Global targets that reveal the social–ecological interdependencies of sustainable development

Nature

Global targets that reveal the social–ecological interdependencies of sustainable development"


Play all audios:

Loading...

ABSTRACT We are approaching a reckoning point in 2020 for global targets that better articulate the interconnections between biodiversity, ecosystem services and sustainable development. The


Convention on Biological Diversity’s (CBD’s) post-2020 global biodiversity framework and targets will be developed as we enter the last decade to meet the Sustainable Development Goals


(SDGs) and targets. Despite recent findings of unprecedented declines in biodiversity and ecosystem services and their negative impacts on SDGs, these declines remain largely unaccounted for


in the SDG’s upcoming ‘decade of action’. We use a social–ecological systems framework to develop four recommendations for targets that capture the interdependencies between biodiversity,


ecosystem services and sustainable development. These recommendations, which are primarily aimed at the CBD post-2020 process, include moving from separate social and ecological targets to


social–ecological targets that: account for (1) the support system role of biodiversity and (2) ecosystem services in sustainable development. We further propose target advances that (3)


capture social–ecological feedbacks reinforcing unsustainable outcomes, and (4) reveal indirect feedbacks hidden by current target systems. By making these social–ecological


interdependencies explicit, it is possible to create coherent systems of global targets that account for the complex role of biodiversity and ecosystem services in sustainable development.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54


other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and


online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS ROLES OF THE RED LIST OF ECOSYSTEMS IN THE KUNMING-MONTREAL GLOBAL BIODIVERSITY FRAMEWORK Article 08 February 2024 ENVIRONMENTAL DESTRUCTION NOT AVOIDED WITH THE


SUSTAINABLE DEVELOPMENT GOALS Article 29 June 2020 SYNERGIES AND COMPLEMENTARITIES BETWEEN ECOSYSTEM ACCOUNTING AND THE RED LIST OF ECOSYSTEMS Article 28 August 2024 REFERENCES * Díaz, S. et


al. Pervasive human-driven decline of life on Earth points to the need for transformative change. _Science_ 366, eaax3100 (2019). PubMed  Google Scholar  * Anderson, C. B. et al.


Determining nature’s contributions to achieve the sustainable development goals. _Sustain. Sci._ 14, 543–547 (2019). Google Scholar  * Wood, S. L. R. et al. Distilling the role of ecosystem


services in the Sustainable Development Goals. _Ecosyst. Serv._ 29, 70–82 (2018). Google Scholar  * _Report of the Secretary-General on SDG Progress 2019_ (United Nations, 2019). * Le Blanc,


D. Towards integration at last? The Sustainable Development Goals as a network of targets. _Sustain. Dev._ 23, 176–187 (2015). Google Scholar  * _Transforming our World: the 2030 Agenda for


Sustainable Development_ (United Nations, 2015). * McGowan, P. J. K., Stewart, G. B., Long, G. & Grainger, M. J. An imperfect vision of indivisibility in the Sustainable Development


Goals. _Nat. Sustain._ 2, 43–45 (2019). Google Scholar  * Nilsson, M., Griggs, D. & Visbeck, M. Policy: Map the interactions between sustainable development goals. _Nature_ 534, 320–322


(2016). PubMed  Google Scholar  * Barbier, E. B. & Burgess, J. C. The Sustainable Development Goals and the systems approach to sustainability. _Economics_ 11, 2017–28 (2017). Google


Scholar  * Nilsson, M. et al. Mapping interactions between the sustainable development goals: lessons learned and ways forward. _Sustain. Sci._ 13, 1489–1503 (2018). PubMed  PubMed Central 


Google Scholar  * Nerini, F. F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. _Nat. Energy_ 3, 10–15 (2018). Google Scholar  * Schlüter, M. et


al. Capturing emergent phenomena in social-ecological systems: an analytical framework. _Ecol. Soc._ 24, 11 (2019). Google Scholar  * Preiser, R., Biggs, R., De Vos, A. & Folke, C.


