Soil viral diversity, ecology and climate change

Nature

Soil viral diversity, ecology and climate change"


Play all audios:

Loading...

ABSTRACT Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil


ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate


change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research


needs to better understand how climate change will impact soil viral ecology. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS BIOGEOGRAPHIC PATTERNS AND DRIVERS OF SOIL VIROMES Article 21 February 2024 A GLOBAL ATLAS OF


SOIL VIRUSES REVEALS UNEXPLORED BIODIVERSITY AND POTENTIAL BIOGEOCHEMICAL IMPACTS Article Open access 20 June 2024 INTEGRATING VIRUSES INTO SOIL FOOD WEB BIOGEOCHEMISTRY Article 02 August


2024 REFERENCES * Helsley, K. R., Brown, T. M., Furlong, K. & Williamson, K. E. Applications and limitations of tea extract as a virucidal agent to assess the role of phage predation in


soils. _Biol. Fertil. Soils_ 50, 263–274 (2014). Article  Google Scholar  * Suttle, C. A. Marine viruses — major players in the global ecosystem. _Nat. Rev. Microbiol._ 5, 801–812 (2007).


Article  CAS  PubMed  Google Scholar  * Winter, C., Bouvier, T., Weinbauer, M. G. & Thingstad, T. F. Trade-offs between competition and defense specialists among unicellular planktonic


organisms: the “killing the winner” hypothesis revisited. _Microbiol. Mol. Biol. Rev._ 74, 42–57 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pratama, A. A. & van


Elsas, J. D. The ‘neglected’ soil virome–potential role and impact. _Trends Microbiol._ 26, 649–662 (2018). Article  CAS  PubMed  Google Scholar  * Williamson, K. E., Fuhrmann, J. J.,


Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. _Annu. Rev. Virol._ 4, 201–219 (2017). Article  CAS  PubMed  Google


Scholar  * Gonzalez-Martin, C., Teigell-Perez, N., Lyles, M., Valladares, B. & Griffin, D. W. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust


storm regions. _Res. Microbiol._ 164, 17–21 (2013). Article  PubMed  Google Scholar  * Ashelford, K. E., Day, M. J. & Fry, J. C. Elevated abundance of bacteriophage infecting bacteria in


soil. _Appl. Environ. Microbiol._ 69, 285–289 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bowatte, S., Newton, P. C., Takahashi, R. & Kimura, M. High frequency of


virus-infected bacterial cells in a sheep grazed pasture soil in New Zealand. _Soil Biol. Biochem._ 42, 708–712 (2010). Article  CAS  Google Scholar  * Takahashi, R. et al. High frequency of


phage-infected bacterial cells in a rice field soil in Japan. _Soil Sci. Plant Nutr._ 57, 35–39 (2011). Article  Google Scholar  * Williamson, K. E., Radosevich, M. & Wommack, K. E.


Abundance and diversity of viruses in six Delaware soils. _Appl. Environ. Microbiol._ 71, 3119–3125 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liang, X. et al. Lysogenic


reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity. _Soil Biol. Biochem._ 144, 107767 (2020). Article  CAS  Google Scholar  *


Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. _Nat. Microbiol._ 3, 870–880 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jansson,


J. K. & Hofmockel, K. S. Soil microbiomes and climate change. _Nat. Rev. Microbiol._ 18, 35–46 (2020). Article  CAS  PubMed  Google Scholar  * Fierer, N. & Jackson, R. B. The


diversity and biogeography of soil bacterial communities. _Proc. Natl Acad. Sci. USA_ 103, 626–631 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bi, L. et al. Diversity and


potential biogeochemical impacts of viruses in bulk and rhizosphere soils. _Environ. Microbiol._ 23, 588–599 (2021). Article  CAS  PubMed  Google Scholar  * Starr, E. P., Nuccio, E. E.,


Pett-Ridge, J., Banfield, J. F. & Firestone, M. K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. _Proc. Natl Acad. Sci. USA_


116, 25900–25908 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hurst, C. J., Gerba, C. P. & Cech, I. Effects of environmental variables and soil characteristics on


virus survival in soil. _Appl. Environ. Microbiol._ 40, 1067–1079 (1980). Article  CAS  PubMed  PubMed Central  Google Scholar  * Williamson, K. E., Wommack, K. E. & Radosevich, M.


Sampling natural viral communities from soil for culture-independent analyses. _Appl. Environ. Microbiol._ 69, 6628–6633 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu,


R. et al. DNA viral diversity, abundance, and functional potential vary across grassland soils with a range of historical moisture regimes. _mBio_ 12, e02595521 (2021). Article  Google


Scholar  * Chen, L. et al. Effect of different long-term fertilization regimes on the viral community in an agricultural soil of southern China. _Eur. J. Soil Biol._ 62, 121–126 (2014).


