Integrated optical memristors | Nature Photonics

Nature

Integrated optical memristors | Nature Photonics"


Play all audios:

Loading...

ABSTRACT Memristors in electronics have shown the potential for a range of applications, ranging from circuit elements to neuromorphic computing. In recent years, the ability to vary the


conductance of a channel in electronics has enabled in-memory computing, thus leading to substantial interest in memristors. Optical analogues will require modulation of the transmission of


light in a semicontinuous and nonvolatile manner. With the proliferation of photonic computing, such an optical analogue, which involves modulating the optical response in integrated


circuits while maintaining the modulated state afterwards, is being pursued using a range of functional materials. Here we review recent progress in this important and emerging aspect of


photonic integrated circuits and provide an overview of the current state of the art. Optical memristors are of particular interest for applications in high-bandwidth neuromorphic computing,


machine learning hardware and artificial intelligence, as these optical analogues of memristors allow for technology that combines the ultrafast, high-bandwidth communication of optics with


local information processing. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal


Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS EXPERIMENTAL PHOTONIC QUANTUM MEMRISTOR Article Open access 24 March 2022 ATOMIC SCALE MEMRISTIVE PHOTON SOURCE Article Open access 29 March 2022


ENERGY EFFICIENT PHOTONIC MEMORY BASED ON ELECTRICALLY PROGRAMMABLE EMBEDDED III-V/SI MEMRISTORS: SWITCHES AND FILTERS Article Open access 18 March 2024 REFERENCES * Strukov, D. B., Snider,


G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. _Nature_ 453, 80–83 (2008). Article  ADS  Google Scholar  * Li, J., Li, Y., Yang, L. & Miao, X. in _Memristor


Computing Systems_ Vol. 1 (eds Chua, L. O. et al.) 141–165 (Springer, 2022). * Sebastian, A., le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for


in-memory computing. _Nat. Nanotechnol._ 15, 529–544 (2020). Article  ADS  Google Scholar  * Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for


higher-complexity neuromorphic computing. _Nat. Rev. Mater._ 7, 575–591 (2022). Article  ADS  Google Scholar  * Gee, A., Jaafar, A. H. & Kemp, N. T. in _Memristor Computing Systems_ Vol.


1 (eds Chua, L. O. et al.) 219–244 (Springer, 2022). * Bogaerts, W. et al. Programmable photonic circuits. _Nature_ 586, 207–216 (2020). Article  ADS  Google Scholar  * Biryukova, V.,


Sharp, G. J., Klitis, C. & Sorel, M. Trimming of silicon-on-insulator ring-resonators via localized laser annealing. _Opt. Express_ 28, 11156–11164 (2020). Article  ADS  Google Scholar 


* Jayatilleka, H. et al. Post-fabrication trimming of silicon photonic ring resonators at wafer-scale. _J. Light. Technol._ 39, 5083–5088 (2021). Article  ADS  Google Scholar  * Ríos, C. et


al. Ultra-compact nonvolatile phase-shifter based on electrically reprogrammable transparent phase change materials. _PhotoniX_ 3, 26 (2022). * Lian, C. et al. Photonic (computational)


memories: tunable nanophotonics for data storage and computing. _Nanophotonics_ 11, 3823–3854 (2022). Article  Google Scholar  * Feldmann, J. et al. Integrated 256 cell photonic phase-change


memory with 512-bit capacity. _IEEE J. Sel. Top. Quantum Electron._ 26, 1–7 (2020). Article  Google Scholar  * Geler-Kremer, J. et al. A ferroelectric multilevel non-volatile photonic phase


shifter. _Nat. Photon._ 16, 491–497 (2022). Article  ADS  Google Scholar  * Ríos, C. et al. In-memory computing on a photonic platform. _Sci. Adv._ 5, eaau5759 (2019). Article  ADS  Google


Scholar  * Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. _Nature_ 569,


208–214 (2019). Article  ADS  Google Scholar  * Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. _Nature_ 589, 52–58 (2021). Article  ADS 


