANALYSE GENOME-WIDE EFFECTS ON TRANSCRIPTION OF THE EXPRESSION OF A DOMINANT-NEGATIVE TFIIS MUTANT. CAS
PubMed Google Scholar * Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. _Science_ 322,
1845–1848 (2008). CAS PubMed PubMed Central Google Scholar * Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and
pausing. _Science_ 339, 950–953 (2013). CAS PubMed PubMed Central Google Scholar * Nojima, T. et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA
processing. _Cell_ 161, 526–540 (2015). CAS PubMed PubMed Central Google Scholar * Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at
nucleotide resolution. _Cell_ 161, 541–554 (2015). CAS PubMed PubMed Central Google Scholar * Kamieniarz-Gdula, K. & Proudfoot, N. J. Transcriptional control by premature
termination: a forgotten mechanism. _Trends Genet._ 35, 553–564 (2019). CAS PubMed PubMed Central Google Scholar * Kumar, A., Clerici, M., Muckenfuss, L. M., Passmore, L. A. & Jinek,
M. Mechanistic insights into mRNA 3′-end processing. _Curr. Opin. Struct. Biol._ 59, 143–150 (2019). CAS PubMed PubMed Central Google Scholar * Peck, S. A., Hughes, K. D., Victorino, J.
F. & Mosley, A. L. Writing a wrong: coupled RNA polymerase II transcription and RNA quality control. _Wiley Interdiscip. Rev. RNA_ 10, e1529 (2019). PubMed PubMed Central Google
Scholar * Gilmour, D. S. & Lis, J. T. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. _Mol. Cell Biol._ 6, 3984–3989
(1986). CAS PubMed PubMed Central Google Scholar * Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. _Nat. Rev. Genet._ 13,
720–731 (2012). CAS PubMed PubMed Central Google Scholar * Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. _Nat.
Genet._ 39, 1512–1516 (2007). CAS PubMed PubMed Central Google Scholar * Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol
II in Drosophila. _Science_ 327, 335–338 (2010). CAS PubMed Google Scholar * Krebs, A. R. et al. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused
promoters. _Mol. Cell_ 67, 411–422 e414 (2017). CAS PubMed PubMed Central Google Scholar * Erickson, B., Sheridan, R. M., Cortazar, M. & Bentley, D. L. Dynamic turnover of paused
Pol II complexes at human promoters. _Genes Dev._ 32, 1215–1225 (2018). CAS PubMed PubMed Central Google Scholar * Steurer, B. et al. Live-cell analysis of endogenous GFP-RPB1 uncovers
rapid turnover of initiating and promoter-paused RNA polymerase II. _Proc. Natl Acad. Sci. USA_ 115, E4368–E4376 (2018). CAS PubMed PubMed Central Google Scholar * Gressel, S. et al.
CDK9-dependent RNA polymerase II pausing controls transcription initiation. _eLife_ https://doi.org/10.7554/eLife.29736 (2017). Article PubMed PubMed Central Google Scholar * Marshall,
N. F. & Price, D. H. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. _J. Biol. Chem._ 270, 12335–12338 (1995). CAS PubMed Google
Scholar * Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. _Genes Dev._ 12, 343–356
(1998). CAS PubMed PubMed Central Google Scholar * Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. _Cell_
97, 41–51 (1999). CAS PubMed Google Scholar * Wu, C. H. et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. _Genes Dev._ 17, 1402–1414 (2003). CAS
PubMed PubMed Central Google Scholar * Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. _Mol. Cell_ 23, 297–305 (2006). CAS PubMed
Google Scholar * Missra, A. & Gilmour, D. S. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II
transcription elongation complex. _Proc. Natl Acad. Sci. USA_ 107, 11301–11306 (2010). CAS PubMed PubMed Central Google Scholar * Vos, S. M. et al. Structure of activated transcription
complex Pol II-DSIF-PAF-SPT6. _Nature_ 560, 607–612 (2018). VOS ET AL. (_NATURE_ 560, 601–606, 2018) AND VOS ET AL. (_NATURE_ 560, 607–612, 2018) PROVIDE STRUCTURAL INSIGHT INTO THE
MECHANISMS REGULATING PROMOTER-PROXIMAL PAUSING AND THE TRANSITION TO PRODUCTIVE ELONGATION DURING THE EARLY STAGES OF TRANSCRIPTION. CAS PubMed Google Scholar * Vos, S. M., Farnung, L.,
Linden, A., Urlaub, H. & Cramer, P. Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. _Nat. Struct. Mol. Biol._ 27, 668–677 (2020). CAS
PubMed Google Scholar * Hendrix, D. A., Hong, J. W., Zeitlinger, J., Rokhsar, D. S. & Levine, M. S. Promoter elements associated with RNA Pol II stalling in the Drosophila embryo.
_Proc. Natl Acad. Sci. USA_ 105, 7762–7767 (2008). CAS PubMed PubMed Central Google Scholar * Fant, C. B. et al. TFIID enables RNA polymerase II promoter-proximal pausing. _Mol. Cell_
78, 785–793 e788 (2020). CAS PubMed PubMed Central Google Scholar * Renner, D. B., Yamaguchi, Y., Wada, T., Handa, H. & Price, D. H. A highly purified RNA polymerase II elongation
control system. _J. Biol. Chem._ 11, 42601–42609 (2001). Google Scholar * Cheng, B. & Price, D. H. Properties of RNA polymerase II elongation complexes before and after the
P-TEFb-mediated transition into productive elongation. _J. Biol. Chem._ 282, 21901–21912 (2007). CAS PubMed Google Scholar * Weber, C. M., Ramachandran, S. & Henikoff, S. Nucleosomes
are context-specific, H2A.Z-modulated barriers to RNA polymerase. _Mol. Cell_ 53, 819–830 (2014). CAS PubMed Google Scholar * Adelman, K. et al. Efficient release from promoter-proximal
stall sites requires transcript cleavage factor TFIIS. _Mol. Cell_ 17, 103–112 (2005). CAS PubMed Google Scholar * Wissink, E. M., Vihervaara, A., Tippens, N. D. & Lis, J. T. Nascent
RNA analyses: tracking transcription and its regulation. _Nat. Rev. Genet._ 20, 705–723 (2019). CAS PubMed PubMed Central Google Scholar * Lai, W. K. M. & Pugh, B. F. Understanding
nucleosome dynamics and their links to gene expression and DNA replication. _Nat. Rev. Mol. Cell Biol._ 18, 548–562 (2017). CAS PubMed PubMed Central Google Scholar * Lorch, Y.,
LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. _Cell_ 49, 203–210 (1987). CAS PubMed
Google Scholar * Izban, M. G. & Luse, D. S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific
pausing. _Genes Dev._ 5, 683–696 (1991). CAS PubMed Google Scholar * Bondarenko, V. A. et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. _Mol.
