A framework for understanding the functions of biomolecular condensates across scales

Nature

A framework for understanding the functions of biomolecular condensates across scales"


Play all audios:

Loading...

ABSTRACT Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular


functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and


understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed


functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating


localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the


recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and


challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology. Access through your institution Buy


or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get


Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only


$17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS FUNCTIONAL SPECIFICITY IN


BIOMOLECULAR CONDENSATES REVEALED BY GENETIC COMPLEMENTATION Article 21 October 2024 BIOMOLECULAR CONDENSATES – EXTANT RELICS OR EVOLVING MICROCOMPARTMENTS? Article Open access 21 June 2023


RNA CONTRIBUTIONS TO THE FORM AND FUNCTION OF BIOMOLECULAR CONDENSATES Article 06 July 2020 REFERENCES * Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates:


organizers of cellular biochemistry. _Nat. Rev. Mol. Cell Biol._ 18, 285–298 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Shin, Y. & Brangwynne, C. P. Liquid phase condensation


in cell physiology and disease. _Science_ 357, eaaf4382 (2017). PubMed  Google Scholar  * Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of


membrane receptors. _eLife_ 3, e04123 (2014). PubMed Central  Google Scholar  * Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. _Nature_ 483, 336–340


(2012). CAS  PubMed  PubMed Central  Google Scholar  * Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. _Cell_ 149,


753–767 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. _Cell_ 179, 470–484.e21 (2019). CAS


  PubMed  PubMed Central  Google Scholar  * Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. _Cell_ 174, 688–699.e16


(2018). CAS  PubMed  PubMed Central  Google Scholar  * Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. _Science_ 367,


694–699 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Lin, Y. H., Forman-Kay, J. D. & Chan, H. S. Theories for sequence-dependent phase behaviors of biomolecular condensates.


_Biochemistry_ 57, 2499–2508 (2018). CAS  PubMed  Google Scholar  * Vernon, R. M. et al. Pi–Pi contacts are an overlooked protein feature relevant to phase separation. _eLife_ 7, e31486


(2018). PubMed  PubMed Central  Google Scholar  * Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. _Nature_ 546, 243–247 (2017). CAS  PubMed  PubMed Central 


Google Scholar  * Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. _Science_ 360, 922–927 (2018). CAS  PubMed  PubMed Central  Google Scholar 


* Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. _Mol. Cell_ 57, 936–947 (2015). CAS  PubMed  PubMed Central


  Google Scholar  * Banani, S. F. et al. Compositional control of phase-separated cell. bodies. _Cell_ 166, 651–663 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Yoshizawa, T. et


al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. _Cell_ 173, 693–705.e22 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Qamar, S. et


al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation–pi interactions. _Cell_ 173, 720–734.e15 (2018). CAS  PubMed  PubMed Central  Google Scholar


  * Guo, L. et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. _Cell_ 173, 677–692.e20 (2018). CAS  PubMed  PubMed Central 


Google Scholar  * Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. _Cell_ 173, 706–719.e13 (2018). CAS  PubMed  Google


Scholar  * Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. _Cell_ 168, 1028–1040.e19 (2017). THIS PAPER SHOWS THAT THE EXQUISITE


TEMPERATURE SENSITIVITY OF PAB1 CONDENSATION SERVES AS A CELLULAR-SCALE SENSOR FOR HEAT STRESS, COUPLED WITH MOLECULAR-SCALE CHANGES IN MRNA BINDING ACTIVITY THAT REGULATE THE HEAT SHOCK


RESPONSE. CAS  PubMed  PubMed Central  Google Scholar  * Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. _Science_ 359, eaao5654 (2018). PubMed 


Google Scholar  * Kato, M. et al. Redox state controls phase separation of the yeast ataxin-2 protein via reversible oxidation of its methionine-rich low-complexity domain. _Cell_ 177,


711–721.e8 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Nedelsky, N. B. & Taylor, J. P. Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative


disease. _Nat. Rev. Neurol._ 15, 272–286 (2019). PubMed  Google Scholar  * Alberti, S. & Dormann, D. Liquid–liquid phase separation in disease. _Annu. Rev. Genet._ 53, 171–194 (2019).


CAS  PubMed  Google Scholar  * Berry, J., Brangwynne, C. P. & Haataja, M. Physical principles of intracellular organization via active and passive phase transitions. _Rep. Prog. Phys._


81, 046601 (2018). PubMed  Google Scholar  * Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. _Nat. Phys._ 11, 899–904 (2015). CAS  Google


Scholar  * Andersson, I. & Backlund, A. Structure and function of Rubisco. _Plant Physiol. Biochem._ 46, 275–291 (2008). CAS  PubMed  Google Scholar  * Wunder, T., Oh, Z. G. &


Mueller-Cajar, O. CO2-fixing liquid droplets: towards a dissection of the microalgal pyrenoid. _Traffic_ 20, 380–389 (2019). CAS  PubMed  Google Scholar  * Wang, H. et al. Rubisco condensate


formation by CcmM in β-carboxysome biogenesis. _Nature_ 566, 131–135 (2019). CAS  PubMed  Google Scholar  * Oltrogge, L. M. et al. Multivalent interactions between CsoS2 and Rubisco mediate


α-carboxysome formation. _Nat. Struct. Mol. Biol._ 27, 281–287 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Wunder, T., Cheng, S. L. H., Lai, S.-K., Li, H.-Y. & Mueller-Cajar,


O. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. _Nat. Commun._ 9, 5076 (2018). PubMed  PubMed Central  Google Scholar  * Freeman Rosenzweig, E. S. et


al. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. _Cell_ 171, 148–162.e19 (2017). TOGETHER WITH WANG ET AL. (_NATURE_, 2019), OLTROGGE ET AL.


(2020) AND WUNDER ET AL. (2018), THIS PAPER DEMONSTRATES HOW RUBISCO CONDENSATES CO-CONCENTRATE ENZYME AND SUBSTRATE TO ENHANCE REACTION RATES. CAS  PubMed  PubMed Central  Google Scholar 


* Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. _Annu. Rev. Plant. Biol._ 56, 99–131 (2005). CAS 


PubMed  Google Scholar  * Kaplan, A. & Reinhold, L. CO2 concentrating mechanisms in photosynthetic microorganisms. _Annu. Rev. Plant. Physiol. Plant Mol. Biol._ 50, 539–570 (1999). CAS 


PubMed  Google Scholar  * Nishimura, T., Yamaguchi, O., Takatani, N., Maeda, S. & Omata, T. In vitro and in vivo analyses of the role of the carboxysomal β-type carbonic anhydrase of the


cyanobacterium _Synechococcus elongatus_ in carboxylation of ribulose-1,5-bisphosphate. _Photosynth. Res._ 121, 151–157 (2014). CAS  PubMed  Google Scholar  * Dou, Z. et al. CO2 fixation


kinetics of _Halothiobacillus neapolitanus_ mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. _J. Biol. Chem._ 283, 10377–10384 (2008).


CAS  PubMed  Google Scholar  * Varesio, L. M., Willett, J. W., Fiebig, A. & Crosson, S. A carbonic anhydrase pseudogene sensitizes select brucella lineages to low CO2 tension. _J.