Google Scholar  * Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. _Nat. Photon._ 15, 102–114 (2021). Article  ADS  Google Scholar  * Mehonic, A. &


Kenyon, A. J. Brain-inspired computing needs a master plan. _Nature_ 604, 255–260 (2022). Article  ADS  Google Scholar  * Alexoudi, T., Kanellos, G. T. & Pleros, N. Optical RAM and


integrated optical memories: a survey. _Light Sci. Appl._ 9, 91 (2020). Article  ADS  Google Scholar  * Mao, J. Y., Zhou, L., Zhu, X., Zhou, Y. & Han, S. T. Photonic memristor for future


computing: a perspective. _Adv. Opt. Mater._ 7, 1900766 (2019). Article  Google Scholar  * Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. _Nat. Mater._ 6,


824–832 (2007). Article  ADS  Google Scholar  * Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. _Nat. Rev. Phys._ 4, 194–208 (2022).


Article  Google Scholar  * Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. _Nat. Photon._ 14, 285–298 (2020). Article


  ADS  Google Scholar  * Xiang, C. et al. High-performance silicon photonics using heterogeneous integration. _IEEE J. Sel. Top. Quantum Electron._ 28, 1–15 (2022). Article  Google Scholar 


* Delaney, M., Zeimpekis, I., Lawson, D., Hewak, D. W. & Muskens, O. L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and


Sb2Se3. _Adv. Funct. Mater._ 30, 2002447 (2020). Article  Google Scholar  * Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics.


_Nat. Commun._ 10, 4279 (2019). Article  ADS  Google Scholar  * Zheng, J. et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater.


_Adv. Mater._ 32, 2001218 (2020). Article  Google Scholar  * Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. _Nat.


Commun._ 12, 96 (2021). Article  ADS  Google Scholar  * You, J. et al. Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. _Laser Photon. Rev._


14, 2000239 (2020). Article  ADS  Google Scholar  * Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. _Nat. Mater._ 18, 42–47 (2019).


Article  ADS  Google Scholar  * Li, H., Liu, Q. & Li, M. Electromechanical Brillouin scattering in integrated planar photonics. _APL Photonics_ 4, 080802 (2019). Article  ADS  Google


Scholar  * Li, T. et al. Structural phase transitions between layered indium selenide for integrated photonic memory. _Adv. Mater._ 34, 2108261 (2022). Article  Google Scholar  * Bagheri,


M., Poot, M., Li, M., Pernice, W. P. H. & Tang, H. X. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. _Nat.


Nanotechnol._ 6, 726–732 (2011). Article  ADS  Google Scholar  * Shen, B. et al. Reconfigurable frequency-selective resonance splitting in chalcogenide microring resonators. _ACS Photonics_


7, 499–511 (2020). Article  Google Scholar  * Kuramochi, E. et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. _Nat. Photon._ 8,


474–481 (2014). Article  ADS  Google Scholar  * Hopmann, E., Carnio, B. N., Firby, C. J., Shahriar, B. Y. & Elezzabi, A. Y. Nanoscale all-solid-state plasmochromic waveguide nonresonant


modulator. _Nano Lett._ 21, 1955–1961 (2021). Article  ADS  Google Scholar  * Song, J. F. et al. Integrated photonics with programmable non-volatile memory. _Sci. Rep._ 6, 22616 (2016).


Article  ADS  Google Scholar  * Grajower, M., Mazurski, N., Shappir, J. & Levy, U. Non-volatile silicon photonics using nanoscale flash memory technology. _Laser Photon. Rev._ 12,


1700190 (2018). Article  ADS  Google Scholar  * Meng, J. et al. Electrical programmable multi-level non-volatile photonic random-access memory. Preprint at https://arxiv.org/abs/2203.13337


(2022). * Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. _Sci. Adv._ 5, eaaw2687 (2019). Article  ADS  Google Scholar  *


Eltes, F. et al. A BaTiO3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform. _J. Lightwave Technol._ 37, 1456–1462 (2019). Article 


ADS  Google Scholar  * Farmakidis, N. et al. Electronically reconfigurable photonic switches incorporating plasmonic structures and phase change materials. _Adv. Sci._ 9, 2200383 (2022).