Article  Google Scholar  * Williamson, K. E., Radosevich, M., Smith, D. W. & Wommack, K. E. Incidence of lysogeny within temperate and extreme soil environments. _Environ. Microbiol._ 9,


2563–2574 (2007). Article  CAS  PubMed  Google Scholar  * Narr, A., Nawaz, A., Wick, L. Y., Harms, H. & Chatzinotas, A. Soil viral communities vary temporally and along a land use


transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). _Front. Microbiol._ 8, 1975 (2017). Article  PubMed  PubMed Central  Google


Scholar  * Fierer, N. et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. _Appl. Environ. Microbiol._ 73,


7059–7066 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Paez-Espino, D. et al. Uncovering Earth’s virome. _Nature_ 536, 425–430 (2016). Article  CAS  PubMed  Google Scholar


  * Santos-Medellin, C. et al. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. _ISME J._ 15, 1956–1970 (2021). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. _Nucleic


Acids Res._ 49, D764–D775 (2021). Article  CAS  PubMed  Google Scholar  * Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology.


_Nat. Rev. Microbiol._ 13, 147–159 (2015). Article  CAS  PubMed  Google Scholar  * Coutinho, F. H., Gregoracci, G. B., Walter, J. M., Thompson, C. C. & Thompson, F. L. Metagenomics


sheds light on the ecology of marine microbes and their viruses. _Trends Microbiol._ 26, 955–965 (2018). Article  CAS  PubMed  Google Scholar  * Guo, J. et al. VirSorter2: a


multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. _Microbiome_ 9, 1–13 (2021). Article  Google Scholar  * Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A.


& Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. _Microbiome_ 5, 1–20 (2017). Article  Google Scholar  * Shaffer, M. et al.


DRAM for distilling microbial metabolism to automate the curation of microbiome function. _Nucleic Acids Res._ 48, 8883–8900 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences.


_Microbiome_ 8, 1–23 (2020). Article  Google Scholar  * Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus


clustering for metagenomic data. _Nat. Protoc._ 12, 1673–1682 (2017). Article  CAS  PubMed  Google Scholar  * Swanson, M. et al. Viruses in soils: morphological diversity and abundance in


the rhizosphere. _Ann. Appl. Biol._ 155, 51–60 (2009). Article  Google Scholar  * Wu, R. et al. Moisture modulates soil reservoirs of active DNA and RNA viruses. _Commun. Biol._ 4, 1–11


(2021). Article  Google Scholar  * Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. _mSystems_ 3, e00076-18 (2018). Article  PubMed  PubMed Central 


Google Scholar  * Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. _Nature_ 578, 425–431 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fischer, M.


G. Giant viruses come of age. _Curr. Opin. Microbiol._ 31, 50–57 (2016). Article  PubMed  Google Scholar  * Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. _Science_ 306,


1344–1350 (2004). Article  CAS  PubMed  Google Scholar  * Pagnier, I. et al. A decade of improvements in Mimiviridae and Marseilleviridae isolation from amoeba. _Intervirology_ 56, 354–363


(2013). Article  PubMed  Google Scholar  * Boughalmi, M. et al. High‐throughput isolation of giant viruses of the Mimiviridae and Marseilleviridae families in the Tunisian environment.


_Environ. Microbiol._ 15, 2000–2007 (2013). Article  PubMed  Google Scholar  * Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a


pandoravirus morphology. _Proc. Natl Acad. Sci. USA_ 111, 4274–4279 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Legendre, M. et al. In-depth study of Mollivirus


sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. _Proc. Natl Acad. Sci. USA_ 112, E5327–E5335 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yoosuf, N. et


al. Draft genome sequences of Terra1 and Terra2 viruses, new members of the family Mimiviridae isolated from soil. _Virology_ 452, 125–132 (2014). Article  PubMed  Google Scholar  * Schulz,


F. et al. Hidden diversity of soil giant viruses. _Nat. Commun._ 9, 4881 (2018). Article  PubMed  PubMed Central  Google Scholar  * Schulz, F. et al. Giant virus diversity and host


interactions through global metagenomics. _Nature_ 578, 432–436 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hulo, C. et al. ViralZone: a knowledge resource to understand


virus diversity. _Nucleic Acids Res._ 39, D576–D582 (2011). Article  CAS  PubMed  Google Scholar  * Adriaenssens, E. M. et al. Environmental drivers of viral community composition in


