Immune control by amino acid catabolism during tumorigenesis and therapy

Nature

Immune control by amino acid catabolism during tumorigenesis and therapy"


Play all audios:

Loading...

ABSTRACT Immune checkpoints arise from physiological changes during tumorigenesis that reprogramme inflammatory, immunological and metabolic processes in malignant lesions and local lymphoid


tissues, which constitute the immunological tumour microenvironment (TME). Improving clinical responses to immune checkpoint blockade will require deeper understanding of factors that


impact local immune balance in the TME. Elevated catabolism of the amino acids tryptophan (Trp) and arginine (Arg) is a common TME hallmark at clinical presentation of cancer. Cells


catabolizing Trp and Arg suppress effector T cells and stabilize regulatory T cells to suppress immunity in chronic inflammatory diseases of clinical importance, including cancers. Processes


that induce Trp and Arg catabolism in the TME remain incompletely defined. Indoleamine 2,3 dioxygenase (IDO) and arginase 1 (ARG1), which catabolize Trp and Arg, respectively, respond to 


inflammatory cues including interferons and transforming growth factor-β (TGFβ) cytokines. Dying cells generate inflammatory signals including DNA, which is sensed to stimulate the


production of type I interferons via the stimulator of interferon genes (STING) adaptor. Thus, dying cells help establish local conditions that suppress antitumour immunity to promote


tumorigenesis. Here, we review evidence that Trp and Arg catabolism contributes to inflammatory processes that promote tumorigenesis, impede immune responses to therapy and might promote


neurological comorbidities associated with cancer. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more


Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IMMUNOMETABOLISM OF REGULATORY T CELLS IN CANCER Article Open access 04 June 2025 MYELOID-DERIVED ITACONATE SUPPRESSES


CYTOTOXIC CD8+ T CELLS AND PROMOTES TUMOUR GROWTH Article 14 November 2022 IMMUNOMETABOLISM IN CANCER: BASIC MECHANISMS AND NEW TARGETING STRATEGY Article Open access 16 May 2024 REFERENCES


* Bissell, M. J. & Hines, W. C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. _Nat. Med._ 17, 320–329 (2011). CAS  PubMed 


PubMed Central  Google Scholar  * Vesely, M. D. & Schreiber, R. D. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. _Ann. NY Acad. Sci._ 1284, 1–5


(2013). CAS  PubMed  Google Scholar  * Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. _N. Engl. J. Med._ 315, 1650–1659


(1986). CAS  PubMed  Google Scholar  * Casero, R. A. Jr, Murray Stewart, T. & Pegg, A. E. Polyamine metabolism and cancer: treatments, challenges and opportunities. _Nat. Rev. Cancer_


18, 681–695 (2018). CAS  PubMed  Google Scholar  * Garber, K. A new cancer immunotherapy suffers a setback. _Science_ 360, 588 (2018). CAS  PubMed  Google Scholar  * Mitchell, T. C. et al.


Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). _J. Clin Oncol._ 36, 3223–3230


(2018). PubMed Central  Google Scholar  * Muller, A. J., Manfredi, M., Zakharia, Y. & Prendergast, G. C. IDO inhibitors for cancer treatment: lessons from ECHO-301. _Semin.


Immunopathol_. 41, 41–48 (2019). PubMed  Google Scholar  * Seymour, R. L., Ganapathy, V., Mellor, A. L. & Munn, D. H. A high-affinity, tryptophan-selective amino acid transport system in


human macrophages. _J. Leukoc. Biol._ 80, 1320–1327 (2006). CAS  PubMed  Google Scholar  * Ron, D. Translational control in the endoplasmic reticulum stress response. _J. Clin. Invest._


110, 1383–1388 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Lehman, S. L., Ryeom, S. & Koumenis, C. Signaling through alternative Integrated Stress Response pathways


compensates for GCN2 loss in a mouse model of soft tissue sarcoma. _Sci. Rep._ 5, 11781 (2015). PubMed  PubMed Central  Google Scholar  * Mossmann, D., Park, S. & Hall, M. N. mTOR


signalling and cellular metabolism are mutual determinants in cancer. _Nat. Rev. Cancer_ 18, 744–757 (2018). PubMed  Google Scholar  * Cormerais, Y. et al. Genetic disruption of the


multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth. _Cancer Res._ 76, 4481–4492 (2016). CAS  PubMed 


Google Scholar  * Esaki, N. et al. ASC amino acid transporter 2, defined by enzyme-mediated activation of radical sources, enhances malignancy of GD2-positive small-cell lung cancer. _Cancer


Sci._ 109, 141–153 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Wyant, G. A. et al. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use


protein as a nutrient. _Cell_ 171, 642–654 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Muller, A. J. et al. Chronic inflammation that facilitates tumor progression creates local


immune suppression by inducing indoleamine 2,3 dioxygenase. _Proc. Natl Acad. Sci. USA_ 105, 17073–17078 (2008). THIS GENETIC STUDY OF IDO ESTABLISHES ITS KEY CONTRIBUTIONS TO FORMATION OF A


PATHOGENIC INFLAMMATORY MILIEU THAT IS CRITICAL FOR MALIGNANT DEVELOPMENT. CAS  PubMed  Google Scholar  * Smith, C. et al. IDO is a nodal pathogenic driver of lung cancer and metastasis


development. _Cancer Discov._ 2, 722–735 (2012). THIS STUDY OFFERS GENETIC EVIDENCE THAT IDO IS CRUCIAL FOR TUMOUR FORMATION, VASCULOGENESIS, METASTASIS AND MDSC ACTIVATION AND RECRUITMENT.