Cell_ 24, 469–479 (2006). CAS PubMed Google Scholar * Kulaeva, O. I. et al. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. _Nat. Struct. Mol. Biol._
16, 1272–1278 (2009). CAS PubMed PubMed Central Google Scholar * Kulaeva, O. I. & Studitsky, V. M. Mechanism of histone survival during transcription by RNA polymerase II.
_Transcription_ 1, 85–88 (2010). PubMed PubMed Central Google Scholar * Kujirai, T. et al. Structural basis of the nucleosome transition during RNA polymerase II passage. _Science_ 362,
595–598 (2018). THIS STUDY REVEALS DIFFERENT CONFORMATIONS OF POL II AS IT TRANSCRIBES NUCLEOSOMAL DNA, AND HOW HISTONE–DNA INTERACTIONS CONTRIBUTE TO NUCLEOSOME-DEPENDENT TRANSCRIPTION
STALLING. CAS PubMed Google Scholar * Farnung, L., Vos, S. M. & Cramer, P. Structure of transcribing RNA polymerase II-nucleosome complex. _Nat. Commun._ 9, 5432 (2018). CAS PubMed
PubMed Central Google Scholar * Crickard, J. B., Lee, J., Lee, T. H. & Reese, J. C. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome.
_Nucleic Acids Res._ 45, 6362–6374 (2017). CAS PubMed PubMed Central Google Scholar * Kujirai, T. & Kurumizaka, H. Transcription through the nucleosome. _Curr. Opin. Struct. Biol._
61, 42–49 (2020). CAS PubMed Google Scholar * Teves, S. S., Weber, C. M. & Henikoff, S. Transcribing through the nucleosome. _Trends Biochem. Sci._ 39, 577–586 (2014). CAS PubMed
Google Scholar * Svejstrup, J. Q. Chromatin elongation factors. _Curr. Opin. Genet. Dev._ 12, 156–161 (2002). CAS PubMed Google Scholar * Kireeva, M. L. et al. Nature of the nucleosomal
barrier to RNA polymerase II. _Mol. Cell_ 18, 97–108 (2005). CAS PubMed Google Scholar * Mavrich, T. N. et al. Nucleosome organization in the Drosophila genome. _Nature_ 453, 358–362
(2008). CAS PubMed PubMed Central Google Scholar * Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. _Cell_ 132, 887–898 (2008). CAS PubMed Google
Scholar * Aoi, Y. et al. NELF regulates a promoter-proximal step distinct from RNA Pol II pause-release. _Mol. Cell_ 78, 261–274 e265 (2020). CAS PubMed PubMed Central Google Scholar *
Chen, Z. et al. High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier. _eLife_ https://doi.org/10.7554/eLife.48281 (2019). Article PubMed PubMed
Central Google Scholar * Kireeva, M. L., Komissarova, N., Waugh, D. S. & Kashlev, M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II
elongation complex. _J. Biol. Chem._ 275, 6530–6536 (2000). CAS PubMed Google Scholar * Saeki, H. & Svejstrup, J. Q. Stability, flexibility, and dynamic interactions of colliding RNA
polymerase II elongation complexes. _Mol. Cell_ 35, 191–205 (2009). CAS PubMed PubMed Central Google Scholar * Zhang, J. & Landick, R. A two-way street: regulatory interplay between
RNA polymerase and nascent RNA structure. _Trends Biochem. Sci._ 41, 293–310 (2016). CAS PubMed PubMed Central Google Scholar * Zamft, B., Bintu, L., Ishibashi, T. & Bustamante, C.
Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. _Proc. Natl Acad. Sci. USA_ 109, 8948–8953 (2012). CAS PubMed PubMed Central Google Scholar * Turowski,
T. W. et al. Nascent transcript folding plays a major role in determining RNA polymerase elongation rates. _Mol. Cell_ 79, 488–503 (2020). CAS PubMed PubMed Central Google Scholar *
Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. _Nature_ 469, 368–373 (2011). KWAK ET AL. (2013), NOJIMA ET AL.
(2015), MAYER ET AL. (2015) AND CHURCHMAN AND WEISSMAN (2011) DESCRIBE NASCENT-TRANSCRIPTOME SEQUENCING METHODS THAT HAVE REVOLUTIONIZED OUR UNDERSTANDING OF POL II DYNAMICS AT EUKARYOTIC
GENES. CAS PubMed Google Scholar * Tome, J. M., Tippens, N. D. & Lis, J. T. Single-molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and
enhancers. _Nat. Genet._ 50, 1533–1541 (2018). CAS PubMed PubMed Central Google Scholar * Watts, J. A. et al. cis elements that mediate RNA polymerase II pausing regulate human gene
expression. _Am. J. Hum. Genet._ 105, 677–688 (2019). CAS PubMed PubMed Central Google Scholar * Szlachta, K. et al. Alternative DNA secondary structure formation affects RNA polymerase
II promoter-proximal pausing in human. _Genome Biol._ 19, 89 (2018). PubMed PubMed Central Google Scholar * Gregersen, L. H. & Svejstrup, J. Q. The cellular response to
transcription-blocking DNA damage. _Trends Biochem. Sci._ 43, 327–341 (2018). CAS PubMed PubMed Central Google Scholar * Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J.