Antarctic soils identified by viromics. _Microbiome_ 5, 1–14 (2017). Article  Google Scholar  * Liang, X. et al. Viral abundance and diversity vary with depth in a southeastern United States


agricultural ultisol. _Soil Biol. Biochem._ 137, 107546 (2019). Article  CAS  Google Scholar  * International Committee on Taxonomy of Viruses Executive Committee. The new scope of virus


taxonomy: partitioning the virosphere into 15 hierarchical ranks. _Nat. Microbiol._ 5, 668–674 (2020). Article  CAS  Google Scholar  * Adriaenssens, E. M. et al. Taxonomy of prokaryotic


viruses: 2018-2019 update from the ICTV bacterial and archaeal viruses subcommittee. _Arch. Virol._ 165, 1253–1260 (2020). Article  CAS  PubMed  Google Scholar  * Roux, S. et al. Minimum


information about an uncultivated virus genome (MIUViG). _Nat. Biotechnol._ 37, 29–37 (2019). Article  CAS  PubMed  Google Scholar  * Kim, K.-H. et al. Amplification of uncultured


single-stranded DNA viruses from rice paddy soil. _Appl. Environ. Microbiol._ 74, 5975–5985 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Han, L.-L., Yu, D.-T., Zhang,


L.-M., Shen, J.-P. & He, J.-Z. Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils. _Sci. Rep._ 7, 1–10 (2017). Google Scholar  * Reavy, B.


et al. Distinct circular single-stranded DNA viruses exist in different soil types. _Appl. Environ. Microbiol._ 81, 3934–3945 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Trubl, G. et al. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. _PeerJ_ 7, e7265 (2019). Article  PubMed  PubMed Central 


Google Scholar  * Marine, R. et al. Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome.


_Microbiome_ 2, 3 (2014). Article  PubMed  PubMed Central  Google Scholar  * Han, L.-L. et al. Distribution of soil viruses across China and their potential role in phosphorous metabolism.


_Environ. Microbiome_ 17, 6 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Peck, K. M. & Lauring, A. S. Complexities of viral mutation rates. _J. Virol._ 92, e01031-17


(2018). Article  PubMed  PubMed Central  Google Scholar  * Malathi, V. & Renuka Devi, P. ssDNA viruses: key players in global virome. _Virusdisease_ 30, 3–12 (2019). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Steward, G. F. et al. Are we missing half of the viruses in the ocean? _ISME J._ 7, 672–679 (2013). Article  CAS  PubMed  Google Scholar  * Hillary, L.


S., Adriaenssens, E. M., Jones, D. L. & McDonald, J. E. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple


trophic levels. _ISME Commun._ 2, 1–10 (2022). Article  Google Scholar  * Schroeder, J. W., Dobson, A., Mangan, S. A., Petticord, D. F. & Herre, E. A. Mutualist and pathogen traits


interact to affect plant community structure in a spatially explicit model. _Nat. Commun._ 11, 1–10 (2020). Google Scholar  * Chen, I.-M. A. et al. The IMG/M data management and analysis


system v. 6.0: new tools and advanced capabilities. _Nucleic Acids Res._ 49, D751–D763 (2021). Article  CAS  PubMed  Google Scholar  * Neri, U. et al. A five-fold expansion of the global RNA


virome reveals multiple new clades of RNA bacteriophages. _Zenodo_ https://doi.org/10.5281/zenodo.6553771 (2022). Article  Google Scholar  * Koonin, E. V. et al. Global organization and


proposed megataxonomy of the virus world. _Microbiol. Mol. Biol. Rev._ 84, e00061-19 (2020). Article  PubMed  PubMed Central  Google Scholar  * Neri, U. et al. A five-fold expansion of the


global RNA virome reveals multiple new clades of RNA bacteriophages. Preprint at _bioRxiv_ https://doi.org/10.1101/2022.02.15.480533 (2022). Article  Google Scholar  * Albright, M. B. et al.


Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. _ISME Commun._ 2, 24 (2022). Article  PubMed Central  Google Scholar  *


Braga, L. P. et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. _Microbiome_ 8, 52 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Wang, Y. et al. Heterogeneity of soil bacterial and bacteriophage communities in three rice agroecosystems and potential impacts of bacteriophage on nutrient


cycling. _Environ. Microbiome_ 17, 17 (2022). Article  PubMed  PubMed Central  Google Scholar  * Williamson, K. E., Schnitker, J. B., Radosevich, M., Smith, D. W. & Wommack, K. E.