CAS  PubMed  PubMed Central  Google Scholar  * Metz, R. et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by


D-1-methyl-tryptophan. _Oncoimmunology_ 1, 1460–1468 (2012). PubMed  PubMed Central  Google Scholar  * Mautino, M. R. et al. A novel prodrug of indoximod with enhanced pharmacokinetic


properties. _Cancer Res._ 77 (Suppl. 13), 4076 (2017). Google Scholar  * Friberg, M. et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. _Int.


J. Cancer_ 101, 151–155 (2002). CAS  PubMed  Google Scholar  * Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. Inhibition of indoleamine


2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. _Nat. Med._ 11, 312–319 (2005). THIS STUDY LINKS IDO TO A CANCER PATHWAY AND


SHOWS THAT IDO INHIBITORS CAN EXERT ROBUST ANTITUMOUR EFFECTS IF COMBINED WITH DNA-DAMAGING CHEMOTHERAPY. CAS  PubMed  Google Scholar  * Hou, D. Y. et al. Inhibition of indoleamine


2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. _Cancer Res._ 67, 792–801 (2007). CAS  PubMed  Google Scholar  * Lemos, H. et


al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. _Cancer Res._ 76, 2076–2081 (2016). THIS STUDY SHOWS THAT STING PROMOTES GROWTH OF POORLY


IMMUNOGENIC TUMOURS BY STIMULATING DCS IN TDLNS TO EXPRESS IDO. CAS  PubMed  PubMed Central  Google Scholar  * Weiner, G. J. CpG oligodeoxynucleotide-based therapy of lymphoid malignancies.


_Adv. Drug Deliv. Rev._ 61, 263–267 (2009). CAS  PubMed  Google Scholar  * Unterholzner, L. The interferon response to intracellular DNA: why so many receptors? _Immunobiology_ 218,


1312–1321 (2013). CAS  PubMed  Google Scholar  * Prendergast, G. C., Metz, R., Muller, A. J., Merlo, L. M. & Mandik-Nayak, L. IDO2 in immunomodulation and autoimmune disease. _Front.


Immunol._ 5, 585 (2014). PubMed  PubMed Central  Google Scholar  * Badawy, A. A. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus


on aging, exercise, diet and nutritional supplements. _Neuropharmacology_ 112, 248–263 (2017). CAS  PubMed  Google Scholar  * Morris, G., Carvalho, A. F., Anderson, G., Galecki, P. &


Maes, M. The many neuroprogressive actions of tryptophan catabolites (TRYCATs) that may be associated with the pathophysiology of neuro-immune disorders. _Curr. Pharm. Des._ 22, 963–977


(2016). CAS  PubMed  Google Scholar  * Thomas, S. R., Mohr, D. & Stocker, R. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes.


_J. Biol. Chem._ 269, 14457–14464 (1994). CAS  PubMed  Google Scholar  * Hesterberg, R. S., Cleveland, J. L. & Epling-Burnette, P. K. Role of polyamines in immune cell functions. _Med.


Sci._ 6, E22 (2018). Google Scholar  * Boutard, V. et al. Transforming growth factor-beta stimulates arginase activity in macrophages. Implications for the regulation of macrophage


cytotoxicity. _J. Immunol._ 155, 2077–2084 (1995). CAS  PubMed  Google Scholar  * Pallotta, M. T. et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by


dendritic cells. _Nat. Immunol._ 12, 870–878 (2011). CAS  PubMed  Google Scholar  * Theate, I. et al. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in


normal and tumoral human tissues. _Cancer Immunol. Res._ 3, 161–172 (2015). CAS  PubMed  Google Scholar  * Munn, D. H. & Mellor, A. L. IDO in the tumor microenvironment: inflammation,


counter-regulation, and tolerance. _Trends Immunol._ 37, 193–207 (2016). CAS  PubMed  PubMed Central  Google Scholar  * El-Zaatari, M. et al. Indoleamine 2,3-dioxygenase 1, increased in


human gastric pre-neoplasia, promotes inflammation and metaplasia in mice and is associated with type II hypersensitivity/autoimmunity. _Gastroenterology_ 154, 140–153 (2018). CAS  PubMed 


Google Scholar  * Platten, M., Wick, W. & Van den Eynde, B. J. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. _Cancer Res._ 72, 5435–5440 (2012). CAS  PubMed 


Google Scholar  * Prendergast, G. C., Malachowski, W. P., DuHadaway, J. B. & Muller, A. J. Discovery of IDO1 inhibitors: from bench to bedside. _Cancer Res._ 77, 6795–6811 (2017). CAS 


PubMed  PubMed Central  Google Scholar  * Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. _Nat. Med._


9, 1269–1274 (2003). THIS IS AN EARLY REPORT HIGHLIGHTING THAT ELEVATED IDO EXPRESSION IS A COMMON TME FEATURE AND THAT IDO INHIBITION CAN ENHANCE T CELL ACCUMULATION IN THE TME. CAS 