A. The DNA damage response to transcription stress. _Nat. Rev. Mol. Cell Biol._ 20, 766–784 (2019). CAS PubMed Google Scholar * Machour, F. E. & Ayoub, N. Transcriptional regulation
at DSBs: mechanisms and consequences. _Trends Genet_. https://doi.org/10.1016/j.tig.2020.01.001 (2020). * Caron, P. et al. WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent
transcription arrest and repair at DNA breaks. _Genes Dev._ 33, 684–704 (2019). CAS PubMed PubMed Central Google Scholar * García-Muse, T. & Aguilera, A. Transcription–replication
conflicts: how they occur and how they are resolved. _Nat. Rev. Mol. Cell Biol._ 17, 553–563 (2016). PubMed Google Scholar * Gomez-Gonzalez, B. & Aguilera, A. Transcription-mediated
replication hindrance: a major driver of genome instability. _Genes Dev._ 33, 1008–1026 (2019). CAS PubMed PubMed Central Google Scholar * Hamperl, S. & Cimprich, KarleneA. Conflict
resolution in the genome: how transcription and replication make it work. _Cell_ 167, 1455–1467 (2016). CAS PubMed PubMed Central Google Scholar * Marchal, C., Sima, J. & Gilbert, D.
M. Control of DNA replication timing in the 3D genome. _Nat. Rev. Mol. Cell Biol._ 20, 721–737 (2019). CAS PubMed Google Scholar * Rivera-Mulia, J. C. & Gilbert, D. M. Replication
timing and transcriptional control: beyond cause and effect — part III. _Curr. Opin. Cell Biol._ 40, 168–178 (2016). CAS PubMed PubMed Central Google Scholar * Meryet-Figuiere, M. et al.
Temporal separation of replication and transcription during S-phase progression. _Cell Cycle_ 13, 3241–3248 (2014). CAS PubMed PubMed Central Google Scholar * Helmrich, A., Ballarino,
M., Nudler, E. & Tora, L. Transcription-replication encounters, consequences and genomic instability. _Nat. Struct. Mol. Biol._ 20, 412–418 (2013). CAS PubMed Google Scholar *
Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. _Mol. Cell_ 44,
966–977 (2011). CAS PubMed Google Scholar * Azvolinsky, A., Giresi, P. G., Lieb, J. D. & Zakian, V. A. Highly transcribed RNA polymerase II genes are impediments to replication fork
progression in Saccharomyces cerevisiae. _Mol. Cell_ 34, 722–734 (2009). CAS PubMed PubMed Central Google Scholar * Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich,
K. A. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. _Cell_ 170, 774–786 e719 (2017). CAS PubMed PubMed Central
Google Scholar * Sanchez, A. et al. Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency. _PLoS Genet._ 16, e1008524 (2020). CAS
PubMed PubMed Central Google Scholar * Shao, X., Joergensen, A. M., Howlett, N. G., Lisby, M. & Oestergaard, V. H. A distinct role for recombination repair factors in an early
cellular response to transcription–replication conflicts. _Nucleic Acids Res._ 48, 5467–5484 (2020). CAS PubMed PubMed Central Google Scholar * Takeuchi, Y., Horiuchi, T. &
Kobayashi, T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. _Genes Dev._ 17, 1497–1506 (2003). CAS PubMed PubMed Central Google Scholar * Prado, F.
& Aguilera, A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. _EMBO J._ 24, 1267–1276 (2005). CAS PubMed PubMed Central Google
Scholar * Teloni, F. et al. Efficient pre-mRNA cleavage prevents replication-stress-associated genome instability. _Mol. Cell_ 73, 670–683 e612 (2019). CAS PubMed PubMed Central Google
Scholar * Nojima, T. et al. Deregulated expression of mammalian lncRNA through loss of SPT6 induces R-loop formation, replication stress, and cellular senescence. _Mol. Cell_ 72,
970–984.e97 (2018). CAS PubMed PubMed Central Google Scholar * Kanagaraj, R. et al. RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive
elongation phase of transcription. _Nucleic Acids Res._ 38, 8131–8140 (2010). CAS PubMed PubMed Central Google Scholar * Aygun, O. et al. Direct inhibition of RNA polymerase II
transcription by RECQL5. _J. Biol. Chem._ 284, 23197–23203 (2009). PubMed PubMed Central Google Scholar * Saponaro, M. et al. RECQL5 controls transcript elongation and suppresses genome
instability associated with transcription stress. _Cell_ 157, 1037–1049 (2014). CAS PubMed PubMed Central Google Scholar * Prescott, E. M. & Proudfoot, N. J. Transcriptional
collision between convergent genes in budding yeast. _Proc. Natl Acad. Sci. USA_ 99, 8796–8801 (2002). CAS PubMed PubMed Central Google Scholar * Garcia-Rubio, M. L. & Aguilera, A.
Topological constraints impair RNA polymerase II transcription and causes instability of plasmid-borne convergent genes. _Nucleic Acids Res._ 40, 1050–1064 (2012). CAS PubMed Google
Scholar * Hobson, D. J., Wei, W., Steinmetz, L. M. & Svejstrup, J. Q. RNA polymerase II collision interrupts convergent transcription. _Mol. Cell_ 48, 365–374 (2012). CAS PubMed
PubMed Central Google Scholar * Kulaeva, O. I., Hsieh, F.-K. & Studitsky, V. M. RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones. _Proc. Natl
Acad. Sci. USA_ 107, 11325–11330 (2010). CAS PubMed PubMed Central Google Scholar * Cui, F., Cole, H. A., Clark, D. J. & Zhurkin, V. B. Transcriptional activation of yeast genes
disrupts intragenic nucleosome phasing. _Nucleic Acids Res._ 40, 10753–10764 (2012). CAS PubMed PubMed Central Google Scholar * Cole, H. A., Ocampo, J., Iben, J. R., Chereji, R. V. &
Clark, D. J. Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases. _Nucleic Acids Res._ 42, 12512–12522 (2014). CAS
PubMed PubMed Central Google Scholar * Pannunzio, N. R. & Lieber, M. R. Dissecting the roles of divergent and convergent transcription in chromosome instability. _Cell Rep._ 14,
1025–1031 (2016). CAS PubMed PubMed Central Google Scholar * Kamieniarz-Gdula, K. et al. Selective roles of vertebrate PCF11 in premature and full-length transcript termination. _Mol.