Cultivation-based assessment of lysogeny among soil bacteria. _Microb. Ecol._ 56, 437–447 (2008). Article  PubMed  Google Scholar  * Huang, D. et al. Enhanced mutualistic symbiosis between


soil phages and bacteria with elevated chromium-induced environmental stress. _Microbiome_ 9, 150 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ghosh, D. et al.


Acyl-homoserine lactones can induce virus production in lysogenic bacteria: an alternative paradigm for prophage induction. _Appl. Environ. Microbiol._ 75, 7142–7152 (2009). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Silveira, C. B. & Rohwer, F. L. Piggyback-the-winner in host-associated microbial communities. _NPJ Biofilms Microbiomes_ 2, 16010 (2016).


Article  PubMed  PubMed Central  Google Scholar  * Knowles, B. et al. Lytic to temperate switching of viral communities. _Nature_ 531, 466–470 (2016). Article  CAS  PubMed  Google Scholar  *


Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. _Aquat. Microb. Ecol._ 13, 19–27 (1997). Article 


Google Scholar  * Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. _Limnol.


Oceanogr._ 45, 1320–1328 (2000). Article  Google Scholar  * Stewart, F. M. & Levin, B. R. The population biology of bacterial viruses: why be temperate. _Theor. Popul. Biol._ 26, 93–117


(1984). Article  CAS  PubMed  Google Scholar  * Obeng, N., Pratama, A. A. & van Elsas, J. D. The significance of mutualistic phages for bacterial ecology and evolution. _Trends


Microbiol._ 24, 440–449 (2016). Article  CAS  PubMed  Google Scholar  * Liang, X. & Radosevich, M. Commentary: a host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny


decision. _Front. Microbiol._ 10, 1201 (2019). Article  PubMed  PubMed Central  Google Scholar  * Parikka, K. J., Le Romancer, M., Wauters, N. & Jacquet, S. Deciphering the


virus‐to‐prokaryote ratio (VPR): insights into virus–host relationships in a variety of ecosystems. _Biol. Rev._ 92, 1081–1100 (2017). Article  PubMed  Google Scholar  * Roy, K. et al.


Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. _Front. Microbiol._ 11, 1494 (2020). Article  PubMed  PubMed Central  Google


Scholar  * Dedrick, R. M. et al. Prophage-mediated defence against viral attack and viral counter-defence. _Nat. Microbiol._ 2, 16251 (2017). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Boyd, E. F. Bacteriophage-encoded bacterial virulence factors and phage–pathogenicity island interactions. _Adv. Virus Res._ 82, 91–118 (2012). Article  CAS  PubMed  Google


Scholar  * Bondy-Denomy, J. et al. Prophages mediate defense against phage infection through diverse mechanisms. _ISME J._ 10, 2854–2866 (2016). Article  PubMed  PubMed Central  Google


Scholar  * Schuch, R. & Fischetti, V. A. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. _PLoS ONE_ 4, e6532 (2009). Article 


PubMed  PubMed Central  Google Scholar  * Koskella, B. & Brockhurst, M. A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. _FEMS


Microbiol. Rev._ 38, 916–931 (2014). Article  CAS  PubMed  Google Scholar  * Levin, B. R. & Bull, J. J. Population and evolutionary dynamics of phage therapy. _Nat. Rev. Microbiol._ 2,


166–173 (2004). Article  CAS  PubMed  Google Scholar  * Paterson, S. et al. Antagonistic coevolution accelerates molecular evolution. _Nature_ 464, 275–278 (2010). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. _Nat. Rev. Microbiol._ 8, 317–327 (2010). Article  CAS  PubMed  Google


Scholar  * Nuñez, J. K., Lee, A. S., Engelman, A. & Doudna, J. A. Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity. _Nature_ 519, 193–198 (2015). Article  PubMed


  PubMed Central  Google Scholar  * Sant, D. G., Woods, L. C., Barr, J. J. & McDonald, M. J. Host diversity slows bacteriophage adaptation by selecting generalists over specialists.


_Nat. Ecol. Evol._ 5, 350–359 (2021). Article  PubMed  Google Scholar  * Poisot, T., Lounnas, M. & Hochberg, M. E. The structure of natural microbial enemy-victim networks. _Ecol.