PubMed  Google Scholar  * Witkiewicz, A. K. et al. Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target. _J. Am. Coll. Surg._ 208, 781–787;


discussion 787–789 (2009). PubMed  PubMed Central  Google Scholar  * Brandacher, G. et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on


tumor-infiltrating T cells. _Clin. Cancer Res._ 12, 1144–1151 (2006). THIS IS ONE OF THE EARLIEST STUDIES TO ESTABLISH THAT HIGH IDO ACTIVITY IN HUMAN TUMOURS TENDS TO ASSOCIATE WITH A POOR


PROGNOSIS. CAS  PubMed  Google Scholar  * Yu, J. et al. Upregulated expression of indoleamine 2,3-dioxygenase in primary breast cancer correlates with increase of infiltrated regulatory T


cells in situ and lymph node metastasis. _Clin. Dev. Immunol._ 2011, 1–10 (2011). Google Scholar  * Qian, F. et al. Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in


reversing indoleamine-2,3-dioxygenase-mediated arrest of T cell proliferation in human epithelial ovarian cancer. _Cancer Res._ 69, 5498–5504 (2009). CAS  PubMed  Google Scholar  *


Feder-Mengus, C. et al. High expression of indoleamine 2,3-dioxygenase gene in prostate cancer. _Eur. J. Cancer_ 44, 2266–2275 (2008). CAS  PubMed  Google Scholar  * Brody, J. R. et al.


Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. _Cell Cycle_ 8, 1930–1934 |(2009). CAS


  PubMed  Google Scholar  * Corm, S. et al. Indoleamine 2,3-dioxygenase activity of acute myeloid leukemia cells can be measured from patients’ sera by HPLC and is inducible by IFN-gamma.


_Leuk. Res._ 33, 490–494 (2009). CAS  PubMed  Google Scholar  * Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. _Nature_ 478, 197–203


(2011). THIS STUDY LINKS TDO ACTIVITY WITH AHR SIGNALLING AND SHOWS THAT THIS PATHWAY PROMOTES TUMOUR DEVELOPMENT. CAS  PubMed  Google Scholar  * D’Amato, N. C. et al. A TDO2-AhR signaling


axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. _Cancer Res._ 75, 4651–4664 (2015). PubMed  PubMed Central  Google Scholar  * Wei, L. et al. High


indoleamine 2,3-dioxygenase is correlated with microvessel density and worse prognosis in breast cancer. _Front. Immunol._ 9, 724 (2018). PubMed  PubMed Central  Google Scholar  * Sinclair,


L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. _Nat. Immunol._ 14, 500–508 (2013). THIS STUDY


REVEALS AN OBLIGATORY REQUIREMENT FOR ACTIVATED T CELLS TO UPREGULATE AMINO ACID TRANSPORTER ACTIVITY TO STIMULATE MTOR AND DIFFERENTIATE INTO EFFECTOR T CELLS. CAS  PubMed  PubMed Central


  Google Scholar  * Lee, G. K. et al. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. _Immunology_ 107, 1–9 (2002). Google Scholar  * Munn, D. H. et


al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. _Immunity_ 22, 1–10 (2005). THIS STUDY IDENTIFIES A CRITICAL


REQUIREMENT FOR GCN2 SIGNALLING FOR T CELLS TO PROLIFERATE AND DIFFERENTIATE. Google Scholar  * Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. L-Arginine availability regulates


T-lymphocyte cell-cycle progression. _Blood_ 109, 1568–1573 (2007). THIS STUDY LINKS ARG CATABOLISM TO BLOCKING T CELL ENTRY INTO CELL CYCLE VIA A GCN2-DEPENDENT MECHANISM. CAS  PubMed 


PubMed Central  Google Scholar  * Sharma, M. D. et al. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. _Sci. Adv._ 1, e1500845 (2015). PubMed 


PubMed Central  Google Scholar  * Sharma, M. D. et al. Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice.


_Immunity_ 33, 942–954 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Sharma, M. D. et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature


Tregs via IDO. _J. Clin. Invest._ 117, 2570–2582 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Sharma, M. D. et al. An inherently bi-functional subset of Foxp3 + Treg/T-helper


cells is controlled by the transcription factor Eos. _Immunity_ 38, 998–1012 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Munn, D. H. et al. Expression of indoleamine


2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. _J. Clin. Invest._ 114, 280–290 (2004). THIS STUDY IDENTIFIES IDO-EXPRESSING DCS IN TDLNS AS POTENT REGULATORS


OF T CELL IMMUNITY. CAS  PubMed  PubMed Central  Google Scholar  * Munn, D. H. et al. Potential regulatory function of human dendritic cells expressing IDO. _Science_ 297, 1867–1870 (2002).


CAS  PubMed  Google Scholar  * Chen, W., Liang, X., Peterson, A. J., Munn, D. H. & Blazar, B. R. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic


cell-induced adaptive T regulatory cell generation. _J. Immunol._ 181, 5396–5404 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Lee, J. R. et al. Pattern of recruitment of


immunoregulatory antigen-presenting cells in malignant melanoma. _Lab. Invest._ 83, 1457–1466 (2003). CAS  PubMed  Google Scholar  * Montero, A. J., Diaz-Montero, C. M., Kyriakopoulos, C.


E., Bronte, V. & Mandruzzato, S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. _J. Immunother._ 35, 107–115 (2012). PubMed  Google Scholar  * Bronte, V.