Article  Google Scholar  * Emboras, A. et al. Nanoscale plasmonic memristor with optical readout functionality. _Nano Lett._ 13, 6151–6155 (2013). Article  ADS  Google Scholar  * Tossoun,


B., Sheng, X., Strachan, J. P., Liang, D. & Beausoleil, R. G. Memristor photonics. In _Photonics in Switching and Computing 2021_ Tu5B.3 (Optica Publishing Group, 2021). * Kim, J. T.,


Song, J. & Ah, C. S. Optically readable waveguide-integrated electrochromic artificial synaptic device for photonic neuromorphic systems. _ACS Appl. Electron. Mater._ 2, 2057–2063


(2020). Article  Google Scholar  * Zhang, Y. et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. _Optica_ 6, 473–478 (2019). Article  ADS


  Google Scholar  * Murai, T., Shoji, Y. & Mizumoto, T. Light-induced thermomagnetic recording of thin-film magnet CoFeB on silicon waveguide for on-chip magneto-optical memory. _Opt.


Express_ 30, 18054–18065 (2022). Article  ADS  Google Scholar  * Murai, T., Shoji, Y., Nishiyama, N. & Mizumoto, T. Nonvolatile magneto-optical switches integrated with a magnet stripe


array. _Opt. Express_ 28, 31675–31685 (2020). Article  ADS  Google Scholar  * Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for


universal memory and neuro-inspired computing. _Nat. Rev. Mater._ 4, 150–168 (2019). Article  ADS  Google Scholar  * Kooi, B. J. & Wuttig, M. Chalcogenides by design: functionality


through metavalent bonding and confinement. _Adv. Mater._ 32, 1908302 (2020). Article  Google Scholar  * Ali, U. E., Modi, G., Agarwal, R. & Bhaskaran, H. Real-time nanomechanical


property modulation as a framework for tunable NEMS. _Nat. Commun._ 13, 1464 (2022). Article  ADS  Google Scholar  * Aryana, K. et al. Interface controlled thermal resistances of ultra-thin


chalcogenide-based phase change memory devices. _Nat. Commun._ 12, 774 (2021). Article  ADS  Google Scholar  * Chaudhary, K. et al. Polariton nanophotonics using phase-change materials.


_Nat. Commun._ 10, 4487 (2019). Article  ADS  Google Scholar  * Lu, Y. et al. Mixed-mode operation of hybrid phase-change nanophotonic circuits. _Nano Lett._ 17, 150–155 (2017). Article  ADS


  Google Scholar  * Chen, R. et al. Opportunities and challenges for large-scale phase-change material integrated electro-photonics. _ACS Photonics_ 9, 3181–3195 (2022). Article  Google


Scholar  * Abdollahramezani, S. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. _Nanophotonics_ 9, 1189–1241 (2020). Article  Google Scholar  * Zhang, Y. et al.


Myths and truths about optical phase change materials: a perspective. _Appl. Phys. Lett._ 118, 210501 (2021). Article  ADS  Google Scholar  * Rios, C. et al. Integrated all-photonic


non-volatile multi-level memory. _Nat. Photon._ 9, 725–732 (2015). Article  ADS  Google Scholar  * Xu, P., Zheng, J., Doylend, J. K. & Majumdar, A. Low-loss and broadband nonvolatile


phase-change directional coupler switches. _ACS Photonics_ 6, 553–557 (2019). Article  Google Scholar  * Wu, C. et al. Low-loss integrated photonic switch using subwavelength patterned phase


change material. _ACS Photonics_ 6, 87–92 (2019). Article  Google Scholar  * Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. _Nat. Commun._ 11,


5966 (2020). Article  ADS  Google Scholar  * Dong, W. et al. Wide bandgap phase change material tuned visible photonics. _Adv. Funct. Mater._ 29, 1806181 (2019). Article  Google Scholar  *