Process._ 2, 13 (2013). Article  Google Scholar  * Trubl, G. et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. _Microbiome_ 9, 1–15 (2021). Article 


Google Scholar  * Poullain, V., Gandon, S., Brockhurst, M. A., Buckling, A. & Hochberg, M. E. The evolution of specificity in evolving and coevolving antagonistic interactions between a


bacteria and its phage. _Evolution_ 62, 1–11 (2008). PubMed  Google Scholar  * McGee, L. W. et al. Synergistic pleiotropy overrides the costs of complexity in viral adaptation. _Genetics_


202, 285–295 (2016). Article  CAS  PubMed  Google Scholar  * Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. _Microbiol. Mol. Biol. Rev._ 64, 69–114 (2000).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Starr, E. P. et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in


Rhizosphere soil. _mSphere_ 6, e00085-21 (2021). Article  PubMed  PubMed Central  Google Scholar  * Osterhout, R. E., Figueroa, I. A., Keasling, J. D. & Arkin, A. P. Global analysis of


host response to induction of a latent bacteriophage. _BMC Microbiol._ 7, 82 (2007). Article  PubMed  PubMed Central  Google Scholar  * Quesada, J. M., Soriano, Ma. I. & Espinosa-Urgel,


M. Stability of a Pseudomonas putida KT2440 bacteriophage-carried genomic island and its impact on rhizosphere fitness. _Appl. Environ. Microbiol._ 78, 6963–6974 (2012). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Li, G., Cortez, M. H., Dushoff, J. & Weitz, J. S. When to be temperate: on the fitness benefits of lysis vs. lysogeny. _Virus Evol._ 6, veaa042


(2020). Article  PubMed  PubMed Central  Google Scholar  * Jin, M. et al. Diversities and potential biogeochemical impacts of mangrove soil viruses. _Microbiome_ 7, 58 (2019). Article 


PubMed  PubMed Central  Google Scholar  * Zheng, X. et al. Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil


microbiomes. _ISME J._ 16, 1397–1408 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, R. et al. Structural characterization of a soil viral auxiliary metabolic gene


product–a functional chitosanase. _Nat. Commun._ 13, 5485 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pedersen, J. S. T. et al. An assessment of the performance of


scenarios against historical global emissions for IPCC reports. _Glob. Environ. Change_ 66, 102199 (2021). Article  Google Scholar  * Girardin, G. et al. Viruses carried to soil by


irrigation can be aerosolized later during windy spells. _Agron. Sustain. Dev._ 36, 59 (2016). Article  Google Scholar  * Chen, P.-S. et al. Ambient influenza and avian influenza virus


during dust storm days and background days. _Environ. Health Perspect._ 118, 1211–1216 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zablocki, O., Adriaenssens, E. M. &


Cowan, D. Diversity and ecology of viruses in hyperarid desert soils. _Appl. Environ. Microbiol._ 82, 770–777 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kimura, M.,


Jia, Z.-J., Nakayama, N. & Asakawa, S. Ecology of viruses in soils: past, present and future perspectives. _Soil Sci. Plant Nutr._ 54, 1–32 (2008). Article  Google Scholar  * Yeager, J.


& O’Brien, R. Enterovirus inactivation in soil. _Appl. Environ. Microbiol._ 38, 694–701 (1979). Article  CAS  PubMed  PubMed Central  Google Scholar  * Reanney, D. & Marsh, S. The


ecology of viruses attacking Bacillus stearothermophilus in soil. _Soil Biol. Biochem._ 5, 399–408 (1973). Article  Google Scholar  * Wu, R. et al. Targeted assemblies of cas1 suggest


CRISPR-Cas’s response to soil warming. _ISME J._ 14, 1651–1662 (2020). Article  PubMed  PubMed Central  Google Scholar  * Hugelius, G. et al. Estimated stocks of circumpolar permafrost


carbon with quantified uncertainty ranges and identified data gaps. _Biogeosciences_ 11, 6573–6593 (2014). Article  Google Scholar  * Graham, D. E. et al. Microbes in thawing permafrost: the


unknown variable in the climate change equation. _ISME J._ 6, 709–712 (2012). Article  CAS  PubMed  Google Scholar  * Jansson, J. K. & Taş, N. The microbial ecology of permafrost. _Nat.


Rev. Microbiol._ 12, 414–425 (2014). Article  CAS  PubMed  Google Scholar  * Taş, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland


Alaskan boreal forest. _ISME J._ 8, 1904–1919 (2014). Article  PubMed  PubMed Central  Google Scholar  * Taş, N. et al. Landscape topography structures the soil microbiome in arctic


polygonal tundra. _Nat. Commun._ 9, 777 (2018). Article  PubMed  PubMed Central  Google Scholar  * Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a


rapid response to thaw. _Nature_ 480, 368–371 (2011). Article  CAS  PubMed  Google Scholar  * Mondav, R. et al. Discovery of a novel methanogen prevalent in thawing permafrost. _Nat.