& Zanovello, P. Regulation of immune responses by L-arginine metabolism. _Nat. Rev. Immunol._ 5, 641–654 (2005). CAS  PubMed  Google Scholar  * Holmgaard, R. B. et al. Tumor-expressed


IDO recruits and activates MDSCs in a Treg-dependent manner. _Cell Rep._ 13, 412–424 (2015). THIS REPORT SHOWS THAT IDO INHIBITORS CAN PHENOCOPY IDO GENETIC BLOCKADE IN BLUNTING MDSC


RECRUITMENT AND ACTIVATION IN THE TME. CAS  PubMed  PubMed Central  Google Scholar  * Gielen, P. R. et al. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients


with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. _Neuro Oncol._ 18, 1253–1264 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Zhang, H. et al.


Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. _Blood_ 122, 1105–1113 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Mellor, A. L. et al.


Cutting edge: CpG oligonucleotides induce splenic CD19+dendritic cells to acquire potent IDO-dependent T cell regulatory functions via IFN type 1 signaling. _J. Immunol._ 175, 5601–5605


(2005). CAS  PubMed  Google Scholar  * Ravishankar, B. et al. Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. _Proc. Natl Acad. Sci. USA_ 109, 3909–3914 (2012). CAS


  PubMed  Google Scholar  * Ravishankar, B. et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity.


_Proc. Natl Acad. Sci. USA_ 112, 10774–10779 (2015). CAS  PubMed  Google Scholar  * Ravishankar, B. et al. Marginal zone CD169+macrophages coordinate apoptotic cell-driven cellular


recruitment and tolerance. _Proc. Natl Acad. Sci. USA_ 111, 4215–4220 (2014). CAS  PubMed  Google Scholar  * Huang, L. et al. Cutting edge: DNA sensing via the STING adaptor in myeloid


dendritic cells induces potent tolerogenic responses. _J. Immunol._ 191, 3509–3513 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Huang, L. et al. Engineering DNA nanoparticles as


immunomodulatory reagents that activate regulatory T cells. _J. Immunol._ 188, 4913–4920 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Munn, D. H., Sharma, M. D. & Mellor, A. L.


Ligation of B7-1/B7-2 by human CD4(+) T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. _J. Immunol._ 172, 4100–4110 (2004). CAS  PubMed  Google Scholar  * Baban, B.


et al. Physiologic control of IDO competence in splenic dendritic cells. _J. Immunol._ 187, 2329–2335 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Xia, T., Konno, H., Ahn, J.


& Barber, G. N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. _Cell Rep._ 14, 282–297 (2016). THIS STUDY


IDENTIFIES CORRELATIONS BETWEEN REDUCED STING SIGNALLING IN HUMAN COLORECTAL CARCINOMA, REDUCED RESPONSES TO DNA DAMAGE AND TUMORIGENESIS. CAS  PubMed  Google Scholar  * Ahn, J., Xia, T.,


Rabasa Capote, A., Betancourt, D. & Barber, G. N. Extrinsic phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. _Cancer Cell_ 33, 862–873 (2018). CAS  PubMed


  Google Scholar  * Shinde, R. et al. Apoptotic cell-induced AhR activity is required for immunological tolerance and suppression of systemic lupus erythematosus in mice and humans. _Nat.


Immunol._ 19, 571–582 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Romani, L. & Puccetti, P. Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. _Trends


 Microbiol._ 14, 183–189 (2006). CAS  PubMed  Google Scholar  * DiNatale, B. C. et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces


interleukin-6 in the presence of inflammatory signaling. _Toxicol. Sci._ 115, 89–97 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Duarte, J. H., Di Meglio, P., Hirota, K., Ahlfors,


H. & Stockinger, B. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo. _PLOS ONE_ 8, e79819 (2013). PubMed  PubMed Central  Google


Scholar  * Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. _J. Immunol._ 185, 3190–3198 (2010). CAS  PubMed  PubMed


Central  Google Scholar  * Nguyen, N. T. et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. _Proc. Natl Acad. Sci.


USA_ 107, 19961–19966 (2010). CAS  PubMed  Google Scholar  * Vogel, C. F., Goth, S. R., Dong, B., Pessah, I. N. & Matsumura, F. Aryl hydrocarbon receptor signaling mediates expression of


indoleamine 2,3-dioxygenase. _Biochem. Biophys. Res. Commun._ 375, 331–335 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Litzenburger, U. M. et al. Constitutive IDO expression in


human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. _Oncotarget_ 5, 1038–1051 (2014). PubMed  PubMed Central  Google Scholar  * Feng, S., Cao, Z.


& Wang, X. Role of aryl hydrocarbon receptor in cancer. _Biochim. Biophys. Acta_ 1836, 197–210 (2013). CAS  PubMed  Google Scholar  * Lewis, H. C., Chinnadurai, R., Bosinger, S. E. &


Galipeau, J. The IDO inhibitor 1-methyl tryptophan activates the aryl hydrocarbon receptor response in mesenchymal stromal cells. _Oncotarget_ 8, 91914–91927 (2017). PubMed  PubMed Central


  Google Scholar  * Ehrlich, A. K. & Kerkvliet, N. I. Is chronic AhR activation by rapidly metabolized ligands safe for the treatment of immune-mediated diseases? _Curr. Opin. Toxicol._


2, 72–78 (2017). PubMed  PubMed Central  Google Scholar  * Hayashi, T. et al. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell


apoptosis. _Proc. Natl Acad. Sci. USA_ 104, 18619–18624 (2007). CAS  PubMed  Google Scholar  * Yan, Y. et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses


encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. _J. Immunol._ 185, 5953–5961 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Cronin, S. J. F. et al.