Cell_ 74, 158–172 e159 (2019). CAS PubMed PubMed Central Google Scholar * Cinghu, S. et al. Intragenic enhancers attenuate host gene expression. _Mol. Cell_ 68, 104–117 e106 (2017). CAS
PubMed PubMed Central Google Scholar * Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with
Cockayne’s syndrome and xeroderma pigmentosum. _Cancer Res._ 42, 1473–1478 (1982). CAS PubMed Google Scholar * Tufegdzic Vidakovic, A. et al. Regulation of the RNAPII pool is integral to
the DNA damage response. _Cell_ 180, 1245–1261 e1221 (2020). THIS STUDY SHOWS THAT REGULATION OF GLOBAL POL II LEVELS IS ESSENTIAL TO CONTROL TRANSCRIPTION ACTIVITY IN RESPONSE TO UV-INDUCED
DNA DAMAGE. CAS PubMed PubMed Central Google Scholar * Chiou, Y. Y., Hu, J., Sancar, A. & Selby, C. P. RNA polymerase II is released from the DNA template during
transcription-coupled repair in mammalian cells. _J. Biol. Chem._ 293, 2476–2486 (2018). CAS PubMed Google Scholar * Lavigne, M. D., Konstantopoulos, D., Ntakou-Zamplara, K. Z., Liakos,
A. & Fousteri, M. Global unleashing of transcription elongation waves in response to genotoxic stress restricts somatic mutation rate. _Nat. Commun._ 8, 2076 (2017). PubMed PubMed
Central Google Scholar * Borisova, M. E. et al. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. _Nat. Commun._ 9, 1017 (2018). PubMed PubMed Central
Google Scholar * Bugai, A. et al. P-TEFb activation by RBM7 shapes a pro-survival transcriptional response to genotoxic stress. _Mol. Cell_ 74, 254–267.e210 (2019). CAS PubMed PubMed
Central Google Scholar * Andrade-Lima, L. C., Veloso, A., Paulsen, M. T., Menck, C. F. & Ljungman, M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light
are delayed in long genes. _Nucleic Acids Res._ 43, 2744–2756 (2015). CAS PubMed PubMed Central Google Scholar * Williamson, L. et al. UV irradiation induces a non-coding RNA that
functionally opposes the protein encoded by the same gene. _Cell_ 168, 843–855 e813 (2017). CAS PubMed PubMed Central Google Scholar * Wilson, M. D., Harreman, M. & Svejstrup, J. Q.
Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. _Biochim. Biophys. Acta_ 1829, 151–157 (2013). CAS PubMed Google Scholar * Venema, J., Mullenders, L. H.,
Natarajan, A. T., van Zeeland, A. A. & Mayne, L. V. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active
DNA. _Proc. Natl Acad. Sci. USA_ 87, 4707–4711 (1990). CAS PubMed PubMed Central Google Scholar * Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved
in Cockayne’s syndrome and preferential repair of active genes. _Cell_ 71, 939–953 (1992). CAS PubMed Google Scholar * Selby, C. P. & Sancar, A. Cockayne syndrome group B protein
enhances elongation by RNA polymerase II. _Proc. Natl Acad. Sci. USA_ 94, 11205–11209 (1997). CAS PubMed PubMed Central Google Scholar * Xu, J. et al. Structural basis for the initiation
of eukaryotic transcription-coupled DNA repair. _Nature_ 551, 653–657 (2017). STRUCTURAL ANALYSIS OF THE YEAST CSB HOMOLOGUE RAD26 PROVIDES INSIGHT INTO HOW CSB MIGHT FUNCTION IN THE
REGULATION OF POL II STALLING AND TC-NER. CAS PubMed PubMed Central Google Scholar * Charlet-Berguerand, N. et al. RNA polymerase II bypass of oxidative DNA damage is regulated by
transcription elongation factors. _EMBO J._ 25, 5481–5491 (2006). CAS PubMed PubMed Central Google Scholar * Kuraoka, I. et al. RNA polymerase II bypasses 8-oxoguanine in the presence of
transcription elongation factor TFIIS. _DNA Repair_ 6, 841–851 (2007). CAS PubMed Google Scholar * Kathe, S. D., Shen, G. P. & Wallace, S. S. Single-stranded breaks in DNA but not
oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. _J. Biol. Chem._ 279, 18511–18520 (2004). CAS PubMed Google Scholar *
Jansen, L. E. et al. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. _EMBO J._ 19, 6498–6507 (2000). CAS PubMed PubMed Central Google Scholar *
Ding, B., LeJeune, D. & Li, S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. _J. Biol. Chem._ 285,
5317–5326 (2010). CAS PubMed Google Scholar * Li, W., Giles, C. & Li, S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair.
_Nucleic Acids Res._ 42, 7069–7083 (2014). CAS PubMed PubMed Central Google Scholar * Duan, M., Selvam, K., Wyrick, J. J. & Mao, P. Genome-wide role of Rad26 in promoting
transcription-coupled nucleotide excision repair in yeast chromatin. _Proc. Natl Acad. Sci. USA_ 117, 18608–18616 (2020). CAS PubMed PubMed Central Google Scholar * Gaillard, H. et al.
Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair. _PLoS Genet._ 5, e1000364 (2009). PubMed
PubMed Central Google Scholar * Selby, C. P. & Sancar, A. Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the
ternary transcription complex of stalled RNA polymerase II. _J. Biol. Chem._ 272, 1885–1890 (1997). CAS PubMed Google Scholar * Selby, C. P. & Sancar, A. Molecular mechanism of
transcription-repair coupling. _Science_ 260, 53–58 (1993). CAS PubMed Google Scholar * Caron, P., van der Linden, J. & van Attikum, H. Bon voyage: a transcriptional journey around
DNA breaks. _DNA Repair_ 82, 102686 (2019). CAS PubMed Google Scholar * Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent
chromatin changes silence transcription in cis to DNA double-strand breaks. _Cell_ 141, 970–981 (2010). CAS PubMed PubMed Central Google Scholar * Gao, L. & Gross, D. S. Sir2
silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation. _Mol. Cell Biol._ 28, 3979–3994 (2008). CAS PubMed PubMed Central Google
Scholar * Awwad, S. W., Abu-Zhayia, E. R., Guttmann-Raviv, N. & Ayoub, N. NELF-E is recruited to DNA double-strand break sites to promote transcriptional repression and repair. _EMBO
Rep._ 18, 745–764 (2017). CAS PubMed PubMed Central Google Scholar * Pankotai, T., Bonhomme, C., Chen, D. & Soutoglou, E. DNAPKcs-dependent arrest of RNA polymerase II transcription
in the presence of DNA breaks. _Nat. Struct. Mol. Biol._ 19, 276–282 (2012). CAS PubMed Google Scholar * Burger, K., Ketley, R. F. & Gullerova, M. Beyond the trinity of ATM, ATR, and
DNA-PK: multiple kinases shape the DNA damage response in concert with RNA metabolism. _Front. Mol. Biosci._ 6, 61 (2019). CAS PubMed PubMed Central Google Scholar * Hustedt, N. &
Durocher, D. The control of DNA repair by the cell cycle. _Nat. Cell Biol._ 19, 1–9 (2016). PubMed Google Scholar * Skourti-Stathaki, K., Proudfoot, Nicholas, J. & Gromak, N. Human
senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. _Mol. Cell_ 42, 794–805 (2011). CAS PubMed PubMed Central Google Scholar *
Cohen, S. et al. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. _Nat. Commun._ 9, 533 (2018). PubMed PubMed Central Google Scholar *
Francia, S. et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. _Nature_ 488, 231–235 (2012). CAS PubMed PubMed Central Google Scholar * Michelini, F. et
al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. _Nat. Cell Biol._ 19, 1400–1411 (2017). CAS PubMed PubMed
Central Google Scholar * Pessina, F. et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. _Nat. Cell Biol._
21, 1286–1299 (2019). CAS PubMed PubMed Central Google Scholar * Burger, K., Schlackow, M. & Gullerova, M. Tyrosine kinase c-Abl couples RNA polymerase II transcription to DNA
double-strand breaks. _Nucleic Acids Res._ 47, 3467–3484 (2019). CAS PubMed PubMed Central Google Scholar * Ohle, C. et al. Transient RNA-DNA hybrids are required for efficient
double-strand break repair. _Cell_ 167, 1001–1013 e1007 (2016). CAS PubMed Google Scholar * Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification
deficient in Cockayne syndrome cells. _Proc. Natl Acad. Sci. USA_ 93, 11586–11590 (1996). CAS PubMed PubMed Central Google Scholar * Ratner, J. N., Balasubramanian, B., Corden, J.,
Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled
DNA repair. _J. Biol. Chem._ 273, 5184–5189 (1998). CAS PubMed Google Scholar * Beaudenon, S. L., Huacani, M. R., Wang, G., McDonnell, D. P. & Huibregtse, J. M. Rsp5 ubiquitin-protein
ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. _Mol. Cell Biol._ 19, 6972–6979 (1999). CAS PubMed PubMed Central
Google Scholar * Lee, K. B., Wang, D., Lippard, S. J. & Sharp, P. A. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. _Proc. Natl Acad. Sci.
USA_ 99, 4239–4244 (2002). CAS PubMed PubMed Central Google Scholar * Ribar, B., Prakash, L. & Prakash, S. ELA1 and CUL3 are required along with ELC1 for RNA polymerase II
polyubiquitylation and degradation in DNA-damaged yeast cells. _Mol. Cell Biol._ 27, 3211–3216 (2007). CAS PubMed PubMed Central Google Scholar * Ribar, B., Prakash, L. & Prakash, S.
Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae. _Mol. Cell Biol._ 26, 3999–4005 (2006). CAS PubMed
PubMed Central Google Scholar * Lommel, L., Bucheli, M. E. & Sweder, K. S. Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for
Cockayne’s syndrome. _Proc. Natl Acad. Sci. USA_ 97, 9088–9092 (2000). CAS PubMed PubMed Central Google Scholar * Woudstra, E. C. et al. A Rad26-Def1 complex coordinates repair and RNA
pol II proteolysis in response to DNA damage. _Nature_ 415, 929–933 (2002). CAS PubMed Google Scholar * Nakazawa, Y. et al. Ubiquitination of DNA damage-stalled RNAPII promotes
transcription-coupled repair. _Cell_ 180, 1228–1244.e1224 (2020). CAS PubMed Google Scholar * Nguyen, V. T. et al. In vivo degradation of RNA polymerase II largest subunit triggered by
α-amanitin. _Nucleic Acids Res._ 24, 2924–2929 (1996). CAS PubMed PubMed Central Google Scholar * Mitsui, A. & Sharp, P. A. Ubiquitination of RNA polymerase II large subunit signaled
by phosphorylation of carboxyl-terminal domain. _Proc. Natl Acad. Sci. USA_ 96, 6054–6059 (1999). CAS PubMed PubMed Central Google Scholar * Anindya, R., Aygun, O. & Svejstrup, J.
Q. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not cockayne syndrome proteins or BRCA1. _Mol. Cell_ 28, 386–397 (2007). CAS PubMed Google
Scholar * Poli, J. et al. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. _Genes Dev._ 30, 337–354
(2016). CAS PubMed PubMed Central Google Scholar * Kuehner, J. N., Kaufman, J. W. & Moore, C. Stimulation of RNA polymerase II ubiquitination and degradation by yeast mRNA 3’-end
processing factors is a conserved DNA damage response in eukaryotes. _DNA Repair_ 57, 151–160 (2017). CAS PubMed PubMed Central Google Scholar * Luo, Z., Zheng, J., Lu, Y. & Bregman,
D. B. Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. _Mutat. Res._ 486, 259–274 (2001). CAS
PubMed Google Scholar * Somesh, B. P. et al. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. _Cell_ 121, 913–923 (2005).
CAS PubMed Google Scholar * Lafon, A. et al. INO80 chromatin remodeler facilitates release of RNA polymerase II from chromatin for ubiquitin-mediated proteasomal degradation. _Mol. Cell_
60, 784–796 (2015). CAS PubMed PubMed Central Google Scholar * Verma, R., Oania, R., Fang, R., Smith, G. T. & Deshaies, R. J. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II.