Commun._ 5, 3212 (2014). Article  PubMed  Google Scholar  * Rivkina, E., Gilichinsky, D., Wagener, S., Tiedje, J. & McGrath, J. Biogeochemical activity of anaerobic microorganisms from


buried permafrost sediments. _Geomicrobiol. J._ 15, 187–193 (1998). Article  Google Scholar  * Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil


microbiomes. _Nature_ 521, 208–212 (2015). Article  CAS  PubMed  Google Scholar  * Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. _Nature_ 560, 49–54


(2018). Article  CAS  PubMed  Google Scholar  * Guglielmin, M., Dalle Fratte, M. & Cannone, N. Permafrost warming and vegetation changes in continental Antarctica. _Environ. Res. Lett._


9, 045001 (2014). Article  Google Scholar  * Goordial, J. et al. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper‐arid polar desert. _Environ.


Microbiol._ 19, 443–458 (2017). Article  CAS  PubMed  Google Scholar  * Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. _Clim. Dyn._ 43,


2607–2627 (2014). Article  Google Scholar  * Šťovíček, A., Kim, M., Or, D. & Gillor, O. Microbial community response to hydration-desiccation cycles in desert soil. _Sci. Rep._ 7, 45735


(2017). Article  PubMed  PubMed Central  Google Scholar  * Srinivasiah, S. et al. Direct assessment of viral diversity in soils by random PCR amplification of polymorphic DNA. _Appl.


Environ. Microbiol._ 79, 5450–5457 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zablocki, O. et al. High-level diversity of tailed phages, eukaryote-associated viruses,


and virophage-like elements in the metaviromes of antarctic soils. _Appl. Environ. Microbiol._ 80, 6888–6897 (2014). Article  PubMed  PubMed Central  Google Scholar  * Roy Chowdhury, T. et


al. Metaphenomic responses of a native prairie soil microbiome to moisture perturbations. _mSystems_ 4, e00061-19 (2019). Article  PubMed  PubMed Central  Google Scholar  * Michen, B. &


Graule, T. Isoelectric points of viruses. _J. Appl. Microbiol._ 109, 388–397 (2010). Article  CAS  PubMed  Google Scholar  * Nelson, A. R. et al. Playing with FiRE: a genome resolved view of


the soil microbiome responses to high severity forest wildfire. Preprint at _bioRxiv_ https://doi.org/10.1101/2021.08.17.456416 (2021). Article  PubMed  PubMed Central  Google Scholar  *


Braga, L. P. et al. Novel virocell metabolic potential revealed in agricultural soils by virus‐enriched soil metagenome analysis. _Environ. Microbiol. Rep._ 13, 348–354 (2021). Article  CAS


  PubMed  Google Scholar  * Hwang, Y., Rahlff, J., Schulze-Makuch, D., Schloter, M. & Probst, A. J. Diverse viruses carrying genes for microbial extremotolerance in the Atacama Desert


hyperarid soil. _mSystems_ 6, e00385-21 (2021). Article  PubMed  PubMed Central  Google Scholar  * Ter Horst, A. M. et al. Minnesota peat viromes reveal terrestrial and aquatic niche


partitioning for local and global viral populations. _Microbiome_ 9, 233 (2021). Article  PubMed  PubMed Central  Google Scholar  * Van Goethem, M. W., Swenson, T. L., Trubl, G., Roux, S.


& Northen, T. R. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. _mBio_ 10, e02287-19 (2019). Article  PubMed  PubMed Central  Google Scholar  * Kieft,


K. et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. _Nat. Commun._ 12, 1–16 (2021). Article  Google Scholar  * Nayfach, S. et al. CheckV assesses the


quality and completeness of metagenome-assembled viral genomes. _Nat. Biotechnol._ 39, 578–585 (2021). Article  CAS  PubMed  Google Scholar  * Lefkowitz, E. J. et al. Virus taxonomy: the


database of the International Committee on Taxonomy of Viruses (ICTV). _Nucleic Acids Res._ 46, D708–D717 (2018). Article  CAS  PubMed  Google Scholar  * Hough, M. et al. Biotic and


environmental drivers of plant microbiomes across a permafrost thaw gradient. _Front. Microbiol._ https://doi.org/10.3389/fmicb.2020.00796 (2020). Article  PubMed  PubMed Central  Google


Scholar  * Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. _Annu. Rev. Environ. Resour._ 45, 29–59 (2020). Article  Google Scholar  * Williamson,


K. E. et al. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. _Biol. Fertil. Soils_ 49, 857–869 (2013). Article  Google Scholar  *


Graham, E. B. et al. Untapped viral diversity in global soil metagenomes. Preprint at _bioRxiv_ https://doi.org/10.1101/583997 (2019). Article  Google Scholar  * Shakya, M., Lo, C.-C. &


Chain, P. S. Advances and challenges in metatranscriptomic analysis. _Front. Genet._ 10, 904 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Steffan, J. J., Derby, J. A.