Bacteriol._ 201, e00509-19 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling.


_Science_ 361, 704–709 (2018). THIS PAPER DEMONSTRATES THE FORMATION OF PHASE-SEPARATED CGAS CONDENSATES UPON INTRODUCTION OF DOUBLE-STRANDED DNA, LEADING TO ENHANCED CGAS PRODUCTION. CAS 


PubMed  Google Scholar  * Zhang, X. et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. _Cell


Rep._ 6, 421–430 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Wu, J. et al. Cyclic GMP–AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. _Science_


339, 826–830 (2013). CAS  PubMed  Google Scholar  * Sheu-Gruttadauria, J. & MacRae, I. J. Phase transitions in the assembly and function of human miRISC. _Cell_ 173, 946–957 e916 (2018).


THIS PAPER SHOWS THAT CONDENSATES FORMED BY COMPONENTS OF THE RNA-INDUCED SILENCING COMPLEX ENHANCE RATES OF MRNA DEADENYLATION. CAS  PubMed  PubMed Central  Google Scholar  * Chu, C. Y.


& Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. _PLoS Biol._ 4, e210 (2006). PubMed  PubMed Central  Google Scholar  * Eulalio,


A., Behm-Ansmant, I., Schweizer, D. & Izaurralde, E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. _Mol. Cell Biol._ 27, 3970–3981 (2007). CAS  PubMed


  PubMed Central  Google Scholar  * Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. _Nat. Rev. Mol. Cell Biol._ 19, 451–463 (2018). CAS 


PubMed  PubMed Central  Google Scholar  * Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. _Cell_ 169, 1066–1077.e10


(2017). THIS PAPER SHOWS THAT THE CENTROSOME IS A LIQUID-LIKE COMPARTMENT THAT NUCLEATES MICROTUBULES THROUGH CONCENTRATION OF TUBULIN AND MICROTUBULE REGULATORY PROTEINS. CAS  PubMed 


Google Scholar  * King, M. R. & Petry, S. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. _Nat. Commun._ 11, 270 (2020). CAS  PubMed  PubMed Central 


Google Scholar  * Jiang, H. et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. _Cell_ 163, 108–122 (2015). CAS  PubMed  PubMed Central  Google Scholar


  * Huang, Y. et al. Aurora A activation in mitosis promoted by BuGZ. _J. Cell Biol._ 217, 107–116 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Schwayer, C. et al. Mechanosensation


of tight junctions depends on ZO-1 phase separation and flow. _Cell_ 179, 937–952.e18 (2019). CAS  PubMed  Google Scholar  * Beutel, O., Maraspini, R., Pombo-García, K., Martin-Lemaitre, C.


& Honigmann, A. Phase separation of zonula occludens proteins drives formation of tight junctions. _Cell_ 179, 923–936.e11 (2019). TOGETHER WITH SCHWAYER ET AL. (2019), THIS PAPER


DEMONSTRATES THAT PHASE SEPARATION CONTRIBUTES TO THE FORMATION OF CELL ADHESIVE TIGHT JUNCTIONS, WITH CONDENSATES CONTRIBUTING TO MECHANOSENSATION. CAS  PubMed  Google Scholar  * Peeples,


W. & Rosen, M. K. Phase separation can increase enzyme activity by concentration and molecular organization. Preprint at _bioRxiv_


https://www.biorxiv.org/content/10.1101/2020.09.15.299115v1 (2020). * Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies.


_Mol. Biol. Cell_ 25, 169–183 (2014). PubMed  PubMed Central  Google Scholar  * Powers, S. K. et al. Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in _Arabidopsis


thaliana_. _Mol. Cell_ 76, 177–190.e5 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Chakraborty, A. K. & Weiss, A. Insights into the initiation of TCR signaling. _Nat. Immunol._


15, 798–807 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. _Science_ 352, 595–599


(2016). THIS PAPER DEMONSTRATES THAT THE CORE TCR SIGNALLING COMPONENTS PHASE-SEPARATE IN VITRO AND THE CLUSTERING INDUCES LOCALIZED ACTIN POLYMERIZATION. CAS  PubMed  PubMed Central 


Google Scholar  * Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling


molecules in T cells. _Cell_ 121, 937–950 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding


synapse formation and plasticity. _Cell_ 174, 1172–1187.e16 (2018). CAS  PubMed  Google Scholar  * Zhu, J., Shang, Y. & Zhang, M. Mechanistic basis of MAGUK-organized complexes in


synaptic development and signalling. _Nat. Rev. Neurosci._ 17, 209–223 (2016). CAS  PubMed  Google Scholar  * Wei, M.-T. et al. Phase behaviour of disordered proteins underlying low density


and high permeability of liquid organelles. _Nat. Chem._ 9, 1118–1125 (2017). CAS  PubMed  Google Scholar  * Huang, W. Y. C. et al. Phosphotyrosine-mediated LAT assembly on membranes drives


kinetic bifurcation in recruitment dynamics of the Ras activator SOS. _Proc. Natl Acad. Sci. USA_ 113, 8218–8223 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Case, L. B., Zhang,


X., Ditlev, J. A. & Rosen, M. K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. _Science_ 363, 1093–1097 (2019). CAS  PubMed  PubMed Central 


Google Scholar  * Huang, W. Y. C. et al. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. _Science_ 363, 1098–1103 (2019). TOGETHER WITH CASE ET


AL. (2019), THIS PAPER DEMONSTRATES HOW THE DWELL TIME OF MOLECULES WITHIN MEMBRANE-ASSOCIATED CONDENSATES CAN LEAD TO INCREASED ACTIVITY THROUGH A KINETIC PROOFREADING MECHANISM. CAS 


PubMed  PubMed Central  Google Scholar  * Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. _Nat. Rev. Mol. Cell


Biol._ https://doi.org/10.1038/s41580-020-0272-6 (2020). Article  PubMed  Google Scholar  * Kim, T. H. et al. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation


of translation and deadenylation. _Science_ 365, 825–829 (2019). THIS PAPER SHOWS A COUNTER-INTUITIVE ACCELERATION OF A REACTION IN A MULTIPHASE CONDENSATE WHERE THE ENZYME AND SUBSTRATE ARE


SUBSTANTIALLY ENRICHED IN THE DIFFERENT PHASES. CAS  PubMed  Google Scholar  * Bouchard, J. J. et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active,


phase-separated compartments. _Mol. Cell_ 72, 19–36.e8 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Ma, W. & Mayr, C. A membraneless organelle associated with the endoplasmic


reticulum enables 3′ UTR-mediated protein–protein interactions. _Cell_ 175, 1492–1506.e19 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Frottin, F. et al. The nucleolus functions as


a phase-separated protein quality control compartment. _Science_ 365, 342–347 (2019). THIS PAPER IDENTIFIES A NOVEL, MOLECULAR-SCALE ACTIVITY OF THE NUCLEOLUS IN REGULATING THE FOLDING


STATE OF NUCLEAR PROTEINS UNDER HEAT STRESS. CAS  PubMed  Google Scholar  * Kedersha, N. & Anderson, P. in _Progress in Molecular Biology and Translational Science_ Vol. 90 155–185


