Asymmetrical dose responses shape the evolutionary trade-off between antifungal resistance and nutrient use

Nature

Asymmetrical dose responses shape the evolutionary trade-off between antifungal resistance and nutrient use"


Play all audios:

Loading...

ABSTRACT Antimicrobial resistance is an emerging threat for public health. The success of resistance mutations depends on the trade-off between the benefits and costs they incur. This


trade-off is largely unknown and uncharacterized for antifungals. Here, we systematically measure the effect of all amino acid substitutions in the yeast cytosine deaminase Fcy1, the target


of the antifungal 5-fluorocytosine (5-FC, flucytosine). We identify over 900 missense mutations granting resistance to 5-FC, a large fraction of which appear to act through destabilization


of the protein. The relationship between 5-FC resistance and growth sustained by cytosine deamination is characterized by a sharp trade-off, such that small gains in resistance universally


lead to large losses in canonical enzyme function. We show that this steep relationship can be explained by differences in the dose–response functions of 5-FC and cytosine. Finally, we


observe the same trade-off shape for the orthologue of _FCY1_ in _Cryptoccocus neoformans_, a human pathogen. Our results provide a powerful resource and platform for interpreting drug


target variants in fungal pathogens as well as unprecedented insights into resistance–function trade-offs. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MOST AZOLE RESISTANCE MUTATIONS IN THE _CANDIDA ALBICANS_


DRUG TARGET CONFER CROSS-RESISTANCE WITHOUT INTRINSIC FITNESS COST Article 08 October 2024 DRUG-DEPENDENT GROWTH CURVE RESHAPING REVEALS MECHANISMS OF ANTIFUNGAL RESISTANCE IN


_SACCHAROMYCES CEREVISIAE_ Article Open access 31 March 2022 ADAPTIVE LABORATORY EVOLUTION IN _S. CEREVISIAE_ HIGHLIGHTS ROLE OF TRANSCRIPTION FACTORS IN FUNGAL XENOBIOTIC RESISTANCE Article


Open access 11 February 2022 DATA AVAILABILITY Raw sequencing files for the DMS libraries and the competition screen have been deposited on the NCBI SRA (accession number PRJNA782569). All


raw images (source data for Supplementary Fig. 2 and Fig. 6b and Extended Data Fig. 9) are provided as Supplementary Data 13 and 15. Supplementary Data 5–10 provide the source data for the


DMS experiments and NGS analysis, the validation studies, the dose–response assays and the experiments in the _C. neoformans_ orthologue. CODE AVAILABILITY Scripts used for data analysis and


figure generation are available at https://github.com/Landrylab/Despres_et_al_2021. REFERENCES * Fisher, M. C. et al. Threats posed by the fungal kingdom to humans, wildlife, and


agriculture. _MBio_ 11, e00449–20 (2020). Article  PubMed  PubMed Central  Google Scholar  * Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance


to antifungal drugs challenges human health and food security. _Science_ 360, 739–742 (2018). Article  CAS  PubMed  Google Scholar  * Nash, A. et al. MARDy: Mycology Antifungal Resistance


Database. _Bioinformatics_ 34, 3233–3234 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ksiezopolska, E. et al. Narrow mutational signatures drive acquisition of multidrug


resistance in the fungal pathogen Candida glabrata. _Curr. Biol._ 4, 5314–5326.e10 (2021). Article  Google Scholar  * Bryce Taylor, M. et al. yEvo: Experimental evolution in high school


classrooms selects for novel mutations and epistatic interactions that impact clotrimazole resistance in _S. cerevisiae_. Preprint at _bioRxiv_ https://doi.org/10.1101/2021.05.02.442375


(2021). * Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? _Nat. Rev. Microbiol._ 8, 260–271 (2010). Article  CAS  PubMed  Google


Scholar  * Gerstein, A. C., Lo, D. S. & Otto, S. P. Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast.


_Genetics_ 192, 241–252 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, F. et al. The fitness costs and benefits of trisomy of each _Candida albicans_ chromosome.


_Genetics_ 218, iyab056 (2021). Article  PubMed  PubMed Central  Google Scholar  * Kanafani, Z. A. & Perfect, J. R. Antimicrobial resistance: resistance to antifungal agents: mechanisms


and clinical impact. _Clin. Infect. Dis._ 46, 120–128 (2008). Article  PubMed  Google Scholar  * Iyer, K. R., Revie, N. M., Fu, C., Robbins, N. & Cowen, L. E. Treatment strategies for


cryptococcal infection: challenges, advances and future outlook. _Nat. Rev. Microbiol._ 19, 454–466 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Longley, D. B., Harkin, D.