Delaney, M. et al. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. _Sci. Adv._ 7, eabg3500 (2021). Article  ADS  Google Scholar  * Raty, J. et


al. A quantum‐mechanical map for bonding and properties in solids. _Adv. Mater._ 31, 1806280 (2019). Article  Google Scholar  * Müller, M. J. et al. Tailoring crystallization kinetics of


chalcogenides for photonic applications. _Adv. Electron. Mater._ 8, 2100974 (2021). Article  Google Scholar  * Fang, Z. et al. Non-volatile reconfigurable integrated photonics enabled by


broadband low-loss phase change material. _Adv. Opt. Mater._ 9, 2002049 (2021). Article  Google Scholar  * Wu, C. et al. Harnessing optoelectronic noises in a photonic generative network.


_Sci. Adv._ 8, eabm2956 (2022). Article  ADS  Google Scholar  * Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. _Nat.


Nanotechnol._ 16, 661–666 (2021). Article  ADS  Google Scholar  * Youngblood, N. et al. Reconfigurable low-emissivity optical coating using ultrathin phase change materials. _ACS Photonics_


9, 90–100 (2022). Article  Google Scholar  * Zhang, H. et al. Miniature multilevel optical memristive switch using phase change material. _ACS Photonics_ 6, 2205–2212 (2019). Article  Google


Scholar  * Ríos, C. et al. Multi‐level electro‐thermal switching of optical phase‐change materials using graphene. _Adv. Photon. Res._ 2, 2000034 (2021). Article  Google Scholar  * Fang, Z.


et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. _Nat. Nanotechnol._ 17, 842–848 (2022). Article  ADS  Google


Scholar  * di Martino, G. & Tappertzhofen, S. Optically accessible memristive devices. _Nanophotonics_ 8, 1579–1589 (2019). Article  Google Scholar  * di Martino, G. et al. Real-time in


situ optical tracking of oxygen vacancy migration in memristors. _Nat. Electron._ 3, 687–693 (2020). Article  Google Scholar  * Hoessbacher, C. et al. The plasmonic memristor: a latching


optical switch. _Optica_ 1, 198–202 (2014). Article  ADS  Google Scholar  * Emboras, A. et al. Atomic scale plasmonic switch. _Nano Lett._ 16, 709–714 (2016). Article  ADS  Google Scholar  *


Tossoun, B. M., Sheng, X., Strachan, J. P., Liang, D. & Beausoleil, R. G. Hybrid memristor optoelectronic integrated circuits for optical computing. In _Proc. SPIE 12005_, _Smart


Photonic and Optoelectronic Integrated Circuits_ _2022_ 1200506 (SPIE, 2022). * Heni, W. et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. _Nat. Commun._


10, 1694 (2019). Article  ADS  Google Scholar  * Portner, K. et al. Analog nanoscale electro-optical synapses for neuromorphic computing applications. _ACS Nano_ 15, 14776–14785 (2021).


Article  Google Scholar  * Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Toward nonvolatile switching in silicon photonic devices. _Laser Photon. Rev._ 15, 2000501 (2021). Article 


ADS  Google Scholar  * Barrios, C. A. & Lipson, M. Silicon photonic read-only memory. _J. Lightwave Technol._ 24, 2898–2905 (2006). Article  ADS  Google Scholar  * Parra, J., Olivares,


I., Brimont, A. & Sanchis, P. Non-volatile epsilon-near-zero readout memory. _Opt. Lett._ 44, 3932–3935 (2019). Article  ADS  Google Scholar  * Li, Y., Ping, H., Dai, T., Chen, W. &


Wang, P. Nonvolatile silicon photonic switch with graphene based flash-memory cell. _Opt. Mater. Express_ 11, 766–773 (2021). Article  ADS  Google Scholar  * Olivares, I., Parra, J. &


Sanchis, P. Non-volatile photonic memory based on a SAHAS configuration. _IEEE Photon. J._ 13, 1–8 (2021). Article  Google Scholar  * Parra, J., Olivares, I., Ramos, F. & Sanchis, P.