Social-ecological systems as complex adaptive systems: organizing principles for advancing research methods and approaches. _Ecol. Soc._ 23, 46 (2018). Google Scholar  * Fischer, J. et al.


Advancing sustainability through mainstreaming a social-ecological systems perspective. _Curr. Opin. Environ. Sustain._ 14, 144–149 (2015). Google Scholar  * Leslie, H. M. et al.


Operationalizing the social-ecological systems framework to assess sustainability. _Proc. Natl Acad. Sci. USA_ 112, 5979–5984 (2015). CAS  PubMed  Google Scholar  * Reyers, B., Folke, C.,


Moore, M.-L., Biggs, R. & Galaz, V. Social-ecological systems insights for navigating the dynamics of the Anthropocene. _Annu. Rev. Environ. Resour._ 43, 267–289 (2018). Google Scholar 


* Reyers, B., Stafford-Smith, M., Erb, K. H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. _Curr. Opin. Environ. Sustain._


26–27, 97–105 (2017). Google Scholar  * Selomane, O., Reyers, B., Biggs, R. & Hamann, M. Harnessing insights from social-ecological systems research for monitoring sustainable


development. _Sustainability_ 11, 1190 (2019). Google Scholar  * Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. _Proc. Natl


Acad. Sci. USA_ 106, 1305–1312 (2009). CAS  PubMed  Google Scholar  * Berkes, F. Environmental governance for the Anthropocene? Social-ecological systems, resilience, and collaborative


learning. _Sustainability_ 9, 1232 (2017). Google Scholar  * Leach, M. et al. Equity and sustainability in the Anthropocene: a social–ecological systems perspective on their intertwined


futures. _Glob. Sustain._ 1, e13 (2018). Google Scholar  * Blythe, J., Nash, K., Yates, J. & Cumming, G. Feedbacks as a bridging concept for advancing transdisciplinary sustainability


research. _Curr. Opin. Environ. Sustain._ 26–27, 114–119 (2017). Google Scholar  * Takeuchi, K., Ichikawa, K. & Elmqvist, T. Satoyama landscape as social-ecological system: historical


changes and future perspective. _Curr. Opin. Environ. Sustain._ 19, 30–39 (2016). Google Scholar  * Lafuite, A.-S. & Loreau, M. Time-delayed biodiversity feedbacks and the sustainability


of social-ecological systems. _Ecol. Model._ 351, 96–108 (2017). Google Scholar  * Daw, T. M. et al. Evaluating taboo trade-offs in ecosystems services and human well-being. _Proc. Natl


Acad. Sci. USA_ 112, 6949–6954 (2015). CAS  PubMed  Google Scholar  * Liu, J. G. et al. Framing sustainability in a telecoupled world. _Ecol. Soc._ 18, 26 (2013). CAS  Google Scholar  *


Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. _Annu. Rev. Environ. Resour._ 37, 421–448 (2012). Google Scholar  * Haider, L. J., Boonstra, W. J.,


Peterson, G. D. & Schlüter, M. Traps and sustainable development in rural areas: a review. _World Dev._ 101, 311–321 (2019). Google Scholar  * Lade, S. J., Haider, L. J., Engstrom, G.


& Schluter, M. Resilience offers escape from trapped thinking on poverty alleviation. _Sci. Adv._ 3, e1603043 (2017). PubMed  PubMed Central  Google Scholar  * Rocha, J. C., Peterson,


G., Bodin, O. & Levin, S. Cascading regime shifts within and across scales. _Science_ 362, 1379–1383 (2018). CAS  PubMed  Google Scholar  * Synes, N. W. et al. Coupled land use and


ecological models reveal emergence and feedbacks in socio-ecological systems. _Ecography_ 42, 814–825 (2019). Google Scholar  * Mace, G. M. et al. Aiming higher to bend the curve of


biodiversity loss. _Nat. Sustain._ 1, 448–451 (2018). Google Scholar  * Díaz, S. et al. The IPBES Conceptual Framework - connecting nature and people. _Curr. Opin. Environ. Sustain._ 14,