P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. _Nat. Rev. Cancer_ 3, 330–338 (2003). Article  CAS  PubMed  Google Scholar  * Erbs, P., Exinger, F.


& Jund, R. Characterization of the _Saccharomyces cerevisiae_ FCY1 gene encoding cytosine deaminase and its homologue FCA1 of _Candida albicans_. _Curr. Genet._ 31, 1–6 (1997). Article 


CAS  PubMed  Google Scholar  * Wrenbeck, E. E., Azouz, L. R. & Whitehead, T. A. Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally


encoded. _Nat. Commun._ 8, 15695 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, J. Z., Fowler, D. M. & Tokuriki, N. Comprehensive exploration of the translocation,


stability and substrate recognition requirements in VIM-2 lactamase. _eLife_ 9, e56707 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, A., Acevedo-Rocha, C. G. &


Reetz, M. T. Boosting the efficiency of site-saturation mutagenesis for a difficult-to-randomize gene by a two-step PCR strategy. _Appl. Microbiol. Biotechnol._ 102, 6095–6103 (2018).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Biot-Pelletier, D. & Martin, V. J. J. Seamless site-directed mutagenesis of the _Saccharomyces cerevisiae_ genome using


CRISPR-Cas9. _J. Biol. Eng._ 10, 6 (2016). Article  PubMed  PubMed Central  Google Scholar  * Dionne, U. et al. Protein context shapes the specificity of SH3 domain-mediated interactions in


vivo. _Nat. Commun._ 12, 1597 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Eddy, A. A. Expulsion of uracil and thymine from the yeast _Saccharomyces cerevisiae_:


contrasting responses to changes in the proton electrochemical gradient. _Microbiology_ 143, 219–229 (1997). Article  CAS  PubMed  Google Scholar  * Kurtz, J. E., Exinger, F., Erbs, P. &


Jund, R. New insights into the pyrimidine salvage pathway of _Saccharomyces cerevisiae_: requirement of six genes for cytidine metabolism. _Curr. Genet._ 36, 130–136 (1999). Article  CAS 


PubMed  Google Scholar  * Fujimura, H. Growth inhibition of _Saccharomyces cerevisiae_ by the immunosuppressant leflunomide is due to the inhibition of uracil uptake via Fur4p. _Mol. Gen.


Genet._ 260, 102–107 (1998). Article  CAS  PubMed  Google Scholar  * Després, P. C., Dubé, A. K., Nielly-Thibault, L., Yachie, N. & Landry, C. R. Double selection enhances the efficiency


of Target-AID and Cas9-based genome editing in yeast. _G3_ 8, 3163–3171 (2018). Article  PubMed  PubMed Central  Google Scholar  * Wang, J. et al. Role of glutamate 64 in the activation of


the prodrug 5-fluorocytosine by yeast cytosine deaminase. _Biochemistry_ 51, 475–486 (2012). Article  CAS  PubMed  Google Scholar  * Ivankov, D. N., Finkelstein, A. V. & Kondrashov, F.


A. A structural perspective of compensatory evolution. _Curr. Opin. Struct. Biol._ 26, 104–112 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mayrose, I., Graur, D.,


Ben-Tal, N. & Pupko, T. Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. _Mol. Biol. Evol._ 21, 1781–1791 (2004).


Article  CAS  PubMed  Google Scholar  * Tarassov, K. An in vivo map of the yeast protein interactome. _Science_ 320, 1465–1470 (2008). Article  CAS  PubMed  Google Scholar  * Freschi, L.,


Torres-Quiroz, F., Dubé, A. K. & Landry, C. R. qPCA: a scalable assay to measure the perturbation of protein–protein interactions in living cells. _Mol. Biosyst._ 9, 36–43 (2013).