(Academic, 2009). * Kedersha, N. et al. G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits. _J. Cell Biol._ 212, e201508028 (2016). Google


Scholar  * Matsuki, H. et al. Both G3BP1 and G3BP2 contribute to stress granule formation. _Genes Cell_ 18, 135–146 (2013). CAS  Google Scholar  * Yang, P. et al. G3BP1 is a tunable switch


that triggers phase separation to assemble stress granules. _Cell_ 181, 325–345.e28 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Sanders, D. W. et al. Competing protein–RNA


interaction networks control multiphase intracellular organization. _Cell_ 181, 306–324.e28 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Guillen-Boixet, J. et al. RNA-induced


conformational switching and clustering of G3BP drive stress granule assembly by condensation. _Cell_ 181, 346–361.e17 (2020). TOGETHER WITH YANG ET AL. (2020) AND SANDERS ET AL. (2020),


THIS PAPER DEMONSTRATES THE IMPORTANCE OF G3BP1 IN FORMING STRESS GRANULES, WHICH CAN PREVENT RNA ENTANGLEMENT AND AGGREGATION. CAS  PubMed  PubMed Central  Google Scholar  * Hondele, M. et


al. DEAD-box ATPases are global regulators of phase-separated organelles. _Nature_ 573, 144–148 (2019). CAS  PubMed  Google Scholar  * Nott, T. J., Craggs, T. D. & Baldwin, A. J.


Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. _Nat. Chem._ 8, 569–575 (2016). CAS  PubMed  Google Scholar  * Küffner, A. M. et al. Acceleration of


an enzymatic reaction in liquid phase separated compartments based on intrinsically disordered protein domains. _ChemSystemsChem_ 2, e2000001 (2020). Google Scholar  * Feric, M. et al.


Coexisting liquid phases underlie nucleolar subcompartments. _Cell_ 165, 1686–1697 (2016). THIS PAPER SHOWS THAT THE MATERIAL PROPERTIES OF CONDENSATES FORMED BY NUCLEOLAR PROTEINS RESULTS


IN A MULTICOMPARTMENT STRUCTURE THAT CONTRIBUTES TO VECTORAL ORGANIZATION OF RIBOSOME ASSEMBLY REACTIONS. CAS  PubMed  PubMed Central  Google Scholar  * Yao, R.-W. et al. Nascent pre-rRNA


sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. _Mol. Cell_ 76, 767–783.e11 (2019). CAS  PubMed  Google Scholar  * Zhu, L. et al.


Controlling the material properties and rRNA processing function of the nucleolus using light. _Proc. Natl Acad. Sci. USA_ 116, 17330–17335 (2019). CAS  PubMed  PubMed Central  Google


Scholar  * Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. _Nat. Commun._ 9, 842 (2018). PubMed  PubMed Central  Google Scholar


  * Wan, G. et al. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. _Nature_ 557, 679–683 (2018). THIS PAPER IDENTIFIES A NOVEL CONDENSATE COMPOSED OF THREE


SEPARATE, COEXISTING PHASES INVOLVED IN TRANSGENERATIONAL EPIGENETIC INHERITANCE OF RNAI, POTENTIALLY FUNCTIONING VIA VECTORAL ORGANIZATION OF BIOCHEMISTRY SIMILAR TO THE NUCLEOLUS. CAS 


PubMed  PubMed Central  Google Scholar  * Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. _Science_ 324, 1729–1732


(2009). CAS  PubMed  Google Scholar  * Phillips, C. M., Montgomery, T. A., Breen, P. C. & Ruvkun, G. MUT-16 promotes formation of perinuclear Mutator foci required for RNA silencing in


the _C. elegans_ germline. _Genes. Dev._ 26, 1433–1444 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Tibble, R. W., Depaix, A., Kowalska, J., Jemielity, J. & Gross, J. D.


Biomolecular condensates amplify mRNA decapping by coupling protein interactions with conformational changes in Dcp1/Dcp2. Preprint at _bioRxiv_


https://www.biorxiv.org/content/10.1101/2020.07.09.195057v1 (2020). * Wu, X. et al. RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation. _Mol. Cell_ 73,


971–984.e5 (2019). CAS  PubMed  Google Scholar  * Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. _Cell_ 166,


1163–1175.e12 (2016). TOGETHER WITH ZENG ET AL. (2018) AND WU ET AL. (2019), THIS PAPER DEMONSTRATES THE ROLES OF CONDENSATE FORMATION IN REGULATING THE MESOSCALE ARCHITECTURE OF THE PSD AND


PRESYNAPTIC ACTIVE ZONES. CAS  PubMed  PubMed Central  Google Scholar  * Südhof, T. C. The presynaptic active zone. _Neuron_ 75, 11–25 (2012). PubMed  PubMed Central  Google Scholar  *


Boke, E. et al. Amyloid-like self-assembly of a cellular compartment. _Cell_ 166, 637–650 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Rebane, A. A. et al. Liquid–liquid phase


separation of the Golgi matrix protein GM130. _FEBS Lett._ 594, 1132–1144 (2020). CAS  PubMed  Google Scholar  * Maser, R. S., Monsen, K. J., Nelms, B. E. & Petrini, J. H. hMre11 and


hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. _Mol. Cell Biol._ 17, 6087–6096 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Haaf,


T., Golub, E. I., Reddy, G., Radding, C. M. & Ward, D. C. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal


complexes. _Proc. Natl Acad. Sci. USA_ 92, 2298–2302 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Singatulina, A. S. et al. PARP-1 activation directs FUS to DNA damage sites to


form PARG-reversible compartments enriched in damaged DNA. _Cell Rep._ 27, 1809–1821.e5 (2019). THIS PAPER SHOWS THAT CO-PHASE SEPARATION OF FUS AND PAR AT SITES OF DNA DAMAGE ORGANIZES A


MESOSCALE DNA REPAIR COMPARTMENT. CAS  PubMed  Google Scholar  * Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. _Cell_ 162,


1066–1077 (2015). CAS  PubMed  Google Scholar  * Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). _Nat. Commun._ 6, 8088 (2015). CAS 


PubMed  Google Scholar  * Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. _Cell_ 141, 243–254 (2010). CAS  PubMed


  PubMed Central  Google Scholar  * Kilic, S. et al. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. _Embo J._ 38, e101379 (2019). PubMed  PubMed


Central  Google Scholar  * Pessina, F. et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. _Nat. Cell Biol._


21, 1286–1299 (2019). THIS PAPER SHOWS THAT PHASE SEPARATION APPEARS TO BE INVOLVED IN THE TURNOVER OF DNA REPAIR FOCI AS LIQUID, REVERSIBLE PROPERTIES ALLOW DISPERSAL UPON RESOLUTION OF


DAMAGE. CAS  PubMed  PubMed Central  Google Scholar  * Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. _Cell_ 175, 1481–1491.e13 (2018). CAS  PubMed


  PubMed Central  Google Scholar  * Oshidari, R. et al. DNA repair by Rad52 liquid droplets. _Nat. Commun._ 11, 695 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Parker, M. W. et


al. A new class of disordered elements controls DNA replication through initiator self-assembly. _eLife_ 8, e48562 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Xiang, W. et al.