1–16 (2015). Google Scholar  * Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. _Science_ 347, 1259855 (2015). PubMed  Google Scholar  * Mace, G. M.


et al. Approaches to defining a planetary boundary for biodiversity. _Glob. Environ. Change-Hum. Policy Dimens._ 28, 289–297 (2014). Google Scholar  * Smith, D. C. et al. Implementing marine


ecosystem-based management: lessons from Australia. _ICES J. Mar. Sci._ 74, 1990–2003 (2017). Google Scholar  * Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals.


_Nature_ 543, 373–377 (2017). CAS  PubMed  Google Scholar  * Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. _Science_ 359, 80–83 (2018).


CAS  PubMed  Google Scholar  * Hughes, T. P. et al. Global warming transforms coral reef assemblages. _Nature_ 556, 492–496 (2018). CAS  PubMed  Google Scholar  * Hughes, T. P. et al. Global


warming impairs stock–recruitment dynamics of corals. _Nature_ 568, 387–390 (2019). CAS  PubMed  Google Scholar  * Manning, P. et al. Redefining ecosystem multifunctionality. _Nat. Ecol.


Evol._ 2, 427–436 (2018). PubMed  Google Scholar  * Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. _Nature_ 488, 615–620 (2012). CAS  PubMed  Google


Scholar  * Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. _Ecosphere_ 3, 41 (2012). Google Scholar  * Griscom, B. W. et al. Natural climate


solutions. _Proc. Natl Acad. Sci. USA_ 114, 11645–11650 (2017). CAS  PubMed  Google Scholar  * McAlpine, C. A. et al. Forest loss and Borneo’s climate. _Environ. Res. Lett._ 13, 044009


(2018). Google Scholar  * Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. _PLoS


ONE_ 14, e0213368 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. _Nat. Clim. Change_


3, 913–918 (2013). Google Scholar  * Nel, J. L. et al. Natural hazards in a changing world: a case for ecosystem-based management. _PLoS ONE_ 9, e95942 (2014). PubMed  PubMed Central  Google


Scholar  * Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. _Front. Ecol. Environ._ 15, 42–50 (2017). Google Scholar  * Guerry, A. D. et al.


Natural capital and ecosystem services informing decisions: from promise to practice. _Proc. Natl Acad. Sci. USA_ 112, 7348–7355 (2015). CAS  PubMed  Google Scholar  * Chaplin-Kramer, R. et


al. Global modeling of nature’s contributions to people. _Science_ 366, 255–258 (2019). CAS  PubMed  Google Scholar  * Isbell, F. et al. Biodiversity increases the resistance of ecosystem


productivity to climate extremes. _Nature_ 526, 574–577 (2015). CAS  PubMed  Google Scholar  * Garbach, K. et al. Examining multi-functionality for crop yield and ecosystem services in five


systems of agroecological intensification. _Int. J. Agric. Sustain._ 15, 11–28 (2017). Google Scholar  * Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem


services. _Trends Ecol. Evol._ 30, 531–539 (2015). PubMed  Google Scholar  * Schreckenberg, K., Mace, G. & Poudyal, M. _Ecosystem Services and Poverty Alleviation: Trade-offs and


Governance_ (Routledge, 2018). * Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–_Lancet_ Commission on planetary health.


_Lancet_ 386, 1973–2028 (2015). PubMed  Google Scholar  * Buckley, R. C. & Brough, P. Economic value of parks via human mental health: an analytical framework. _Front. Ecol. Evol._ 5, 16


(2017). Google Scholar  * Elmqvist, T. et al. _Urban Planet: Knowledge towards Sustainable Cities_ (Cambridge Univ. Press, 2018). * Reyers, B. et al. Getting the measure of ecosystem


services: a social–ecological approach. _Front. Ecol. Environ._ 11, 268–273 (2013). Google Scholar  * Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected


areas. _Nature_ 553, 328–332 (2018). CAS  PubMed  Google Scholar  * von Uexkull, N., Croicu, M., Fjelde, H. & Buhaug, H. Civil conflict sensitivity to growing-season drought. _Proc. Natl


Acad. Sci. USA_ 113, 12391–12396 (2016). Google Scholar  * Moss, A., Jensen, E. & Gusset, M. Impact of a global biodiversity education campaign on zoo and aquarium visitors. _Front.