Article  CAS  PubMed  Google Scholar  * Chang, A. et al. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. _Nucleic Acids Res._ 49, D498–D508 (2021). Article  CAS


  PubMed  Google Scholar  * Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. _Nature_ 596, 583–589 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Mirdita, M. et al. ColabFold – Making protein folding accessible to all. Preprint at _bioRxiv_ https://doi.org/10.1101/2021.08.15.456425 (2022). * Pokusaeva, V. O. et al. An experimental


assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. _PLoS Genet._ 15, e1008079 (2019). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Oliver, J. D. et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. _Proc. Natl Acad. Sci. USA_ 113, 12809–12814 (2016). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Hoenigl, M. et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. _Drugs_


https://doi.org/10.1007/s40265-021-01611-0 (2021). Article  PubMed  PubMed Central  Google Scholar  * Verweij, P. E., Te Dorsthorst, D. T. A., Janssen, W. H. P., Meis, J. F. G. M. &


Mouton, J. W. In vitro activities at pH 5.0 and pH 7.0 and in vivo efficacy of flucytosine against Aspergillus fumigatus. _Antimicrob. Agents Chemother._ 52, 4483–4485 (2008). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Gsaller, F. et al. Mechanistic basis of pH-dependent 5-flucytosine resistance in _Aspergillus fumigatus_. _Antimicrob. Agents Chemother_.


https://doi.org/10.1128/AAC.02593-17 (2018). * Garland, T. Jr. Trade-offs. _Curr. Biol._ 24, R60–R61 (2014). Article  CAS  PubMed  Google Scholar  * Chang, Y. C. et al. Moderate levels of


5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. _Nat. Commun._ 12, 3418 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Billmyre, R. B.,


Applen Clancey, S., Li, L. X., Doering, T. L. & Heitman, J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. _Nat.


Commun._ 11, 127 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Brachmann, C. B. et al. Designer deletion strains derived from _Saccharomyces cerevisiae_ S288C: a useful set


of strains and plasmids for PCR-mediated gene disruption and other applications. _Yeast_ 14, 115–132 (1998). Article  CAS  PubMed  Google Scholar  * Gietz, R. D. & Schiestl, R. H.


High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. _Nat. Protoc._ 2, 31–34 (2007). Article  CAS  PubMed  Google Scholar  * Janke, C. et al. A versatile toolbox


for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. _Yeast_ 21, 947–962 (2004). Article  CAS  PubMed  Google Scholar  *


Goldstein, A. L. & McCusker, J. H. Three new dominant drug resistance cassettes for gene disruption in _Saccharomyces cerevisiae_. _Yeast_ 15, 1541–1553 (1999). Article  CAS  PubMed 


Google Scholar  * DeLuna, A., Springer, M., Kirschner, M. W. & Kishony, R. Need-based up-regulation of protein levels in response to deletion of their duplicate genes. _PLoS Biol._ 8,


e1000347 (2010). Article  PubMed  PubMed Central  Google Scholar  * Casadaban, M. J. & Cohen, S. N. Analysis of gene control signals by DNA fusion and cloning in _Escherichia coli_. _J.


Mol. Biol._ 138, 179–207 (1980). Article  CAS  PubMed  Google Scholar  * Yachie, N. et al. Pooled-matrix protein interaction screens using barcode fusion genetics. _Mol. Syst. Biol._ 12, 863


(2016). Article  PubMed  PubMed Central  Google Scholar  * Andrews, S. FastQC: A quality control analysis tool for high throughput sequencing data (Babraham Bioinformatics, 2016);


https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ * Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. _Bioinformatics_ 30,


2114–2120 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hunter, J. D. Matplotlib: a 2D graphics environment. _Comput. Sci. Eng._ 9, 90–95 (2007). Article  Google Scholar  *


Harris, C. R. et al. Array programming with NumPy. _Nature_ 585, 357–362 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Reback, J. et al. pandas-dev/pandas: Pandas 1.3.4.


_Zenodo_ https://doi.org/10.5281/zenodo.5574486 (2021). * Waskom, M. seaborn: statistical data visualization. _J. Open Source Softw._ 6, 3021 (2021). Article  Google Scholar  * Virtanen, P.


et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. _Nat. Methods_ 17, 261–272 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Masella, A. P.,


Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. _BMC Bioinform._ https://doi.org/10.1186/1471-2105-13-31 (2012).


* Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. _PeerJ_ 4, e2584 (2016). Article  PubMed  PubMed Central  Google


Scholar  * Rice, P., Longden, L. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. _Trends Genet._ https://doi.org/10.1016/S0168-9525(00)02024-2 (2000). Article 


PubMed  Google Scholar  * Ryan, O. W., Poddar, S. & Cate, J. H. D. Crispr–cas9 genome engineering in _Saccharomyces cerevisiae_ cells. _Cold Spring Harb. Protoc_.


https://doi.org/10.1101/pdb.prot086827 (2016). * Amberg, D. C., Burke, D. J. & Strathern, J. N. _Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual_ (CSHL Press,


2005). * Ireton, G. C., Black, M. E. & Stoddard, B. L. The 1.14 A crystal structure of yeast cytosine deaminase: evolution of nucleotide salvage enzymes and implications for genetic


chemotherapy. _Structure_ 11, 961–972 (2003). Article  CAS  PubMed  Google Scholar  * Schymkowitz, J. et al. The FoldX web server: an online force field. _Nucleic Acids Res._ 33, W382–W388


(2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marchant, A. et al. The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs.


_eLife_ 8, e46754 (2019). Article  PubMed  PubMed Central  Google Scholar  * Usmanova, D. R. et al. Self-consistency test reveals systematic bias in programs for prediction change of


stability upon mutation. _Bioinformatics_ 34, 3653–3658 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Howe, K. L. et al. Ensembl 2021. _Nucleic Acids Res._ 49, D884–D891


(2021). Article  CAS  PubMed  Google Scholar  * Chorostecki, U., Molina, M., Pryszcz, L. P. & Gabaldón, T. MetaPhOrs 2.0: integrative, phylogeny-based inference of orthology and paralogy


across the tree of life. _Nucleic Acids Res._ 48, W553–W557 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Byrne, K. P. & Wolfe, K. H. The Yeast Gene Order Browser:


combining curated homology and syntenic context reveals gene fate in polyploid species. _Genome Res._ 15, 1456–1461 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Edgar, R.


C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. _BMC Bioinform._ 5, 113 (2004). Article  Google Scholar  * Letunic, I. & Bork, P. Interactive Tree


Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. _Nucleic Acids Res._ 49, W293–W296 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lõoke, M.,


Kristjuhan, K. & Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR-based applications. _Biotechniques_ 50, 325–328 (2011). Article  PubMed  PubMed Central  Google Scholar  *


Schlecht, U., Miranda, M., Suresh, S., Davis, R. W. & St Onge, R. P. Multiplex assay for condition-dependent changes in protein-protein interactions. _Proc. Natl Acad. Sci. USA_ 109,


9213–9218 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Diss, G. & Lehner, B. The genetic landscape of a physical interaction. _eLife_ 7, e32472 (2018). Article  PubMed


  PubMed Central  Google Scholar  * Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. _Protein Sci._ 30, 70–82 (2021). Article  CAS 


PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank members of the Landry lab for helpful discussions, in particular D. Evans-Yamamoto, M. Hénault, F. Mattenberger and R.


Durand. This work was supported by the Canadian Institutes of Health Research Foundation grant number 387697 to C.R.L. and a Vanier graduate scholarship to P.C.D, as well as by the National


Science and Engineering Research Council through the EvoFunPath CREATE grant (number 555337-2021) and by FRQNT through team grant (number 2022-PR-298169) and a PBEEE scholarship to A.F.C.


C.R.L. holds the Canada Research Chair in in Cellular Systems and Synthetic Biology. Molecular graphics and analyses were performed with UCSF ChimeraX, developed by the Resource for


Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from National Institutes of Health R01-GM129325 and the Office of Cyber


Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Département de Biochimie, de Microbiologie et


de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada Philippe C. Després, Angel F. Cisneros, Emilie M. M. Alexander, Ria Sonigara, Cynthia Gagné-Thivierge,


 Alexandre K. Dubé & Christian R. Landry * Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada Philippe C. Després, Angel F. Cisneros, Emilie M. M.


Alexander, Ria Sonigara, Cynthia Gagné-Thivierge, Alexandre K. Dubé & Christian R. Landry * PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les


applications des protéines, Université Laval, Québec, Canada Philippe C. Després, Angel F. Cisneros, Emilie M. M. Alexander, Cynthia Gagné-Thivierge, Alexandre K. Dubé & Christian R.


Landry * Centre de Recherche sur les Données Massives, Université Laval, Québec, Canada Philippe C. Després, Angel F. Cisneros, Emilie M. M. Alexander, Ria Sonigara, Cynthia Gagné-Thivierge,


 Alexandre K. Dubé & Christian R. Landry * Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada Ria Sonigara, Cynthia Gagné-Thivierge, Alexandre K.