Correlative live and super-resolution imaging reveals the dynamic structure of replication domains. _J. Cell Biol._ 217, 1973–1984 (2018). CAS  PubMed  PubMed Central  Google Scholar  *


Cook, P. R. The organization of replication and transcription. _Science_ 284, 1790–1795 (1999). CAS  PubMed  Google Scholar  * Wang, Z. & Zhang, H. Phase separation, transition, and


autophagic degradation of proteins in development and pathogenesis. _Trends Cell Biol._ 29, 417–427 (2019). CAS  PubMed  Google Scholar  * Sun, D., Wu, R., Zheng, J., Li, P. & Yu, L.


Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. _Cell Res._ 28, 405–415 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Yamasaki, A. et al.


Liquidity is a critical determinant for selective autophagy of protein condensates. _Mol. Cell_ 77, 1163–1175.e9 (2020). CAS  PubMed  Google Scholar  * Fujioka, Y. et al. Phase separation


organizes the site of autophagosome formation. _Nature_ 578, 301–305 (2020). TOGETHER WITH SUN ET AL. (2018) AND YAMASAKI ET AL. (2020), THIS PAPER DEMONSTRATE HOW PHASE SEPARATION CREATES


MESOSCALE, DISCRETE STRUCTURES THAT CAN BE ENGULFED BY AUTOPHAGOSOMES. CAS  PubMed  Google Scholar  * Bergeron-Sandoval, L.-P. et al. Endocytosis caused by liquid–liquid phase separation of


proteins. Preprint at _bioRxiv_ https://www.biorxiv.org/content/10.1101/145664v3 (2018). * Weatheritt, R. J., Gibson, T. J. & Babu, M. M. Asymmetric mRNA localization contributes to


fidelity and sensitivity of spatially localized systems. _Nat. Struct. Mol. Biol._ 21, 833–839 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Maday, S., Twelvetrees, A. E.,


Moughamian, A. J. & Holzbaur, E. L. Axonal transport: cargo-specific mechanisms of motility and regulation. _Neuron_ 84, 292–309 (2014). CAS  PubMed  PubMed Central  Google Scholar  *


Ishizuka, N., Cowan, W. M. & Amaral, D. G. A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. _J. Comp. Neurol._ 362, 17–45 (1995). CAS 


PubMed  Google Scholar  * Donnelly, C. J., Fainzilber, M. & Twiss, J. L. Subcellular communication through RNA transport and localized protein synthesis. _Traffic_ 11, 1498–1505 (2010).


CAS  PubMed  PubMed Central  Google Scholar  * Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of


liquid-like TDP-43 RNP granules in neurons. _Proc. Natl Acad. Sci. USA_ 114, E2466–E2475 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Holt, C. E. & Schuman, E. M. The central


dogma decentralized: new perspectives on RNA function and local translation in neurons. _Neuron_ 80, 648–657 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Liao, Y. C. et al. RNA


granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. _Cell_ 179, 147–164.e20 (2019). THIS PAPER DEMONSTRATES HOW RIBONUCLEOPROTEIN


CONDENSATES ‘HITCHHIKE’ ON MEMBRANOUS ORGANELLES FOR LONG-DISTANCE TRANSPORT IN NEURONS. CAS  PubMed  PubMed Central  Google Scholar  * Meaburn, K. J. & Misteli, T. Cell biology:


chromosome territories. _Nature_ 445, 379–781 (2007). CAS  PubMed  Google Scholar  * Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in


single cells. _Science_ 362, eaau1783 (2018). PubMed  PubMed Central  Google Scholar  * Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles


of the human genome. _Science_ 326, 289–293 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. _Cell_ 171, 305–320.e24


(2017). CAS  PubMed  PubMed Central  Google Scholar  * Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. _Nature_ 547, 236–240


(2017). CAS  PubMed  PubMed Central  Google Scholar  * Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. _Nature_ 575, 390–394 (2019). CAS 


PubMed  PubMed Central  Google Scholar  * Strom, A. R. et al. Phase separation drives heterochromatin domain formation. _Nature_ 547, 241–245 (2017). THIS PAPER SHOWS THAT PHASE SEPARATION


OF HP1Α APPEARS TO PLAY A ROLE IN HETEROCHROMATIN FORMATION (BUT SEE ALSO ERDEL ET AL. (2020)). CAS  PubMed  PubMed Central  Google Scholar  * Zaidi, S. K. et al. Mitotic bookmarking of


genes: a novel dimension to epigenetic control. _Nat. Rev. Genet._ 11, 583–589 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Palozola, K. C., Lerner, J. & Zaret, K. S. A


changing paradigm of transcriptional memory propagation through mitosis. _Nat. Rev. Mol. Cell Biol._ 20, 55–64 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Liu, X. et al. Mitotic


implantation of the transcription factor prospero via phase separation drives terminal neuronal differentiation. _Dev. Cell_ 52, 277–293.e8 (2020). THIS PAPER DEMONSTRATES HOW A CONDENSATE


COMPOSED OF THE PROSPERO TRANSCRIPTION FACTOR LOCALIZES TO SPECIFIC REGIONS OF THE GENOME EVEN THROUGH MITOSIS TO FACILITATE RAPID FORMATION OF HETEROCHROMATIN FOLLOWING MITOSIS IN NEURAL


PROGENITOR CELLS, DRIVING TERMINAL NEURONAL DIFFERENTIATION. CAS  PubMed  Google Scholar  * Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. _Nature_ 467,


167–173 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Stoeger, T., Battich, N. & Pelkmans, L. Passive noise filtering by cellular compartmentalization. _Cell_ 164, 1151–1161


(2016). CAS  PubMed  Google Scholar  * Dill, K. A. & Bromberg, S. _Molecular Driving Forces. Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience_ 2nd edn (Garland


Science, 2010). * Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. _Science_ 367, 464–468 (2020). THIS PAPER PROVIDES THEORETICAL AND EXPERIMENTAL EVIDENCE


THAT PHASE SEPARATION MAY PROVIDE A MEANS OF REDUCING FLUCTUATIONS IN PROTEIN CONCENTRATION, THEREBY INCREASING ROBUSTNESS OF CELLULAR PROCESSES. CAS  PubMed  Google Scholar  * Riback, J. A.


et al. Composition-dependent thermodynamics of intracellular phase separation. _Nature_ 581, 209–214 (2020). THIS PAPER DEMONSTRATES THE COMPLEXITY OF MULTICOMPONENT PHASE-SEPARATED


CONDENSATES, WHERE SATURATION CONCENTRATIONS ARE NOT FIXED BUT VARY BASED ON CONCENTRATIONS OF CONDENSATE COMPONENTS. CAS  PubMed  PubMed Central  Google Scholar  * Ruff, K. M., Roberts, S.,


Chilkoti, A. & Pappu, R. V. Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. _J. Mol. Biol._ 430, 4619–4635 (2018). CAS  PubMed