& Brevik, E. C. Soil pathogens that may potentially cause pandemics, including severe acute respiratory syndrome (SARS) coronaviruses. _Curr. Opin. Environ. Sci. Health_ 17, 35–40


(2020). Article  PubMed  PubMed Central  Google Scholar  * Fortier, L.-C. & Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. _Virulence_ 4,


354–365 (2013). Article  PubMed  PubMed Central  Google Scholar  * Breitbart, M., Miyake, J. H. & Rohwer, F. Global distribution of nearly identical phage-encoded DNA sequences. _FEMS


Microbiol. Lett._ 236, 249–256 (2004). Article  CAS  PubMed  Google Scholar  * Hassard, F. et al. Abundance and distribution of enteric bacteria and viruses in coastal and estuarine


sediments — a review. _Front. Microbiol._ 7, 1692 (2016). Article  PubMed  PubMed Central  Google Scholar  * Shade, A. et al. Fundamentals of microbial community resistance and resilience.


_Front. Microbiol._ 3, 417 (2012). Article  PubMed  PubMed Central  Google Scholar  * Sano, E., Carlson, S., Wegley, L. & Rohwer, F. Movement of viruses between biomes. _Appl. Environ.


Microbiol._ 70, 5842–5846 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Casteel, M. J., Sobsey, M. D. & Mueller, J. P. Fecal contamination of agricultural soils before


and after hurricane-associated flooding in North Carolina. _J. Environ. Sci. Health A_ 41, 173–184 (2006). Article  CAS  Google Scholar  * Wu, R., Trubl, G., Taş, N. & Jansson, J. K.


Permafrost as a potential pathogen reservoir. _One Earth_ 5, 351–360 (2022). Article  Google Scholar  * Trebicki, P. Climate change and plant virus epidemiology. _Virus Res._ 286, 198059


(2020). Article  CAS  PubMed  Google Scholar  * Whitfield, A. E., Falk, B. W. & Rotenberg, D. Insect vector-mediated transmission of plant viruses. _Virology_ 479, 278–289 (2015).


Article  PubMed  Google Scholar  * Velásquez, A. C., Castroverde, C. D. M. & He, S. Y. Plant–pathogen warfare under changing climate conditions. _Curr. Biol._ 28, R619–R634 (2018).


Article  PubMed  PubMed Central  Google Scholar  * Prasch, C. M. & Sonnewald, U. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in


signaling networks. _Plant Physiol._ 162, 1849–1866 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sutela, S., Poimala, A. & Vainio, E. J. Viruses of fungi and oomycetes


in the soil environment. _FEMS Microbiol. Ecol._ 95, fiz119 (2019). Article  CAS  PubMed  Google Scholar  * Wang, L. et al. Evidence for a novel negative-stranded RNA mycovirus isolated


from the plant pathogenic fungus Fusarium graminearum. _Virology_ 518, 232–240 (2018). Article  CAS  PubMed  Google Scholar  * Abdoulaye, A. H., Foda, M. F. & Kotta-Loizou, I. Viruses


infecting the plant pathogenic fungus Rhizoctonia solani. _Viruses_ 11, 1113 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS Research in


the laboratory of J.K.J. was supported by the US Department of Energy’s Office of Biological and Environmental Research and is a contribution of the Scientific Focus Area ‘Phenotypic


response of the soil microbiome to environmental perturbations’ (FWP 70880). Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle Memorial Institute


under contract DE-AC05-76RLO1830. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA Janet K. Jansson & 


Ruonan Wu Authors * Janet K. Jansson View author publications You can also search for this author inPubMed Google Scholar * Ruonan Wu View author publications You can also search for this


author inPubMed Google Scholar CONTRIBUTIONS The authors contributed equally to all aspects of the article. CORRESPONDING AUTHOR Correspondence to Janet K. Jansson. ETHICS DECLARATIONS


COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Microbiology_ thanks Li-Li Han; Mark Radosevich, who co-reviewed with


Xiaolong Liang; and K. Eric Wommack, who co-reviewed with Hannah Locke, for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature


remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS GLOBAL RNA VIRAL DATA: https://zenodo.org/record/6553771#.YyDwfezML0p