The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. _Nature_ 563, 564–568 (2018). CAS  PubMed  Google Scholar  * Adams, S. et al. Involvement of the kynurenine


pathway in human glioma pathophysiology. _PLOS ONE_ 9, e112945 (2014). PubMed  PubMed Central  Google Scholar  * Sahm, F. et al. The endogenous tryptophan metabolite and NAD+precursor


quinolinic acid confers resistance of gliomas to oxidative stress. _Cancer Res._ 73, 3225–3234 (2013). CAS  PubMed  Google Scholar  * Triplett, T. A. et al. Reversal of indoleamine


2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. _Nat. Biotechnol._ 36, 758–764 (2018). CAS  PubMed  PubMed Central  Google


Scholar  * Sculier, J. P. et al. Medical anticancer treatment of lung cancer associated with comorbidities: a review. _Lung Cancer_ 87, 241–248 (2015). CAS  PubMed  Google Scholar  *


Capuron, L. & Dantzer, R. Cytokines and depression: the need for a new paradigm. _Brain Behav. Immun._ 17, S119–S124 (2003). CAS  PubMed  Google Scholar  * Sui, H. et al.


5-Hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/beta-catenin/MMP-7 signaling pathway. _Oncotarget_ 6, 25975–25987 (2015). PubMed  PubMed


Central  Google Scholar  * Gwynne, W. D. et al. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts.


_Oncotarget_ 8, 32101–32116 (2017). PubMed  PubMed Central  Google Scholar  * Kim, H. et al. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. _J.


Clin. Invest._ 122, 2940–2954 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Huang, L. et al. Virus infections incite pain hypersensitivity by inducing indoleamine 2,3 dioxygenase.


_PLOS Pathog._ 12, e1005615 (2016). PubMed  PubMed Central  Google Scholar  * LaVoy, E. C., Fagundes, C. P. & Dantzer, R. Exercise, inflammation, and fatigue in cancer survivors. _Exerc.


 Immunol. Rev._ 22, 82–93 (2016). PubMed  PubMed Central  Google Scholar  * Beatty, G. L. et al. First-in-human phase I study of the oral inhibitor of indoleamine 2,3-dioxygenase-1


epacadostat (INCB024360) in patients with advanced solid malignancies. _Clin. Cancer Res._ 23, 3269–3276 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Cheong, J. E., Ekkati, A.


& Sun, L. A patent review of IDO1 inhibitors for cancer. _Expert Opin. Ther. Pat._ 28, 317–330 (2018). CAS  PubMed  Google Scholar  * Fuertes, M. B. et al. Host type I IFN signals are


required for antitumor CD8+T cell responses through CD8{alpha}+dendritic cells. _J. Exp. Med._ 208, 2005–2016 (2011). THIS STUDY SHOWS THAT TYPE I INTERFERON SIGNALS MEDIATED BY DCS IN THE


TME PROMOTE EFFECTOR T CELL RESPONSES. CAS  PubMed  PubMed Central  Google Scholar  * Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of


immunogenic tumors. _Immunity_ 41, 830–842 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I


interferon-dependent antitumor immunity in immunogenic tumors. _Immunity_ 41, 843–852 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Corrales, L. et al. Direct activation of STING in


the tumor microenvironment leads to potent and systemic tumor regression and immunity. _Cell Rep._ 11, 1018–1030 (2015). REFERENCES 102–104 SHOW THAT STING–TYPE I INTERFERON SIGNALLING


INCITES IMMUNITY DIRECTED AT IMMUNOGENIC TUMOURS AND THAT SYNTHETIC STING AGONISTS AMPLIFY THIS ANTITUMOUR RESPONSE. CAS  PubMed  PubMed Central  Google Scholar  * Li, T. et al. Antitumor


activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. _Sci. Rep._ 6, 19049 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Lemos, H. et al.


Activation of the STING adaptor attenuates experimental autoimmune encephalitis. _J. Immunol._ 192, 5571–5578 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Aya, F. et al.


Life-threatening colitis and complete response with ipilimumab in a patient with metastatic BRAF-mutant melanoma and rheumatoid arthritis. _ESMO Open_ 1, e000032 (2016). PubMed  PubMed


Central  Google Scholar  * De Martin, E. et al. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. _J. Hepatol._ 68, 1181–1190 (2018).