  Google Scholar  * Hyman, A. A., Weber, C. A. & Julicher, F. Liquid–liquid phase separation in biology. _Annu. Rev. Cell Dev. Biol._ 30, 39–58 (2014). CAS  PubMed  Google Scholar  *


Yoo, H., Triandafillou, C. & Drummond, D. A. Cellular sensing by phase separation: using the process, not just the products. _J. Biol. Chem._ 294, 7151–7159 (2019). CAS  PubMed  PubMed


Central  Google Scholar  * Sengupta, P. & Garrity, P. Sensing temperature. _Curr. Biol._ 23, R304–R307 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Lindquist, S. &


Petersen, R. Selective translation and degradation of heat-shock messenger RNAs in _Drosophila_. _Enzyme_ 44, 147–166 (1990). CAS  PubMed  Google Scholar  * Iserman, C. et al. Condensation


of Ded1p promotes a translational switch from housekeeping to stress protein production. _Cell_ 181, 818–831.e19 (2020). THIS PAPER SHOWS THAT STRESS-INDUCED CONDENSATE FORMATION SWITCHES


THE CELLULAR TRANSLATIONAL REGULATORY REGIME TO MOUNT A HOMEOSTATIC RESPONSE, AND PROVIDES EVIDENCE THAT EVOLUTIONARY PROCESSES HAVE TUNED CONDENSATE FORMATION AT TEMPERATURES SUITING


ORGANISMS’ ENVIRONMENTS. CAS  PubMed  PubMed Central  Google Scholar  * Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning


crowding. _Cell_ 173, 338–349.e20 (2018). THIS PAPER SHOWS THAT MTORC INHIBITION LEADS TO REDUCED RIBOSOME ABUNDANCE AND DECREASED CYTOPLASMIC CROWDING, IMPACTING THE SATURATION


CONCENTRATION FOR CONDENSATE FORMATION. Google Scholar  * Xing, W., Muhlrad, D., Parker, R. & Rosen, M. K. A quantitative inventory of yeast P body proteins reveals principles of


composition and specificity. _eLife_ 9, e56525 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and


substructure. _Cell_ 164, 487–498 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within


stress granules. _Cell_ 172, 590–604.e13 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of


mRNA-associated granules and bodies. _Mol. Cell_ 69, 517–532.e11 (2018). CAS  PubMed  Google Scholar  * Hubstenberger, A. et al. P-body purification reveals the condensation of repressed


mRNA regulons. _Mol. Cell_ 68, 144–157.e5 (2017). TOGETHER WITH XING ET AL. (2020), JAIN ET AL. (2016), MARKMILLER ET AL. (2018) AND YOUN ET AL. (2018), THIS PAPER CHARACTERIZES THE


COMPLEXITY OF RNA GRANULES AND BODIES, SETTING THE STAGE FOR FUTURE WORK IN UNDERSTANDING HOW INTERACTIONS BETWEEN NUMEROUS COMPONENTS GOVERN THE FUNCTION OF HIGHLY COMPLEX NATIVE


CONDENSATES. CAS  PubMed  Google Scholar  * McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences.


_Genes Dev._ 33, 1619–1634 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Teixeira, D., Sheth, U., Valencia-Sanchez, M. A., Brengues, M. & Parker, R. Processing bodies require


RNA for assembly and contain nontranslating mRNAs. _RNA_ 11, 371–382 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Wheeler, R. J. & Hyman, A. A. Controlling compartmentalization


by non-membrane-bound organelles. _Philos. Trans. R. Soc. B_ 373, 20170193 (2018). Google Scholar  * Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying


liquid–liquid phase separation and biomolecular condensates. _Cell_ 176, 419–434 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Soding, J., Zwicker, D., Sohrabi-Jahromi, S.,


Boehning, M. & Kirschbaum, J. Mechanisms for active regulation of biomolecular condensates. _Trends Cell Biol._ 30, 4–14 (2020). PubMed  Google Scholar  * Bratek-Skicki, A., Pancsa, R.,


Meszaros, B., Van Lindt, J. & Tompa, P. A guide to regulation of the formation of biomolecular condensates. _FEBS J._ 287, 1924–1935 (2020). CAS  PubMed  Google Scholar  * Choi, J. M.,


Dar, F. & Pappu, R. V. LASSI: a lattice model for simulating phase transitions of multivalent proteins. _PLoS Comput. Biol._ 15, e1007028 (2019). CAS  PubMed  PubMed Central  Google


Scholar  * Cai, L. H., Panyukov, S. & Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. _Macromolecules_ 44, 7853–7863 (2011). CAS  PubMed  PubMed Central  Google


Scholar  * Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. _Science_ 361, 412–415 (2018). CAS  PubMed  PubMed Central  Google


Scholar  * Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. _Science_ 361, eaar3958 (2018). PubMed  PubMed Central  Google Scholar  *


Mir, M. et al. Dynamic multifactor hubs interact transiently with sites of active transcription in _Drosophila_ embryos. _eLife_ 7, e40497 (2018). TOGETHER WITH CHO ET AL. (2018) AND SABARI


ET AL. (2018), THIS KEY PAPER DISCUSSES THE ROLE OF CONDENSATES IN TRANSCRIPTION, A HIGHLY ACTIVE AREA OF RESEARCH WHERE MANY QUESTIONS REMAIN UNSETTLED. PubMed  PubMed Central  Google


Scholar  * Williamson, D. J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. _Nat. Immunol._ 12, 655–662 (2011). CAS  PubMed  Google


Scholar  * Rao, B. S. & Parker, R. Numerous interactions act redundantly to assemble a tunable size of P bodies in _Saccharomyces cerevisiae_. _Proc. Natl Acad. Sci. USA_ 114, E9569


(2017). CAS  PubMed  PubMed Central  Google Scholar  * Hill, T. L. _Thermodynamics of Small Systems, Parts 1 & 2_ (Dover, 2013). * Puglisi, A., Sarracino, A. & Vulpiani, A.


_Thermodynamics and Statistical Mechanics of Small Systems_ (published by the authors, 2018). * Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in


a single cell. _Science_ 297, 1183–1186 (2002). CAS  PubMed  Google Scholar  * Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the


expression of a single gene. _Nat. Genet._ 31, 69–73 (2002). CAS  PubMed  Google Scholar  * Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of


their activation domains. _Cell_ 175, 1842–1855.e16 (2018). CAS  PubMed  Google Scholar  * Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.


_Nature_ 558, 318–323 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene


transcription. _Science_ 361, eaar2555 (2018). PubMed  PubMed Central  Google Scholar  * Mir, M. et al. Dense Bicoid hubs accentuate binding along the morphogen gradient. _Genes Dev._ 31,


1784–1794 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. _Nat. Struct. Mol. Biol._


25, 833–840 (2018). TOGETHER WITH BOIJA ET AL. (2018), LU ET AL. (2018), CHONG ET AL. (2018) AND MIR ET AL. (2017), THIS IMPORTANT PAPER DISCUSSES PHASE SEPARATION, CONDENSATES AND


TRANSCRIPTION. CAS  PubMed  Google Scholar  * Julin, J., Napari, I., Merikanto, J. & Vehkamaki, H. A thermodynamically consistent determination of surface tension of small Lennard-Jones


clusters from simulation and theory. _J. Chem. Phys._ 133, 044704 (2010). PubMed  Google Scholar  * Lau, G. V., Hunt, P. A., Muller, E. A., Jackson, G. & Ford, I. J. Water droplet excess


free energy determined by cluster mitosis using guided molecular dynamics. _J. Chem. Phys._ 143, 244709 (2015). PubMed  Google Scholar  * Nguyen, V. D., Schoemaker, F. C., Blokhuis, E. M.