Ultra-compact non-volatile Mach-Zehnder switch enabled by a high-mobility transparent conducting oxide. _Opt. Lett._ 45, 1503–1506 (2020). Article  ADS  Google Scholar  * Timurdogan, E.,


Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. _Nat. Photon._ 11, 200–206 (2017). Article  ADS  Google


Scholar  * Xiong, C. et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. _Nano Lett._ 14, 1419–1425 (2014). Article  ADS  Google Scholar  * Eltes, F. et al.


Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics. _ACS Photonics_ 3, 1698–1703 (2016). Article  Google Scholar  * Yao, D. et al. Energy-efficient non-volatile ferroelectric


based electrostatic doping multilevel optical readout memory. _Opt. Express_ 30, 13572 (2022). Article  ADS  Google Scholar  * Edinger, P. et al. Silicon photonic microelectromechanical


phase shifters for scalable programmable photonics. _Opt. Lett._ 46, 5671 (2021). Article  ADS  Google Scholar  * Seok, T. J., Quack, N., Han, S., Muller, R. S. & Wu, M. C. Large-scale


broadband digital silicon photonic switches with vertical adiabatic couplers. _Optica_ 3, 64–70 (2016). Article  ADS  Google Scholar  * Edinger, P. et al. A bistable silicon photonic MEMS


phase switch for nonvolatile photonic circuits. In _Proc. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference_ (_MEMS_) 995–997 (IEEE, 2022). * Abe, S.


& Hane, K. Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism. _IEEE Photon. Technol. Lett._ 25, 675–677 (2013). Article  ADS  Google Scholar  * Sattari,


H., Toros, A., Graziosi, T. & Quack, N. Bistable silicon photonic MEMS switches. In _Proc. SPIE 10931_, _MOEMS and Miniaturized Systems XVIII_ 109310D (SPIE, 2019). * Errando-Herranz, C.


et al. MEMS for photonic integrated circuits. _IEEE J. Sel. Top. Quantum Electron._ 26, 8200916 (2020). Article  Google Scholar  * Haffner, C. et al. Nano-opto-electro-mechanical switches


operated at CMOS-level voltages. _Science_ 366, 860–864 (2019). Article  ADS  Google Scholar  * Spagnolo, M. et al. Experimental photonic quantum memristor. _Nat. Photon._ 16, 318–323


(2022). * Sarwat, S. G., Moraitis, T., Wright, C. D. & Bhaskaran, H. Chalcogenide optomemristors for multi-factor neuromorphic computation. _Nat. Commun._ 13, 2247 (2022). Article  ADS 


Google Scholar  * Lee, J. S., Farmakidis, N., David Wright, C. & Bhaskaran, H. Polarization-selective reconfigurability in hybridized-active-dielectric nanowires. _Sci. Adv._ 8, 9459


(2022). Article  Google Scholar  * Feldmann, J. et al. Calculating with light using a chip-scale all-optical abacus. _Nat. Commun._ 8, 1256 (2017). Article  ADS  Google Scholar  Download


references ACKNOWLEDGEMENTS We are grateful to C. Lian and S. Rahimi Kari for assistance in preparing this manuscript. This work was supported in part by the US National Science Foundation


under grants nos. ECCS-2028624, ECCS-2210168/2210169, DMR-2003325, ECCS-2132929 and CISE-2105972. N.Y. acknowledges support from the University of Pittsburgh Momentum Fund. C.R. acknowledges


support from the Minta Martin Foundation through the University of Maryland. This work was supported by the European Union’s Horizon 2020 research and innovation programme (grant no.