PubMed  Google Scholar  * Menzies, A. M. et al. Anti-PD1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. _Ann. Oncol._ 28,


368–376 (2017). CAS  PubMed  Google Scholar  * Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. _JAMA Oncol._ 2, 234–240


(2016). PubMed  Google Scholar  * Banerjee, T. et al. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. _Oncogene_


27, 2851–2857 (2008). CAS  PubMed  Google Scholar  * Ursu, R. et al. Intracerebral injection of CpG oligonucleotide for patients with de novo glioblastoma-A phase II multicentric,


randomised study. _Eur. J. Cancer_ 73, 30–37 (2017). CAS  PubMed  Google Scholar  * Moreno Ayala, M. A. et al. Dual activation of Toll-like receptors 7 and 9 impairs the efficacy of


antitumor vaccines in murine models of metastatic breast cancer. _J. Cancer Res. Clin. Oncol._ 143, 1713–1732 (2017). CAS  PubMed  Google Scholar  * Tarhini, A. A., Gogas, H. & Kirkwood,


J. M. IFN-alpha in the treatment of melanoma. _J. Immunol._ 189, 3789–3793 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Mojic, M., Takeda, K. & Hayakawa, Y. The dark side of


IFN-gamma: its role in promoting cancer immunoevasion. _Int. J. Mol. Sci._ 19, 89 (2017). PubMed Central  Google Scholar  * McMasters, K. M. et al. Final results of the Sunbelt melanoma


trial: a multi-institutional prospective randomized phase III study evaluating the role of adjuvant high-dose interferon alfa-2b and completion lymph node dissection for patients staged by


sentinel lymph node biopsy. _J. Clin. Oncol._ 34, 1079–1086 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Mautino, M. R. et al. NLG919, a novel indoleamine-2,3-dioxygenase


(IDO)-pathway inhibitor drug candidate for cancer therapy. _Cancer Res._ 73 (Suppl. 8), 491 (2013). Google Scholar  * Nayak-Kapoor, A. et al. Phase Ia study of the indoleamine


2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) in patients with recurrent advanced solid tumors. _J. Immunother.Cancer._ 6, 61 (2018). PubMed  PubMed Central  Google Scholar  * Siu,


L. L. et al. BMS-986205, an optimized indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor, is well tolerated with potent pharmacodynamic (PD) activity, alone and in combination with nivolumab


(nivo) in advanced cancers in a phase 1/2a trial. _Cancer Res._ 77 (Suppl. 13), CT116 (2017). Google Scholar  * Reardon, D. et al. ATIM-29. A phase 1 study of PF-06840003, an oral indole


2,3-dioxygenase 1 (IDO1) inhibitor in patients with malignant gliomas. _Neuro Oncol._ 19, vi32 (2017). PubMed Central  Google Scholar  * Sahebjam, S. et al. KHK2455, a long-acting selective


IDO-1 inhibitor, in combination with mogamulizumab, an anti-CCR4 monoclonal antibody, in patients with advanced solid tumors: preliminary safety report and pharmacodynamic activity from a


first-in-human study [abstract P148]. Presented at the 2017 Society for Immunotherapy of Cancer (SITC) Annual Meeting (2017). * Mautino, M. et al. A novel prodrug of indoximod with enhanced


pharmacokinetic properties. _Cancer Res._ 77, 4076 (2017). Google Scholar  * Herbst, R. S. et al. Predictive correlates of response to the anti-PDL1 antibody MPDL3280A in cancer patients.


_Nature_ 515, 563–567 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Spranger, S. et al. Up-regulation of PDL1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by


CD8(+) T cells. _Sci. Transl Med._ 5, 200ra116 (2013). PubMed  PubMed Central  Google Scholar  * Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D. & Allison, J. P. Indoleamine


2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. _J. Exp. Med._ 210, 1389–1402 (2013). THIS STUDY SUGGESTS THAT IDO BLOCKADE CAN EMPOWER


IMMUNE CHECKPOINT THERAPY. CAS  PubMed  PubMed Central  Google Scholar  * Spranger, S. et al. Mechanism of tumor rejection with doublets of CTLA-4, PD1/PDL1, or IDO blockade involves


restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. _J. Immunother. Cancer_ 2, 3 (2014). PubMed  PubMed Central  Google Scholar  *


Wainwright, D. A. et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PDL1 in mice with brain tumors. _Clin. Cancer Res._ 20, 5290–5301 (2014). CAS


  PubMed  PubMed Central  Google Scholar  * Zakharia, Y. et al. Interim analysis of the phase 2 clinical trial of the IDO pathway inhibitor indoximod in combination with pembrolizumab for


patients with advanced melanoma. _Cancer Res._ 77 (Suppl. 13), CT117 (2017). Google Scholar  * Zakharia, Y. et al. Updates on phase1b/2 trial of the indoleamine 2,3-dioxygenase pathway


inhibitor indoximod plus checkpoint inhibitors for the treatment of unresectable stage 3 or 4 melanoma. _J. Clin. Oncol._ 34 (Suppl.), 3075 (2016). Google Scholar  * Zakharia, Y., Munn, D.,


Link, C., Vahanian, N. & Kennedy, E. ACTR-53. Interim analysis of Phase 1b/2 combination of the IDO pathway inhibitor indoximod with temozolomide for adult patients with


temozolomide-refractory primary malignant brain tumors. _Neuro Oncol._ 18, vi13–vi14 (2016). Google Scholar  * Smith, D. C. et al. Epacadostat plus pembrolizumab in patients with advanced


urothelial carcinoma: preliminary phase I/II results of ECHO-202/KEYNOTE-037. _J. Clin. Oncol._ 35 (Suppl.), 4503 (2017). Google Scholar  * Lara, P. et al. Epacadostat plus pembrolizumab in


patients with advanced RCC: preliminary phase I/II results from ECHO-202/KEYNOTE-037. _J. Clin. Oncol._ 35 (Suppl.), 4515 (2017). Google Scholar  * Gangadhar, T. C. et al. Efficacy and


safety of epacadostat plus pembrolizumab treatment of NSCLC: preliminary phase I/II results of ECHO-202/KEYNOTE-037. _J. Clin. Oncol._ 35, 9014 (2017). Google Scholar  * Hamid, O. et al.