& Schall, P. Measurement of the curvature-dependent surface tension in nucleating colloidal liquids. _Phys. Rev. Lett._ 121, 246102 (2018). CAS  PubMed  Google Scholar  * Gsponer, J.


& Babu, M. M. Cellular strategies for regulating functional and nonfunctional protein aggregation. _Cell Rep._ 2, 1425–1437 (2012). CAS  PubMed  PubMed Central  Google Scholar  *


Chavali, S. et al. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. _Nat. Struct. Mol. Biol._ 24, 765–777 (2017). CAS  PubMed  PubMed Central 


Google Scholar  * Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. _Nature_ 450, 983–990 (2007). CAS  PubMed  Google Scholar  * Kawecki, T.


J. et al. Experimental evolution. _Trends Ecol. Evol._ 27, 547–560 (2012). PubMed  Google Scholar  * Sanchez de Groot, N. et al. The fitness cost and benefit of phase-separated protein


deposits. _Mol. Syst. Biol._ 15, e8075 (2019). PubMed  PubMed Central  Google Scholar  * So, C. et al. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian


oocytes. _Science_ 364, eaat9557 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Al-Husini, N., Tomares, D. T., Bitar, O., Childers, W. S. & Schrader, J. M. α-Proteobacterial RNA


degradosomes assemble liquid–liquid phase-separated RNP bodies. _Mol. Cell_ 71, 1027–1039.e14 (2018). CAS  PubMed  Google Scholar  * Ying, Y. et al. Splicing activation by Rbfox requires


self-aggregation through its tyrosine-rich domain. _Cell_ 170, 312–323.e10 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Tatomer, D. C. et al. Concentrating pre-mRNA processing


factors in the histone locus body facilitates efficient histone mRNA biogenesis. _J. Cell Biol._ 213, 557–570 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Novotný, I., Blažíková,


M., Staneˇk, D., Herman, P. & Malinsky, J. In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies. _Mol. Biol. Cell_ 22, 513–523 (2011). PubMed  PubMed Central  Google Scholar


  * Samir, P. et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. _Nature_ 573, 590–594 (2019). CAS  PubMed  PubMed Central  Google Scholar  *


Lasker, K. et al. Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in _Caulobacter crescentus_. _Nat. Microbiol._ 5,


418–429 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Milovanovic, D., Wu, Y., Bian, X. & De Camilli, P. A liquid phase of synapsin and lipid vesicles. _Science_ 361, 604–607


(2018). CAS  PubMed  PubMed Central  Google Scholar  * Zaffagnini, G. et al. p62 filaments capture and present ubiquitinated cargos for autophagy. _EMBO J._ 37, e98308 (2018). PubMed  PubMed


Central  Google Scholar  * Park, J.-E. et al. Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. _Nat. Commun._ 10, 4959 (2019). PubMed 


PubMed Central  Google Scholar  * Saha, S. et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. _Cell_ 166, 1572–1584.e16


(2016). CAS  PubMed  PubMed Central  Google Scholar  * Chakravarty, A. K., Smejkal, T., Itakura, A. K., Garcia, D. M. & Jarosz, D. F. A non-amyloid prion particle that activates a


heritable gene expression program. _Mol. Cell_ 77, 251–265.e9 (2020). CAS  PubMed  Google Scholar  * Itakura, A. K., Chakravarty, A. K., Jakobson, C. M. & Jarosz, D. F. Widespread


prion-based control of growth and differentiation strategies in _Saccharomyces cerevisiae_. _Mol. Cell_ 77, 266–278.e6 (2020). CAS  PubMed  Google Scholar  * Gaglia, G. et al. HSF1 phase


transition mediates stress adaptation and cell fate decisions. _Nat. Cell Biol._ 22, 151–158 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Guo, Y. E. et al. Pol II phosphorylation


regulates a switch between transcriptional and splicing condensates. _Nature_ 572, 543–548 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Zamudio, A. V. et al. Mediator condensates


localize signaling factors to key cell identity genes. _Mol. Cell_ 76, 753–766.e6 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Erdel, F. et al. Mouse heterochromatin adopts digital


compaction states without showing hallmarks of HP1-driven liquid–liquid phase separation. _Mol. Cell_ 78, 236–249.e7 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Wang, L. et al.


Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. _Mol. Cell_ 76, 646–659.e6 (2019). CAS  PubMed  Google Scholar  * Davis, D. et


al. Human antiviral protein MxA forms novel metastable membraneless cytoplasmic condensates exhibiting rapid reversible tonicity-driven phase transitions. _J. Virol._ 93, e01014–e01019


(2019). CAS  PubMed  PubMed Central  Google Scholar  * Heinrich, B. S., Maliga, Z., Stein, D. A., Hyman, A. A. & Whelan, S. P. J. Phase transitions drive the formation of vesicular


stomatitis virus replication compartments. _mBio_ 9, e02290-17 (2018). PubMed  PubMed Central  Google Scholar  * Zhou, Y., Su, J. M., Samuel, C. E. & Ma, D. Measles virus forms inclusion


bodies with properties of liquid organelles. _J. Virol._ 93, e00948-19 (2019). PubMed  PubMed Central  Google Scholar  * Yasuda, S. et al. Stress- and ubiquitylation-dependent phase


separation of the proteasome. _Nature_ 578, 296–300 (2020). CAS  PubMed  Google Scholar  * Sala, K. et al. The ERC1 scaffold protein implicated in cell motility drives the assembly of a


liquid phase. _Sci. Rep._ 9, 13530 (2019). PubMed  PubMed Central  Google Scholar  * Celetti, G. et al. The liquid state of FG-nucleoporins mimics permeability barrier properties of nuclear


pore complexes. _J. Cell Biol._ 219, e201907157 (2019). PubMed Central  Google Scholar  * A, P. & Weber, S. C. Evidence for and against liquid–liquid phase separation in the nucleus.


_NonCoding RNA_ 5, 50 (2019). PubMed Central  Google Scholar  * Falahati, H. & Wieschaus, E. Independent active and thermodynamic processes govern the nucleolus assembly in vivo. _Proc.