Dubé & Christian R. Landry Authors * Philippe C. Després View author publications You can also search for this author inPubMed Google Scholar * Angel F. Cisneros View author


publications You can also search for this author inPubMed Google Scholar * Emilie M. M. Alexander View author publications You can also search for this author inPubMed Google Scholar * Ria


Sonigara View author publications You can also search for this author inPubMed Google Scholar * Cynthia Gagné-Thivierge View author publications You can also search for this author inPubMed 


Google Scholar * Alexandre K. Dubé View author publications You can also search for this author inPubMed Google Scholar * Christian R. Landry View author publications You can also search for


this author inPubMed Google Scholar CONTRIBUTIONS P.C.D., A.K.D. and C.R.L. designed the research. P.C.D., E.M.M.A., C.G-T. and A.K.D. performed the experiments. P.C.D., A.F.C., R.S. and


C.R.L performed the data analysis. P.C.D. and C.R.L. wrote the paper with input from all authors. CORRESPONDING AUTHORS Correspondence to Philippe C. Després or Christian R. Landry. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Ecology & Evolution_ thanks Nobuhiko Tokuriki and the other,


anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in


published maps and institutional affiliations. EXTENDED DATA EXTENDED DATA FIG. 1 REPLICATE AMINO ACID LOG2 FOLD-CHANGES IN THE DMS EXPERIMENTS. Correlation between R1 and R2 was measured


using Spearman’s rank correlation. A) Pool 1, 5-FC (n = 1372). B) Pool 2, 5-FC (n = 1298). C) Pool 3, 5-FC (n = 1374). D) Pool 1, cytosine (n = 1372). E) Pool 2, cytosine (n = 1298). F) Pool


3, cytosine (n = 1374). G) Pool 2, 5-FC + Cytosine (n = 1298). EXTENDED DATA FIG. 2 USING POOL OVERLAPPING FRAGMENTS TO HARMONISE THE LOG2 FOLD-CHANGES OF THE _FCY1_ MUTANT POOLS. For each


panel, the linear least-squares regression parameters are shown, with Spearman’s rank correlation shown below. A) Pool 1 to Pool 2, cytosine (n = 397). B) Pool 3 to Pool 2, cytosine (n = 


375). C) Pool 1 to Pool 2, 5-FC (n = 397). D) Pool 3 to Pool 2, 5-FC (n = 375). EXTENDED DATA FIG. 3 SCALING LOG2 FOLD-CHANGES TO POOL 2 AND SCALING SCORES TO SYNONYMOUS AND NONSENSE


MUTATIONS. For panel A-F, the linear least-squares regression parameters are shown, with Spearman’s rank correlation shown below for the comparison between raw pool scores and pool 2


adjusted scores. A) Raw pool 1 vs adjusted pool 1, cytosine (n = 1372) B) Raw pool 2 vs adjusted pool 2, cytosine (n = 1298). C) Raw pool 3 vs adjusted pool 3, cytosine (n = 1374). D) Raw


pool 1 vs adjusted pool 1, 5-FC (n = 1372) E) Raw pool 2 vs adjusted pool 2, 5-FC (n = 1298). F) Raw pool 3 vs adjusted pool 3, 5-FC (n = 1374). G) Adjusted log2 fold-change for synonymous


(black) and nonsense (red) mutants in cytosine (n = 148 synonymous, n = 156 nonsense mutants) along the protein positions. For positions where Met and Trp are the wild-type amino acids,


there are no synonymous codons. This occurs 8 times in the _FCY1_ coding sequence (not including the start Met). H) Adjusted log2 fold-change for synonymous (black) and nonsense (red)


mutants in 5-FC (n = 148 synonymous, n = 156 nonsense mutants). EXTENDED DATA FIG. 4 DMSSCORE DISTRIBUTIONS BY MUTANT TYPE. Silent mutations are shown in green, nonsense in magenta, and


missense mutants in grey. A) 5-FC (n = 148 silent, 151 nonsense, 2968 missense). B) Cytosine (n = 148 silent, 151 nonsense, 2968 missense) C) 5-FC + cytosine (n = 59 silent, 62 nonsense,


1177 missense). D) DMSscore in 5-FC + cytosine as a function of scores in cytosine only with spearman’s rank correlation shown (n = 1298 mutants). EXTENDED DATA FIG. 5 _FCY1_ EVOLUTIONARY