Epacadostat plus pembrolizumab in patients with SCCHN: preliminary phase I/II results from ECHO-202/KEYNOTE-037. _J. Clin. Oncol._ 35 (Suppl.), 6010 (2017). Google Scholar  * US National


Library of Medicine. _ClinicalTrials.gov_ http://www.clinicaltrials.gov/ct2/show/NCT02471846 (2018). * Long, G. V. et al. Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in


patients (pts) with unresectable or metastatic melanoma: Results of the phase 3 ECHO-301/KEYNOTE-252 study. _J. Clin. Oncol._ 36 (Suppl.), 108 (2018). Google Scholar  * Galluzzi, L., Buque,


A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. _Cancer Cell_ 28, 690–714 (2015). CAS  PubMed  Google Scholar


  * Li, M. et al. The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma. _J. Immunother. Cancer_ 2, 21


(2014). CAS  PubMed  PubMed Central  Google Scholar  * Johnson, T. S. & Munn, D. H. Host indoleamine 2,3-dioxygenase: contribution to systemic acquired tumor tolerance. _Immunol.


Invest._ 41, 765–797 (2012). CAS  PubMed  Google Scholar  * Soliman, H. H. et al. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients


with metastatic solid tumors. _Oncotarget_ 5, 8136–8146 (2014). PubMed  PubMed Central  Google Scholar  * Bahary, N. et al. Phase 2 trial of the indoleamine 2,3-dioxygenase pathway (IDO)


inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of metastatic pancreas cancer: interim analysis. _J. Clin. Oncol._ 34 (Suppl.), 3020 (2016). Google Scholar  * Bahary,


N. et al. Results of the phase Ib portion of a phase I/II trial of the indoleamine 2, 3-dioxygenase pathway (IDO) inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of


metastatic pancreatic cancer. _J. Clin. Oncol._ 34 (Suppl.), 452 (2016). Google Scholar  * Emadi, A. et al. Indoximod in combination with idarubicin and cytarabine for upfront treatment of


patients with newly diagnosed acute myeloid leukemia (AML): phase 1 report [abstract E912]. Presented at the 22nd European Hematologic Association (EHA) Congress (2017). * Johnson, T. S. et


al. PDCT-06. Radio-immunotherapy using the IDO-inhibitor indoximod in combination with re-irradiation for children with progressive brain tumors in the phase 1 setting: an updated report of


safety and tolerability (NCT02502708). _Neuro Oncol._ 19, vi185 (2017). PubMed Central  Google Scholar  * Johnson, T. S. et al. Safety and tolerability of combining the IDO-inhibitor


indoximod with re-irradiation for pediatric patients with progressive brain tumors treated on the NLG-2105 phase 1 trial (NCT02502708) [abstract 4027]. Presented at the 2017 American Society


of Pediatric Hematology Oncology (ASPHO) Annual Meeting (2017). * Lugade, A. A. et al. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor


immunity. _J. Immunol._ 180, 3132–3139 (2008). CAS  PubMed  Google Scholar  * Ladomersky, E. et al. IDO1 inhibition synergizes with radiation and PD1 blockade to durably increase survival


against advanced glioblastoma. _Clin. Cancer Res._ 24, 2559–2573 (2018). CAS  PubMed  Google Scholar  * Hiniker, S. M., Chen, D. S. & Knox, S. J. Abscopal effect in a patient with


melanoma. _N. Engl. J. Med._ 366, 2035; author reply 2035–2036 (2012). CAS  PubMed  Google Scholar  * Hiniker, S. M. et al. A systemic complete response of metastatic melanoma to local


radiation and immunotherapy. _Transl Oncol._ 5, 404–407 (2012). PubMed  PubMed Central  Google Scholar  * Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with


melanoma. _N. Engl. J. Med._ 366, 925–931 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant


immune mechanisms in cancer. _Nature_ 520, 373–377 (2015). CAS  PubMed  Google Scholar  * Wang, W. et al. IDO immune status after chemoradiation may predict survival in lung cancer


patients. _Cancer Res._ 78, 809–816 (2018). THIS STUDY REVEALS STRONG CORRELATIONS BETWEEN HIGH SYSTEMIC IDO ACTIVITY IN PATIENTS WITH LUNG CANCER (NSCLC) AND POOR SURVIVAL PROSPECTS AFTER


RADIOCHEMOTHERAPY. CAS  PubMed  Google Scholar  * Gyulveszi, G. et al. RG70099: a novel, highly potent dual IDO1/TDO inhibitor to reverse metabolic suppression of immune cells in the tumor


micro-environment. _Cancer Res._ 76, LB–085 (2016). Google Scholar  * Gullapalli, S. et al. EPL-1410, a novel fused heterocycle based orally active dual inhibitor of IDO1/TDO2, as a


potential immune-oncology therapeutic. _Cancer Res._ 78, 1701 (2018). Google Scholar  * Wang, Y. et al. Preclinical pharmacologic and pharmacodynamic studies of a novel and potent IDO1


inhibitor D-0751. _Cancer Res._ 78 (Suppl. 13), 2736 (2018). Google Scholar  * Liu, S. et al. Preclinical evaluation of TQBWX220, a small-molecule inhibitor of IDO1. _Cancer Res._ 78 (Suppl.