101017237, PHOENICS Project) and the European Union’s Innovation Council Pathfinder programme (grant no. 101046878, HYBRAIN Project), as well as by EPSRC grants nos. EP/R001677/1,


EP/M015173/1 and EP/J018694/1. A broad statement on the sustainability of materials and/or the technology described here is briefed (not peer-reviewed) at the authors’ discretion at


https://nanoeng.materials.ox.ac.uk/sustainability. We acknowledge funding support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy


EXC 2181/1 – 390900948 (the Heidelberg STRUCTURES Excellence Cluster) and CRC 1459. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Electrical & Computer Engineering,


University of Pittsburgh, Pittsburgh, PA, USA Nathan Youngblood * Department of Materials Science & Engineering, University of Maryland, College Park, MD, USA Carlos A. Ríos Ocampo *


Institute for Research in Electronics & Applied Physics, University of Maryland, College Park, MD, USA Carlos A. Ríos Ocampo * Kirchhoff-Institute for Physics, Heidelberg University,


Heidelberg, Germany Wolfram H. P. Pernice * Department of Materials, University of Oxford, Oxford, UK Harish Bhaskaran Authors * Nathan Youngblood View author publications You can also


search for this author inPubMed Google Scholar * Carlos A. Ríos Ocampo View author publications You can also search for this author inPubMed Google Scholar * Wolfram H. P. Pernice View


author publications You can also search for this author inPubMed Google Scholar * Harish Bhaskaran View author publications You can also search for this author inPubMed Google Scholar


CORRESPONDING AUTHOR Correspondence to Harish Bhaskaran. ETHICS DECLARATIONS COMPETING INTERESTS W.P. and H.B. hold shares in Salience Labs Ltd. All authors have patents and patent


applications in photonic devices. The authors declare that they have taken steps to ensure that these competing interests have not influenced the manuscript in any way. PEER REVIEW PEER


REVIEW INFORMATION _Nature Photonics_ thanks Pablo Sanchis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S


NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a


society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript


version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Youngblood, N., Ríos


Ocampo, C.A., Pernice, W.H.P. _et al._ Integrated optical memristors. _Nat. Photon._ 17, 561–572 (2023). https://doi.org/10.1038/s41566-023-01217-w Download citation * Received: 28 September


2022 * Accepted: 21 April 2023 * Published: 29 May 2023 * Issue Date: July 2023 * DOI: https://doi.org/10.1038/s41566-023-01217-w SHARE THIS ARTICLE Anyone you share the following link with


will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative


Trending News

Submerged valleys and barrier reefs

ABSTRACT As I have never visited the Pacific Islands, I do not attempt to bring their valleys under the same category as...

Essel group chairman subash chandra put out this really weird tweet & got trolled for it - scoopwhoop

On October 12, Essel group chairman and Zee owner Dr Subhash Chandra put out this strange tweet: In his tweet, he says, ...

Martin Kimber | TheArticle

First {{register.errors.names}} Last Gender What's this for? Age bracket What's this for? This is to help us s...

What to watch after 'the last of us'

There was a time when the idea of a video game adaptation sounded alarm bells, with all but guaranteed audience disappoi...

North korea and us war threats reignite - kim refuses to denuclearise

Kim Jong-un’s totalitarian regime has handed a heavy blow to Trump by vowing to hold on to its nuclear weapons. The herm...

Latests News

Integrated optical memristors | Nature Photonics

ABSTRACT Memristors in electronics have shown the potential for a range of applications, ranging from circuit elements t...

Freed by Steps Forged in Pain - Los Angeles Times

Vincent Ncabashe first learned gumboot dancing two decades ago as a 10-year-old at the Thabisong Youth Club in Soweto, S...

Some 3,000 migrants form first caravan of year at southern border

The first migrant caravan of 2020 was poised to enter Mexico Monday morning but the federal government was resolved to s...

Yes. The "unwashed masses" are taught that they must be impeccably polite at all times, and the…

YES. The "unwashed masses" are taught that they must be impeccably polite at all times, and the self-appointed...

Katherine JOHNSON | Premiere.fr

Biographie News Photos Vidéos Films Séries Nom de naissance JOHNSON Genre Femme Avis PoorNot so pooraveragegoodvery good...

Top