RATE AND ORTHOLOGOUS RESIDUE DIVERSITY. A) frequency of the _S. cerevisiae_ amino acid at each position in the orthologous sequences. B) Normalized evolutionary rate for all Fcy1 residues


(Rate4site24) from 215 orthologues. The blue line represents the rolling average over a 6 amino acid window. This statistic represents the rate at which amino acids change along a phylogeny:


higher values represent more variable positions, while lower values represent more conserved positions. C) Multiple sequence alignment coverage of _S. cerevisiae_ Fcy1 positions in the set


of orthologues. The maximum value is 215, representing perfectly conserved amino acids positions across all sequences. EXTENDED DATA FIG. 6 DHFR-PCA DATA SUPPORTS PROTEIN STRUCTURE STABILITY


PREDICTIONS FOR VALIDATION MUTANTS. _FCY1_ variants were tagged with a DHFR-PCA25 fragment to measure protein complex formation with a wild-type copy of _FCY1_. In this approach, Fcy1 is


fused to DHFR fragments that complement upon dimerization, allowing growth in media containing methotrexate (MTX). Growth reflects the amount of complex formed, therefore providing a


quantitative measure of the stability of the Fcy1 subunits and complex. The 54 mutants are colored based on their DMS cluster (see Extended Data Fig. 7). All panels show Spearman’s rank


correlation. A) Growth rates in DMSO of the validation mutants for the two replicates. DMSO is the MTX solvent and is the control condition for the DHFR-PCA assay. B) Growth rates in MTX of


the validation mutants for the two replicates. C) Growth rate in MTX as a function of their growth rate in DMSO. As expected, there is no strong correlation between the two. D) Growth rate


in MTX as a function of FoldX58 predicted change in Fcy1 structure stability measured as ΔΔG. Positive ΔΔG represents destabilization. E) Growth rate in MTX as a function of the growth rate


in cytosine media of the haploid strain. F) Growth rate in MTX and in 5-FC media of the haploid strain. EXTENDED DATA FIG. 7 DMS ASSAY VALIDATIONS IN 5-FC AND CYTOSINE MEDIA. A) Location on


the cytosine/5-FC landscape of the Fcy1 variants (shown as grey dots) selected for validations superimposed on the density plot presented in Fig. 2d. The circles used to define the three


clusters are also shown: green for silent-like mutants, magenta for nonsense-like mutants, and blue for front minimum mutants. Mutants falling outside these clusters were classified as


‘other’ and encompass most outliers from the DMS screen. Variants with both high 5-FC and cytosine DMSscore are shown as squares: these outliers potentially escape the resistance-function


trade-off. B) Spearman’s correlation between growth curve replicates in 5-FC media, n = 73 variants. C) Spearman’s correlation between growth curve replicates in cytosine media, n = 72


variants. Data collected from the cytosine media from the outlier (T86M) was excluded from downstream analysis. D) Linear least-squares regression fit and Spearman’s correlation between 5-FC


growth rates measured in the 1st and 2nd rounds of validations for 17 mutants present in both growth curve assays. E) Linear least-squares regression fit and Spearman’s correlation between


cytosine growth rates measured in the 1st and 2nd rounds of validations for 17 mutants present in both assays. F) Growth rate values of the 2nd round of validations scaled to the growth rate


of the 1st round for the 17 mutants present in both assays. G) Spearman’s correlation between validation growth curves in 5-FC media and DMS 5-FC score, n = 79 variants. H) Spearman’s


correlation between validation growth curves in cytosine media and DMS cytosine score, n = 79 variants. I) Spearman’s correlation between validation growth curves in cytosine media and DMS


5-FC + cytosine score, n = 38 variants. EXTENDED DATA FIG. 8 PHENOTYPES OF THE SCFCY1 AND CNFCY1 MUTANTS. A) Growth rate for the 29 (27 of which were successfully constructed) scFCY1


variants selected in the DMS assay validation experiments. B) Representative examples of the phenotypes observed in the spot assays (Synthetic media + 194 μM 5-FC, 10-fold dilutions starting


at 1 OD/ml), where S: sensitive, r: low growth and R: full resistance. C) Phenotypes of scFCY1_opt (_S. cerevisiae_ codon optimized _FCY1_ at the _FCY1_ locus), cnFCY1_opt (_C. neoformans_


codon optimized _FCY1_ at the _S. cerevisiae FCY1_ locus) compared to the parental strain (BY4742) and the deletion mutant (Δfcy1). D) Comparison of growth rate between orthologous variants