13), 192 (2018). Google Scholar  Download references ACKNOWLEDGEMENTS Research in the A.L.M. and L.H. laboratory is supported by US National Institutes of Health (NIH) (AI103347), Cancer


Research UK and the Faculty of Medical Sciences at Newcastle University. Research in the G.C.P. laboratory is supported by NIH (CA191191), the W.W. Smith Trust, the Lankenau Medical Center


Foundation and Main Line Health. G.C.P. is the Havens Chair in Biomedical Research at the Lankenau Institute for Medical Research. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Institute of


Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-upon-Tyne, UK Henrique Lemos, Lei Huang & Andrew L. Mellor * Lankenau Institute for


Medical Research, Wynnewood, PA, USA George C. Prendergast Authors * Henrique Lemos View author publications You can also search for this author inPubMed Google Scholar * Lei Huang View


author publications You can also search for this author inPubMed Google Scholar * George C. Prendergast View author publications You can also search for this author inPubMed Google Scholar *


Andrew L. Mellor View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors researched data for the article, substantially contributed to


the discussion of content and wrote, reviewed and edited the manuscript. CORRESPONDING AUTHOR Correspondence to Andrew L. Mellor. ETHICS DECLARATIONS COMPETING INTERESTS A.L.M. and G.C.P.


receive remuneration as scientific consultants for NewLink Genetics Inc. and are also shareholders in this company. G.C.P. also discloses interests in Incyte as a shareholder and in Kyn


Therapeutics as a scientific adviser. A.L.M. also discloses interests as a scientific adviser to Kyn Therapeutics. The other authors declare no competing interests. ADDITIONAL INFORMATION


PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS CLINICALTRIALS.GOV DATABASE:


http://clinicaltrials.gov/ KAPLAN–MEIER PLOTTER: http://kmplot.com/ THE HUMAN PROTEIN ATLAS: http://www.proteinatlas.org/ GLOSSARY * Immune checkpoints Mechanisms that suppress local


immunity in inflamed tissues such as the tumour microenvironment. * Immunological tumour microenvironment (TME). Primary tumour lesions and local draining lymph nodes where antitumour


immunity is controlled. * Integrated stress response (ISR). A cellular response to stress that impacts protein translation via effects on the eukaryotic initiation factor eIF2. *


Damage-associated molecular patterns (DAMPs). Molecules released by dead and dying cells, which are sensed by innate immune cells. * M2 macrophages A subset of macrophages typically


associated with wound healing and tissue repair. * _N_-Methyl-d-aspartate receptor signalling (NMDAR signalling). A signalling pathway that has dichotomous effects on neurons such as


promoting death or survival of neurons, resistance to trauma and synaptic plasticity and transmission. * Mechanical nociception Perception of pain in response to a mechanical stimulus.


RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lemos, H., Huang, L., Prendergast, G.C. _et al._ Immune control by amino acid catabolism during


tumorigenesis and therapy. _Nat Rev Cancer_ 19, 162–175 (2019). https://doi.org/10.1038/s41568-019-0106-z Download citation * Published: 29 January 2019 * Issue Date: March 2019 * DOI:


https://doi.org/10.1038/s41568-019-0106-z SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

The UK prepares to advance gender equality at the 58th Session of the UN Commission on the Status of Women - GOV.UK

In preparation for the forthcoming CSW, the Government Equalities Office (GEO) hosted a well-attended event on 28 Octobe...

Arun Gawli tops in Gandhi exam

Become a MemberDark ModeBecome a MemberOperation SindoorRaghav's TakeState of EducationUncovering HateQisse KahaniyaanCl...

DELAYED START AT YONEX ALL ENGLAND OPEN 2021 DUE TO COVID-19 RETESTS

The Badminton World Federation (BWF) and Badminton England can confirm a significant number of COVID-19 tests conducted ...

Lakhs join 'tweet morcha' against fuel price hike

Mumbai, June 2 (IANS) People across the country tweeted to Prime Minister Narendra Modi and Maharashtra Chief Minister D...

Effects of Morphine on Uptake of Glucose and Synthesis of Glycogen in Muscle of Normal and Chronically Morphinized Rats

THERE is as yet no satisfactory explanation for the phenomenon of drug addiction. Morphine-induced biological dependence...

Latests News

Immune control by amino acid catabolism during tumorigenesis and therapy

ABSTRACT Immune checkpoints arise from physiological changes during tumorigenesis that reprogramme inflammatory, immunol...

RNase H hydrolysis of the 5′ terminus of the avian sarcoma virus genome during reverse transcription

NUCLEOTIDE sequence analyses of the ends of the avian retro-virus genome 1–6 have confirmed predictions of the terminall...

AARP Has Events in Your Community and Virtual

Events AARP LocalDetailsLocationsDiscover the Local Side of AARPAARP Local  has been savedAARP Local  has been removed ...

Huge honour to play army officer: aayush sharma

Mumbai, June 5 (IANS) Actor Aayush Sharma says it is an honour to play an Army officer in his next titled film "Kwa...

Grateful for everyone’s support: pm modi after un adopts resolution, piloted by india

NEW DELHI: Expressing happiness after the adoption of a resolution to establish a new ‘Memorial Wall’ for fallen Peaceke...

Top