IMG/VR METADATA: https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=IMG_VR (JGI GENOME POTAL LOG-IN IS NEEDED) RIBOV1.4_INFO.TSV:


https://portal.nersc.gov/dna/microbial/prokpubs/Riboviria/RiboV1.4/RiboV1.4_Info.tsv RNA VIRUSES IN METATRANSCRIPTOMES DATABASE: https://riboviria.org VIRUS-HOST DB:


https://www.genome.jp/virushostdb SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION GLOSSARY * Auxiliary metabolic genes (AMGs) Genes carried on soil viruses that are not directly required


for viral replication and/or reproduction. * Bacteriophages Viruses that have a bacterial host. * CRISPR–Cas An adaptive immunity against foreign elements in many bacteria and most archaea.


DNA from the invasive elements (for example viruses) is first taken up and integrated into CRISPR loci as spacers with repeat sequences flanked on both sides. The CRISPR locus is


transcribed and modified into mature CRISPR RNA. CRISPR RNA guides the Cas nuclease complex to cleave the sequences after targeted recognition of the invading mobile genetic elements. *


Giant viruses Very large double-stranded DNA viruses with genomes as large as or larger than those of some bacteria. * Kill-the-winner hypothesis A hypothesis that the temperate phage


lifestyle is favoured when host densities are high. Thus, viruses have an opportunity to exploit their hosts via lysogeny instead of lysing them. * Metagenome Community DNA sequence data


that are derived by DNA sequencing. * Metatranscriptome Community RNA sequence data that are derived by RNA sequencing. * Piggyback-the-winner hypothesis A hypothesis that the dominant


bacterial hosts in a system are selectively lysed by phages. * Stable-isotope probing A method used to incorporate stable isotopes into biomolecules and thus to distinguish active cell


populations from inactive cell populations (for example, when 18O-labelled H2O is used) or to determine cells that perform a specific metabolic step (for example, when 13C-labelled


substrates are used). * Temperate phages Viruses (bacteriophages) that are incorporated into the genome of the bacterial host and display a lysogenic lifestyle. * Viral ‘dark matter’ A term


used to describe the largely unknown identities and functions of soil viruses. * Viral shunt Virus-mediated lysis of microbial cells that results in a bypass of the flow of nutrients from


microbial cells to higher trophic levels in the soil microbial food web. * Viromes Viruses that are extracted from the environment before sequencing. RIGHTS AND PERMISSIONS Springer Nature


or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of


the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Jansson, J.K., Wu, R. Soil viral diversity, ecology and climate change. _Nat Rev Microbiol_ 21, 296–311 (2023). https://doi.org/10.1038/s41579-022-00811-z Download citation * Accepted: 29


September 2022 * Published: 09 November 2022 * Issue Date: May 2023 * DOI: https://doi.org/10.1038/s41579-022-00811-z SHARE THIS ARTICLE Anyone you share the following link with will be able


to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative


Trending News

VIC News - 9News - Latest updates and breaking headlines Victoria

This is a collection page for Victoria news. Check this page for breaking headlines from Melbourne plus surrounding regi...

'banks too big to care, all about profits'

When people take up part-time or seasonal work, their Centrelink payment is clawed back. After paying income tax, this a...

Outsmart chatgpt: 8 tips for creating assignments it can't do

Since the latest version of ChatGPT emerged late last year, educators have been puzzling over how to reconcile tradition...

Chemical castration - What is it? Is it permanent? Drugs and methods used REVEALED

In most countries where it is used, it is only administered to sex offenders who volunteer for the treatment in a bid to...

Uk weather forecast: britain to bake in high pressure

After a chill in the air and a few showers early on Monday, high pressure will be the order of the day for the rest of t...

Latests News

Soil viral diversity, ecology and climate change

ABSTRACT Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. ...

Did daniel ricciardo really do this after winning the chinese gp?

Ricciardo took advantage of a tactical masterstroke by Red Bull to win in Shanghai after championship leader Sebastian V...

Ralf schumacher slammed for 'lacking respect' by ex-wife after coming out as gay

Cora Schumacher, the ex-wife of former Formula 1 ace Ralf Schumacher, has opened up for the first time since Ralf came o...

Lewis hamilton passes the blame after miami gp as max verstappen snubbed

David Coulthard believes that Charles Leclerc needs to go back to basics in order to stop himself from making so many cr...

10 simple ways to refresh your home for spring

There's no better time to refresh your home than spring — a time of renewal. Goodbye wine-colored velvet drapes; he...

Top