_Mol. Cell_ 41, 82–92 (2011). CAS PubMed PubMed Central Google Scholar * Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. _Science_
352, aad9926 (2016). PubMed PubMed Central Google Scholar * Cortazar, M. A. et al. Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a
“sitting duck torpedo” mechanism. _Mol. Cell_ 76, 896–908.e894 (2019). CAS PubMed PubMed Central Google Scholar * Eaton, J. D., Francis, L., Davidson, L. & West, S. A unified
allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes. _Genes Dev._ 34, 132–145 (2020). CAS PubMed PubMed Central Google Scholar * Dubbury, S. J.,
Boutz, P. L. & Sharp, P. A. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. _Nature_ 564, 141–145 (2018). CAS PubMed PubMed Central Google Scholar * Yang,
Y. et al. PAF complex plays novel subunit-specific roles in alternative cleavage and polyadenylation. _PLoS Genet._ 12, e1005794 (2016). PubMed PubMed Central Google Scholar * Devany, E.
et al. Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. _Cell Discov._ 2, 16013 (2016). CAS PubMed PubMed Central Google
Scholar * Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. _Genes Dev._ 28, 2663–2676 (2014). PubMed PubMed Central Google Scholar *
Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. _Mol. Cell_ 60, 256–267
(2015). CAS PubMed PubMed Central Google Scholar * Brannan, K. et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II
transcription. _Mol. Cell_ 46, 311–324 (2012). CAS PubMed PubMed Central Google Scholar * Elrod, N. D. et al. The integrator complex attenuates promoter-proximal transcription at
protein-coding genes. _Mol. Cell_ 76, 738–752 e737 (2019). CAS PubMed PubMed Central Google Scholar * Tatomer, D. C. et al. The integrator complex cleaves nascent mRNAs to attenuate
transcription. _Genes Dev._ 33, 1525–1538 (2019). ELROD ET AL. (2019) AND TATOMER ET AL. (2019) PROVIDE EVIDENCE THAT THE INTEGRATOR RNA CLEAVAGE COMPLEX MEDIATES PREMATURE TERMINATION OF
PROMOTER-PROXIMAL POL II PAUSING, THEREBY ATTENUATING TRANSCRIPTION. CAS PubMed PubMed Central Google Scholar * Henriques, T. et al. Stable pausing by RNA polymerase II provides an
opportunity to target and integrate regulatory signals. _Mol. Cell_ 52, 517–528 (2013). CAS PubMed Google Scholar * Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II
elongation and its interplay with promoter proximal pausing, chromatin, and exons. _eL__ife_ 3, e02407 (2014). PubMed PubMed Central Google Scholar * Shao, W. & Zeitlinger, J. Paused
RNA polymerase II inhibits new transcriptional initiation. _Nat. Genet._ 49, 1045–1051 (2017). CAS PubMed Google Scholar * Baillat, D. et al. Integrator, a multiprotein mediator of small
nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. _Cell_ 123, 265–276 (2005). CAS PubMed Google Scholar * Lai, F., Gardini, A., Zhang, A. &
Shiekhattar, R. Integrator mediates the biogenesis of enhancer RNAs. _Nature_ 525, 399–403 (2015). CAS PubMed PubMed Central Google Scholar * Stadelmayer, B. et al. Integrator complex
regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes. _Nat. Commun._ 5, 5531 (2014). CAS PubMed Google Scholar * Yamamoto, J. et al. DSIF and NELF
interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. _Nat. Commun._ 5, 4263 (2014). CAS PubMed Google Scholar * Beckedorff, F. et al. The human
integrator complex facilitates transcriptional elongation by endonucleolytic cleavage of nascent transcripts. _Cell Rep._ 32, 107917 (2020). CAS PubMed PubMed Central Google Scholar *
Lykke-Andersen, S. et al. Integrator is a genome-wide attenuator of non-productive transcription. Preprint at _bioRxiv_ https://doi.org/10.1101/2020.07.17.208702 (2020). Article Google
Scholar * Vervoort, S. J. et al. A PP2A-Integrator complex fine-tunes transcription by opposing CDK9. Preprint at _bioRxiv_ https://doi.org/10.1101/2020.07.12.199372 (2020). Article Google
Scholar * Huang, K. L. et al. Integrator recruits protein phosphatase 2A to prevent pause release and facilitate transcription termination. _Mol. Cell_
https://doi.org/10.1016/j.molcel.2020.08.016 (2020). Article PubMed PubMed Central Google Scholar * Eaton, J. D. et al. Xrn2 accelerates termination by RNA polymerase II, which is
underpinned by CPSF73 activity. _Genes Dev._ 32, 127–139 (2018). CAS PubMed PubMed Central Google Scholar * Mischo, H. E. et al. Yeast Sen1 helicase protects the genome from
transcription-associated instability. _Mol. Cell_ 41, 21–32 (2011). CAS PubMed PubMed Central Google Scholar * Alzu, A. et al. Senataxin associates with replication forks to protect fork
integrity across RNA-polymerase-II-transcribed genes. _Cell_ 151, 835–846 (2012). CAS PubMed PubMed Central Google Scholar * Li, W., Selvam, K., Rahman, S. A. & Li, S. Sen1, the
yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair. _Nucleic Acids Res._ 44, 6794–6802 (2016). CAS PubMed PubMed Central Google
Scholar * Han, Z. et al. Termination of non-coding transcription in yeast relies on both an RNA Pol II CTD interaction domain and a CTD-mimicking region in Sen1. _EMBO J._ 39, e101548
(2020). CAS PubMed PubMed Central Google Scholar * Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and
transcription-associated recombination. _Mol. Cell_ 12, 711–721 (2003). CAS PubMed Google Scholar * Garcia-Muse, T. & Aguilera, A. R loops: from physiological to pathological roles.
_Cell_ 179, 604–618 (2019). CAS PubMed Google Scholar * Lai, F., Damle, S. S., Ling, K. K. & Rigo, F. Directed RNase H cleavage of nascent transcripts causes transcription
termination. _Mol. Cell_ 77, 1032–1043 e1034 (2020). CAS PubMed Google Scholar * Lee, J. S. & Mendell, J. T. Antisense-mediated transcript knockdown triggers premature transcription
termination. _Mol. Cell_ 77, 1044–1054 e1043 (2020). CAS PubMed PubMed Central Google Scholar * Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and
analysis. _Protein Sci._ 27, 14–25 (2018). CAS PubMed Google Scholar * Crickard, J. B., Fu, J. & Reese, J. C. Biochemical analysis of yeast suppressor of Ty 4/5 (Spt4/5) reveals the
importance of nucleic acid interactions in the prevention of RNA polymerase II arrest. _J. Biol. Chem._ 291, 9853–9870 (2016). CAS PubMed PubMed Central Google Scholar * Zhu, W. et al.
DSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation. _Nucleic Acids Res._ 35, 4064–4075 (2007). CAS PubMed PubMed
Central Google Scholar * Dutta, A. et al. Ccr4-Not and TFIIS function cooperatively to rescue arrested RNA polymerase II. _Mol. Cell Biol._ 35, 1915–1925 (2015). CAS PubMed PubMed
Central Google Scholar * Kim, J., Guermah, M. & Roeder, R. G. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS.
_Cell_ 140, 491–503 (2010). CAS PubMed PubMed Central Google Scholar * Schweikhard, V. et al. Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by
synergistic and independent mechanisms. _Proc. Natl Acad. Sci. USA_ 111, 6642–6647 (2014). CAS PubMed PubMed Central Google Scholar * Swanson, M. S., Malone, E. A. & Winston, F.
SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. _Mol. Cell Biol._ 11, 4286 (1991).
CAS PubMed PubMed Central Google Scholar * Bernecky, C., Plitzko, J. M. & Cramer, P. Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp.
_Nat. Struct. Mol. Biol._ 24, 809–815 (2017). CAS PubMed Google Scholar * Bernecky, C., Herzog, F., Baumeister, W., Plitzko, J. M. & Cramer, P. Structure of transcribing mammalian RNA
polymerase II. _Nature_ 529, 551–554 (2016). CAS PubMed Google Scholar * Rondon, A. G., Garcia-Rubio, M., Gonzalez-Barrera, S. & Aguilera, A. Molecular evidence for a positive role
of Spt4 in transcription elongation. _EMBO J._ 22, 612–620 (2003). CAS PubMed PubMed Central Google Scholar * Guo, S. et al. A regulator of transcriptional elongation controls vertebrate
neuronal development. _Nature_ 408, 366–369 (2000). CAS PubMed Google Scholar * Andrulis, E. D., Guzman, E., Doring, P., Werner, J. & Lis, J. T. High-resolution localization of
Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. _Genes Dev._ 14, 2635–2649 (2000). CAS PubMed PubMed Central Google
Scholar * Kaplan, C. D., Morris, J. R., Wu, C. & Winston, F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D.
melanogaster. _Genes Dev._ 14, 2623–2634 (2000). CAS PubMed PubMed Central Google Scholar * Shetty, A. et al. Spt5 plays vital roles in the control of sense and antisense transcription
elongation. _Mol. Cell_ 66, 77–88 e75 (2017). CAS PubMed PubMed Central Google Scholar * Baluapuri, A. et al. MYC recruits SPT5 to RNA polymerase II to promote processive transcription
elongation. _Mol. Cell_ 74, 674–687 e611 (2019). CAS PubMed PubMed Central Google Scholar * Bacon, C. W. & D’Orso, I. CDK9: a signaling hub for transcriptional control.
_Transcription_ 10, 57–75 (2019). CAS PubMed Google Scholar * Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. _Nat.
Rev. Mol. Cell Biol._ 19, 464–478 (2018). CAS PubMed Google Scholar * Van Oss, S. B., Cucinotta, C. E. & Arndt, K. M. Emerging insights into the roles of the Paf1 complex in gene
regulation. _Trends Biochem. Sci._ 42, 788–798 (2017). PubMed PubMed Central Google Scholar * Basu, S., Nandy, A. & Biswas, D. Keeping RNA polymerase II on the run: functions of MLL
fusion partners in transcriptional regulation. _Biochim. Biophys. Acta Gene Regul. Mech._ 1863, 194563 (2020). CAS PubMed Google Scholar * Buratowski, S. Progression through the RNA
polymerase II CTD cycle. _Mol. Cell_ 36, 541–546 (2009). CAS PubMed PubMed Central Google Scholar * Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code.
_Chem. Rev._ 113, 8456–8490 (2013). CAS PubMed Google Scholar * Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II
carboxy-terminal domain. _Nat. Rev. Mol. Cell Biol._ 18, 263–273 (2017). CAS PubMed Google Scholar * Zehring, W. A., Lee, J. M., Weeks, J. R., Jokerst, R. S. & Greenleaf, A. L. The
C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. _Proc. Natl Acad. Sci. USA_ 85,
3698–3702 (1988). CAS PubMed PubMed Central Google Scholar * Nonet, M., Sweetser, D. & Young, R. A. Functional redundancy and structural polymorphism in the large subunit of RNA
polymerase II. _Cell_ 50, 909–915 (1987). CAS PubMed Google Scholar * Saldi, T., Cortazar, M. A., Sheridan, R. M. & Bentley, D. L. Coupling of RNA polymerase II transcription
elongation with pre-mRNA splicing. _J. Mol. Biol._ 428, 2623–2635 (2016). CAS PubMed PubMed Central Google Scholar * Boehning, M. et al. RNA polymerase II clustering through
carboxy-terminal domain phase separation. _Nat. Struct. Mol. Biol._ 25, 833–840 (2018). CAS PubMed Google Scholar * Mayfield, J. E., Burkholder, N. T. & Zhang, Y. J. Dephosphorylating
eukaryotic RNA polymerase II. _Biochim. Biophys. Acta_ 1864, 372–387 (2016). CAS PubMed PubMed Central Google Scholar * Lee, J. M. & Greenleaf, A. L. CTD kinase large subunit is
encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. _Gene Expr._ 1, 149–167 (1991). CAS PubMed Google Scholar * Bartkowiak, B. et al. CDK12 is a transcription
elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. _Genes Dev._ 24, 2303–2316 (2010). CAS PubMed PubMed Central Google Scholar * Greenleaf, A. L. Human CDK12 and
CDK13, multi-tasking CTD kinases for the new millenium. _Transcription_ 10, 91–110 (2019). CAS PubMed Google Scholar * Krajewska, M. et al. CDK12 loss in cancer cells affects DNA damage
response genes through premature cleavage and polyadenylation. _Nat. Commun._ 10, 1757 (2019). PubMed PubMed Central Google Scholar * Fan, Z. et al. CDK13 cooperates with CDK12 to control
global RNA polymerase II processivity. _Sci. Adv._ 6, eaaz5041 (2020). CAS PubMed PubMed Central Google Scholar Download references ACKNOWLEDGEMENTS The authors thank members of the
Svejstrup laboratory for helpful comments and suggestions, and especially L. Gregersen and A. Tufegdzic Vidakovic for their critical reading of the manuscript. The authors apologize to those
authors whose work could not be cited due to space constraints. M.N.G was supported by an EMBO Postdoctoral Fellowship (EMBO ALTF 2020-260). AUTHOR INFORMATION Author notes * These authors
contributed equally: Melvin Noe Gonzalez, Daniel Blears. AUTHORS AND AFFILIATIONS * Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK Melvin Noe Gonzalez,
Daniel Blears & Jesper Q. Svejstrup * Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark Melvin Noe Gonzalez, Daniel Blears & Jesper Q.