in 5-FC media. Spearman’s rank correlation is shown (n = 22 pairs). Variants are colored by the position along the trade-off of the scFCY1 variant. E) Comparison of 5-FC media growth rate


between orthologous variants. Spearman’s rank correlation is shown (n = 22 pairs). F) Changes in growth rate in SC + 12 μM 5-FC and SC-Ura + 84 μM cytosine between scFcy1 and cnFcy1


variants. Spearman’s rank correlation is shown (n = 22 pairs). EXTENDED DATA FIG. 9 SPOT DILUTION ASSAY PHENOTYPES ARE MOST OFTEN CONSERVED BETWEEN ORTHOLOGOUS MUTANTS OF SCFCY1 AND CNFCY1.


The same dilutions of control strains BY4742 (WT FCY1), scFCY1_opt (_S. cerevisiae_ codon optimized _FCY1_ at the _FCY1_ locus), cnFCY1_opt (_C. neoformans_ codon optimized _FCY1_ at the _S.


cerevisiae FCY1_ locus) and _Δfcy1_ were spotted on each plate. For each mutant pair, the scFcy1 strain is in white and the cnFcy1 is highlighted in grey. The phenotype score (as defined


earlier) for each strain is shown on the right. The raw images used to generate the figure are available as Supplementary Data 5. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION


Supplementary Figs. 1–9. REPORTING SUMMARY. SUPPLEMENTARY DATA Supplementary Data 1–15. RIGHTS AND PERMISSIONS Springer Nature or its licensor holds exclusive rights to this article under a


publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing


agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Després, P.C., Cisneros, A.F., Alexander, E.M.M. _et al._ Asymmetrical dose responses shape the


evolutionary trade-off between antifungal resistance and nutrient use. _Nat Ecol Evol_ 6, 1501–1515 (2022). https://doi.org/10.1038/s41559-022-01846-4 Download citation * Received: 09


December 2021 * Accepted: 07 July 2022 * Published: 01 September 2022 * Issue Date: October 2022 * DOI: https://doi.org/10.1038/s41559-022-01846-4 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative


Trending News

The spatial and temporal reconstruction of a medieval moat ecosystem

ABSTRACT Moats and other historical water features had great importance for past societies. The functioning of these eco...

German construction company avoided paying tax in greece

In September last year, a court in Athens found that Hochtief, a German construction company running Athens Internationa...

Us star to fire starting gun on 100th le mans 24-hour race

LEBRON JAMES WILL JOIN LIST OF CELEBRITY ‘STARTERS’ WHO SIGNAL THE BEGINNING OF FAMOUS ENDURANCE EVENT US basketball sta...

Bring Her Home | PBS

SHARE THIS SHOW * Link Copied to Clipboard HOW TO WATCH BRING HER HOME Bring Her Home is available to stream on pbs.org ...

"devastating injury" - kyle sinckler opens up on latest setback - ruck

KYLE SINCKLER TOOK TO HIS INSTAGRAM PAGE TO ANNOUNCE THAT AN INJURY HE SUFFERED FIVE WEEKS AGO HAD NEARLY JEOPARDIZED HI...

Latests News

Asymmetrical dose responses shape the evolutionary trade-off between antifungal resistance and nutrient use

ABSTRACT Antimicrobial resistance is an emerging threat for public health. The success of resistance mutations depends o...

Batting records | Under-19s Youth One-Day Internationals | Cricinfo Statsguru | ESPNcricinfo.com

ESPN CricinfoLive ScoresLive Scores HomeScheduleResultsMonth viewSeason viewInternational calendarDesktop ScoreboardSeri...

Lucy hale age: how old is lucy hale?

Riverdale fans have been left stunned by reports actor Skeet Ulrich – better known as FP Jones – is dating Kate Keene ac...

Woman's body found stuffed in suitcase in bengaluru, probe on

THE PRELIMINARY INVESTIGATIONS SUGGEST THAT THE SUITCASE MAY HAVE BEEN THROWN FROM A TRAIN, INDICATING AN ATTEMPT TO DIS...

Ryan reynolds shows bestie hugh jackman some love in $36 wolverine shirt out of 'wade's closet'

Nice shirt, bub. On Sunday, Aug. 4, Ryan Reynolds once again proved he's Hugh Jackman's biggest fan. The _Dead...

Top