Natl Acad. Sci. USA_ 114, 1335–1340 (2017). THIS PAPER DEMONSTRATES THAT BOTH THERMODYNAMIC PROCESSES, SUCH AS PHASE SEPARATION, AND ACTIVE PROCESSES CONTRIBUTE TO NUCLEOLUS ASSEMBLY. CAS 


PubMed  PubMed Central  Google Scholar  * Pareek, V., Tian, H., Winograd, N. & Benkovic, S. J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in


cells. _Science_ 368, 283–290 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Itia, A. F.-B., Alexander, B. S., Ethan, K. S. & Halina, R.-D. Optical trapping in vivo: theory,


practice, and applications. _Nanophotonics_ 8, 1023–1040 (2019). Google Scholar  * Mittasch, M. et al. Non-invasive perturbations of intracellular flow reveal physical principles of cell


organization. _Nat. Cell Biol._ 20, 344–351 (2018). CAS  PubMed  Google Scholar  * Taylor, J. P., Brown, R. H. Jr. & Cleveland, D. W. Decoding ALS: from genes to mechanism. _Nature_ 539,


197–206 (2016). PubMed  PubMed Central  Google Scholar  * Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. _Cell_ 171, 163–178.e19 (2017). CAS  PubMed


  PubMed Central  Google Scholar  * Tulpule, A. et al. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Preprint at _bioRxiv_


https://www.biorxiv.org/content/10.1101/704312v3 (2020). THIS PAPER REPORTS THAT ABERRANT CONDENSATES FORMED BY ONCOGENIC RECEPTOR TYROSINE KINASE FUSION PROTEINS DRIVE RAS SIGNALLING. *


Takeuchi, K. Discovery stories of RET fusions in lung cancer: a mini-review. _Front. Physiol._ 10, 216 (2019). PubMed  PubMed Central  Google Scholar  * Grunewald, T. G. P. et al. Ewing


sarcoma. _Nat. Rev. Dis. Prim._ 4, 5 (2018). PubMed  Google Scholar  * Wheeler, R. J. et al. Small molecules for modulating protein driven liquid–liquid phase separation in treating


neurodegenerative disease. Preprint at _bioRxiv_ https://www.biorxiv.org/content/10.1101/721001v2 (2020). * Berchtold, D., Battich, N. & Pelkmans, L. A systems-level study reveals


regulators of membrane-less organelles in human cells. _Mol. Cell_ 72, 1035–1049.e5 (2018). CAS  PubMed  Google Scholar  * Rai, A. K., Chen, J. X., Selbach, M. & Pelkmans, L.


Kinase-controlled phase transition of membraneless organelles in mitosis. _Nature_ 559, 211–216 (2018). CAS  PubMed  Google Scholar  * Monahan, Z. et al. Phosphorylation of the FUS


low-complexity domain disrupts phase separation, aggregation, and toxicity. _Embo J._ 36, 2951–2967 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Wang, J. T. et al. Regulation of


RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in _C. elegans_. _eLife_ 3, e04591 (2014). PubMed  PubMed Central  Google Scholar  * Zhang, G.,


Wang, Z., Du, Z. & Zhang, H. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. _Cell_ 174, 1492–1506.e22 (2018). CAS  PubMed  Google Scholar  *


Guccione, E. & Richard, S. The regulation, functions and clinical relevance of arginine methylation. _Nat. Rev. Mol. Cell Biol._ 20, 642–657 (2019). CAS  PubMed  Google Scholar  * Dao,


T. P. et al. Ubiquitin modulates liquid–liquid phase separation of UBQLN2 via disruption of multivalent interactions. _Mol. Cell_ 69, 965–978.e6 (2018). CAS  PubMed  PubMed Central  Google


Scholar  * Saito, M. et al. Acetylation of intrinsically disordered regions regulates phase separation. _Nat. Chem. Biol._ 15, 51–61 (2019). CAS  PubMed  Google Scholar  * Buchan, J. R.,


Kolaitis, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. _Cell_ 153, 1461–1474 (2013). CAS  PubMed  PubMed Central  Google


Scholar  * James, J. R. Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. _Sci. Signal._ 11, eaan1088 (2018). PubMed  PubMed Central  Google


Scholar  * Cao, Q., Boyer, D. R., Sawaya, M. R., Ge, P. & Eisenberg, D. S. Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. _Nat. Struct. Mol. Biol._ 27, 653–659


(2020). CAS  PubMed  PubMed Central  Google Scholar  * Griner, S. L. et al. Structure-based inhibitors of amyloid β core suggest a common interface with tau. _eLife_ 8, e46924 (2019). PubMed


  PubMed Central  Google Scholar  * Lu, J. et al. Structure-based peptide inhibitor design of amyloid-β aggregation. _Front. Mol. Neurosci._ 12, 54 (2019). CAS  PubMed  PubMed Central 


Google Scholar  * Sangwan, S. et al. Inhibition of synucleinopathic seeding by rationally designed inhibitors. _eLife_ 9, e46775 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Klein,


I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. _Science_ 368, 1386 (2020). CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS


Research on biomolecular condensates is supported in the Rosen laboratory by the Howard Hughes Medical Institute, a Paul G. Allen Frontiers Distinguished Investigator Award to M.K.R. and


grants from the Welch Foundation (I-1544 to M.K.R.) and the National Institutes of Health (NIH) (F32 GM136058 to A.S.L.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of


Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA Andrew S. Lyon, William B. Peeples & Michael K. Rosen Authors * Andrew S.


Lyon View author publications You can also search for this author inPubMed Google Scholar * William B. Peeples View author publications You can also search for this author inPubMed Google


Scholar * Michael K. Rosen View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS The authors contributed equally to all aspects of the article.


CORRESPONDING AUTHOR Correspondence to Michael K. Rosen. ETHICS DECLARATIONS COMPETING INTERESTS M.K.R. is a co-founder of the biotechnology company Faze Medicines. A.S.L and W.B.P. declare


no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews Molecular Cell Biology_ thanks M. Babu, S. Michnick and the other, anonymous, reviewer(s) for their


contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. GLOSSARY


* Material properties In the context of biomolecular condensates, physical properties of the assembly of constituent macromolecules including viscosity, surface tension and porosity. *


Interfacial tension (Also known as surface tension). For separate liquid phases in contact with each other, the work required to increase the surface area of contact between the two phases.


In the absence of external forces, interfacial/surface tension causes phase-separated liquids to form spherical droplets as spheres have minimal surface area for a given volume. *


Multivalent interactions Interactions occurring between macromolecules with multiple sites of interaction, such that each molecule can interact with multiple binding partners. *


Intrinsically disordered regions Protein regions that do not adopt any stable ordered three-dimensional structure. * Law of mass action In the context of enzymology, the principle that the


chemical reaction rate is proportional to the concentration of enzymes and substrates. * Ribulose bisphosphate carboxylase/oxygenase (Rubisco). An enzyme acting in carbon fixation in


photosynthetic organisms, catalysing the reaction between ribulose bisphosphate and atmospheric carbon dioxide. * Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase


(cGAS). An innate immune signalling enzyme that senses cytosolic DNA, a pathogen-associated molecular pattern, and produces cGAMP, which activates the stimulator of interferon genes (STING)


protein to induce pro-inflammatory transcriptional responses. * Allostery Regulation of enzyme activity via binding by a second molecule at a site other than the enzyme’s active site, often


by inducing a conformational change. * Scaffold In simple molecular systems, a macromolecule that is required for condensate formation. The other, general group of condensate components are


client molecules, which bind to and selectively partition into condensates without affecting condensate formation. In many natural condensates, this distinction is not absolute, and whereas


some macromolecules act as pure scaffolds and some as pure clients, others can have varying impacts on the formation (threshold concentration) and composition of the compartment. * _K_ M A


parameter of the Michaelis–Menten model of enzyme kinetics, describing the concentration of a substrate molecule at which the rate of product formation reaches half of the maximum possible


rate under a given set of conditions. If the rate of enzyme–substrate binding is rapid relative to catalysis, the _K_M value approximates the dissociation constant for the enzyme–substrate


complex. * Paraspeckles Nuclear condensates implicated in RNA base editing as well as transcriptional regulation. Paraspeckles are formed from the long non-coding RNA NEAT1 and the DBHS


family of proteins (NONO, SFPQ and PSPC1). * Kinetic proofreading A biochemical error-correction mechanism favouring reaction pathways that lead to correct over incorrect products, wherein


an irreversible step that leads to exit of reaction intermediates from the pathway is more likely to occur for incorrect intermediates. * Processing bodies Cytoplasmic condensates found in


yeast and humans that contains mRNA, RNA decapping and RNA degradation machinery. P bodies are thought to either store or degrade mRNA during stress. * Argonaute A protein component of the


RNA-induced silencing complex that binds several classes of small non-coding RNAs, which direct the complex to mRNA targets via sequence complementarity to downregulate expression through


endonucleolytic mRNA cleavage or translational inhibition. * Transgenerational epigenetic inheritance Biological processes that allow transmission of epigenetic regulatory molecules or


modifications, such as RNAi factors or DNA methylation, from parent to offspring without altering DNA sequences. * P granules Biomolecular condensates formed by liquid–liquid phase


separation in _Caenorhabditis elegans_ composed of RNA and proteins involved in the maintenance of germ cell fate via post-transcriptional regulation and small RNA biogenesis. * Z granules


Biomolecular condensates in _Caenorhabditis elegans_ containing the proteins ZNFX1 and WAGO4 required for transgenerational epigenetic inheritance of RNAi. Associates with both P granules


and Mutator foci, forming a bridge between the two condensates. * Mutator foci A type of biomolecular condensate in _Caenorhabditis elegans_ consisting of proteins encoded by _mutator_ class


genes, originally discovered in genetic screens for activation of transposons in the germline. Functions in siRNA amplification and RNA silencing. * Voltage-gated calcium channels Membrane


protein channels that allow ingress of calcium into the cell at presynaptic terminals of neurons when activated by membrane depolarization. Calcium activates exocytosis of neurotransmitter


vesicles. * _N_-Methyl-d-aspartate (NMDA) receptor A postsynaptic membrane protein channel activated by the excitatory neurotransmitter glutamate, allowing ingress of cations to depolarize


the postsynaptic neuron. * Dendritic spines Small protrusions on postsynaptic dendrites that are sites of excitatory signalling by glutamate neurotransmitter receptors. * Balbiani body A


condensate specifically found during oocyte development that includes nuage, mitochondria and rough endoplasmic reticulum. Although the function is not fully understood, it is thought to


preserve eggs in a dormant state prior to ovulation. * Optical trapping The use of highly focused laser beams to apply force to (‘trap’) very small objects. * Chemogenetic approaches A class


of experimental techniques that introduce proteins or protein domain fusion constructs that have engineered small molecule-dependent activities into cells or in vitro biochemical reactions


to achieve control over cellular or biochemical activities. * Optogenetics A class of experimental techniques using light-responsive proteins or engineered protein domain fusions to acutely


modulate cellular or protein activities by illuminating cells or in vitro biochemical reactions. * Partition coefficient The ratio of molecular concentration within a biomolecular condensate


relative to the concentration in the surrounding solution. * Michaelis-like recruitment For the binding of a molecule to some structure, a non-linear, saturable relationship between the


molecular concentration and the fraction bound described by the rectangular hyperbola of the Michaelis–Menten model of enzyme kinetics. * Promyelocytic leukaemia nuclear bodies Nuclear


condensates formed by the promyelocytic leukaemia protein (PML). Fusion of PML to the retinoic acid receptor causes acute promyelocytic leukaemia. PML bodies are implicated in various


processes, including transcription regulation, viral immunity, post-translational modification and apoptosis. * CAR T cells In cancer immunotherapy, T cells that express engineered T cell


receptors (TCRs) where the native extracellular domains have been replaced by a heterologous binding domain targeted to a tumour-specific cell-surface protein in order to direct increased


cytotoxic activity towards tumour cells. * Kinetic trapping A phenomenon in which a thermodynamically less stable state is maintained due to the high energy barrier, and thus long time


period, required to move to the more stable state. * Split enzyme system The use of an enzyme that has been expressed as two separate polypeptide chains and is only active when the fragments


are brought together to reconstitute the full enzyme. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lyon, A.S., Peeples, W.B. & Rosen, M.K. A


framework for understanding the functions of biomolecular condensates across scales. _Nat Rev Mol Cell Biol_ 22, 215–235 (2021). https://doi.org/10.1038/s41580-020-00303-z Download citation


* Accepted: 01 October 2020 * Published: 09 November 2020 * Issue Date: March 2021 * DOI: https://doi.org/10.1038/s41580-020-00303-z SHARE THIS ARTICLE Anyone you share the following link


with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative


Trending News

Nature chemical biology - volume 13 issue 8, august 2017

The cover depicts conidiophores of the fungus _Aspergillus nidulans_ carrying a fungal artificial chromosome (FAC), imag...

Households warned over common mistake that will damage hanging basket blooms

THE DAYS ARE WARMING UP, THE NIGHTS ARE BALMIER BUT DON'T GET COMPLACENT, EVEN A COOL NIGHT COULD DAMAGE AN UNCOVER...

Dietary nutrient composition affects progression of liver disease

Access through your institution Buy or subscribe Ioannou, G. N. _ et al_. Association between dietary nutrient compositi...

David beckham weighs into gary neville vs nottingham forest row with comment

GARY NEVILLE HAS BEEN BANNED FROM WORKING AT THE CITY GROUND TO COVER NOTTINGHAM FOREST VS CHELSEA ON SUNDAY, PROMPTING ...

Ruben amorim details how bruno fernandes could stay at man utd amid exit fears

MANCHESTER UNITED'S 1-0 DEFEAT TO TOTTENHAM IN THE EUROPA LEAGUE FINAL HAS ROUNDED OFF A HORROR SEASON AND NOW THER...

Latests News

A framework for understanding the functions of biomolecular condensates across scales

ABSTRACT Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and ...

At this experimental culinary event, the cutlery is high art

Welcome to the real-life Mad Hatter's tea party: Guests eat out of spiraling ceramics from spoons as long as their ...

Understanding the problem of pain and its treatment

Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4  G...

8 affordable ways to get training for a new career

Find a mentor Sometimes there’s nothing like a little one-on-one handholding to give you the skills you need next. There...

Microrna target predictions in animals

ABSTRACT In recent years, microRNAs (miRNAs) have emerged as a major class of regulatory genes, present in most metazoan...

Top