Svejstrup Authors * Melvin Noe Gonzalez View author publications You can also search for this author inPubMed Google Scholar * Daniel Blears View author publications You can also search for
this author inPubMed Google Scholar * Jesper Q. Svejstrup View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS The authors contributed equally
to all aspects of the article. CORRESPONDING AUTHOR Correspondence to Jesper Q. Svejstrup. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL
INFORMATION PEER REVIEW INFORMATION _Nature Reviews Molecular Cell Biology_ thanks the anonymous reviewers for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer
Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. GLOSSARY * General transcription factors Transcription factors that are
recruited to the promoter during transcription initiation and are necessary for the formation of the pre-initiation complex. * Pre-initiation complexes (PICs). Complexes of general
transcription factors and RNA polymerase II that assemble at gene promoters during transcription initiation. * Transcription pausing Transient series of Pol II stalling events, followed by
resumption of transcription. * Processive Refers to the extent to which RNA polymerase II performs consecutive nucleotide incorporations and forward translocation without dissociating from
the DNA. * Promoter-proximal pausing Widespread, regulatory stalling of RNA polymerase II in animal cells shortly downstream of transcription start sites. * Transcription arrest Blocking of
transcript elongation by RNA polymerase II by an unsurmountable obstacle. * Genome instability A cellular genotoxic state that may include changes in DNA sequence and/or chromosomal
rearrangements. * Transcription stalling The point at which forward translocation by RNA polymerase II is blocked, leading to secondary events that include backtracking, arrest or
transcription resumption. * Transcription stress Collective term for events in which RNA polymerase II becomes stalled or arrested during transcript elongation. * Premature termination
Termination of transcription anywhere between the transcription start site and the canonical polyadenylation site, by means of RNA cleavage and RNA polymerase II dissociation. * R-loop
Three-stranded RNA–DNA hybrid structure formed by hybridization of nascent RNA to the DNA strand from which it was transcribed. * Transcription start site The DNA base position that is
complimentary to the first incorporated RNA nucleoside triphosphate. * Pol II C-terminal domain The highly conserved C-terminal domain (CTD) of RBP1, the catalytic subunit of RNA polymerase
II (Pol II). Post-translational modification of the CTD is an important mechanism of transcription regulation. * Core promoter elements Consensus DNA sequences located at gene promoters
which direct the assembly of the pre-initiation complex and transcription initiation. * Nucleosome dyad Central position within the nucleosome structure, at which a twofold topological
symmetry is exhibited. * SHL Superhelical locations on the nucleosome structure, spaced by approximately 10 bp. SHL(0) marks the nucleosome dyad. * Transcription readthrough Continuation of
transcription beyond (downstream) of canonical termination regions. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Noe Gonzalez, M., Blears, D. &
Svejstrup, J.Q. Causes and consequences of RNA polymerase II stalling during transcript elongation. _Nat Rev Mol Cell Biol_ 22, 3–21 (2021). https://doi.org/10.1038/s41580-020-00308-8
Download citation * Accepted: 08 October 2020 * Published: 18 November 2020 * Issue Date: January 2021 * DOI: https://doi.org/10.1038/s41580-020-00308-8 SHARE THIS ARTICLE Anyone you share
the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer
Nature SharedIt content-sharing initiative
Trending News
Tragic tale of malegaon’s supermanBY: GARIMA SHUKLA | Updated Date: Fri, 12 Aug 2011 12:55:00 (IST) इतने साल से हमने सुना कि कई सुपरमेन की जिंदगी का ट्रेज...
Raised latest news in hindi, photos, videos on raised inextlive jagranMeerut News : कूड़ा निपटाने का फार्मूला, कहीं ढेर लगा देते हैैं, कहीं जला देते हैैं local5 months ago अब्दुल्लापुर रोड क...
The policy ask with mark girolami: “computer science should be compulsory at gcse level”Mark Girolami is chief scientist at the Alan Turing Institute, the UK’s national institute for data science and artifici...
How to Fight Back Against Age DiscriminationAARP Facebook Twitter LinkedIn Workers who believe their age has cost them — whether it's a job, a promotion, a raise — ...
Us president donald trump to ban tiktok today - times of indiaUS President Donald Trump has said that he will act to ban TikTok as soon as on Saturday, amidst reports of American tec...
Latests News
Causes and consequences of rna polymerase ii stalling during transcript elongationABSTRACT The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript el...
A human in the loop in surgery automationAccess through your institution Buy or subscribe TO THE EDITOR — Medical robots are expected to improve healthcare deliv...
Page Not Found很抱歉,你所访问的页面已不存在了。 如有疑问,请电邮[email protected] 你仍然可选择浏览首页或以下栏目内容 : 新闻 生活 娱乐 财经 体育 视频 播客 新报业媒体有限公司版权所有(公司登记号:202120748H)...
Page not found - Chicago Sun-TimesA network of correspondents providing impartial news, reports and analysis in 33 languages from locations around the wor...
Security legislation news, research and analysis - the conversationSeptember 26, 2014 Rick Sarre, _University of South Australia_ It has been said that the line between good investigative...