Ecol. Environ._ 15, 243–247 (2017). Google Scholar  * Rustad, S. A. & Binningsbo, H. M. A price worth fighting for? Natural resources and conflict recurrence. _J. Peace Res._ 49, 531–546


(2012). Google Scholar  * Linke, A. M., Witmer, F. D. W., O’Loughlin, J., McCabe, J. T. & Tir, J. The consequences of relocating in response to drought: human mobility and conflict in


contemporary Kenya. _Environ. Res. Lett._ 13, 094014 (2018). Google Scholar  * Burrows, K. & Kinney, P. Exploring the climate change, migration and conflict nexus. _Int. J. Environ. Res.


Public Health_ 13, 443 (2016). PubMed  PubMed Central  Google Scholar  * _Global Gender and Development Outlook_ (United Nations Environment Programme, 2016). * Harper, S., Grubb, C.,


Stiles, M. & Sumaila, U. R. Contributions by women to fisheries economies: insights from five maritime countries. _Coast. Manag._ 45, 91–106 (2017). Google Scholar  * Cole, S. M. et al.


Postharvest fish losses and unequal gender relations: drivers of the social-ecological trap in the Barotse Floodplain fishery, Zambia. _Ecol. Soc._ 23, 18 (2018). Google Scholar  *


Martin-Lopez, B., Gomez-Baggethun, E., Garcia-Llorente, M. & Montes, C. Trade-offs across value-domains in ecosystem services assessment. _Ecol. Indic._ 37, 220–228 (2014). Google


Scholar  * Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. _Environ. Res. Lett._ 6, 014009 (2011). Google Scholar  * Cardinale, B. J. et al.


Biodiversity loss and its impact on humanity. _Nature_ 486, 59–67 (2012). CAS  PubMed  Google Scholar  * Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Megacity precipitationsheds


reveal tele-connected water security challenges. _PLoS ONE_ 13, e0194311 (2018). PubMed  PubMed Central  Google Scholar  * Dakos, V. et al. Ecosystem tipping points in an evolving world.


_Nat. Ecol. Evol._ 3, 355–362 (2019). PubMed  Google Scholar  * Pardini, R., Bueno, Ad. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis:


regime shifts in biodiversity across fragmented landscapes. _PLoS ONE_ 5, e13666 (2010). PubMed  PubMed Central  Google Scholar  * Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S.


Cascading regime shifts within and across scales. _Science_ 362, 1379–1383 (2018). CAS  PubMed  Google Scholar  * Oosterbroek, B., de Kraker, J., Huynen, M. & Martens, P. Assessing


ecosystem impacts on health: a tool review. _Ecosyst. Serv._ 17, 237–254 (2016). Google Scholar  * Gattuso, J.-P. et al. Contrasting futures for ocean and society from different


anthropogenic CO2 emissions scenarios. _Science_ 349, aac4722 (2015). PubMed  Google Scholar  * Pereira, L. & Drimie, S. Governance arrangements for the future food system: addressing


complexity in South Africa. _Environ.: Sci. Policy Sustain. Dev._ 58, 18–31 (2016). Google Scholar  * Ericksen, P. J. Conceptualizing food systems for global environmental change research.


_Glob. Environ. Change_ 18, 234–245 (2008). Google Scholar  * Lade, S. J., Haider, L. J., Engström, G. & Schlüter, M. Resilience offers escape from trapped thinking on poverty


alleviation. _Sci. Adv._ 3, e1603043 (2017). PubMed  PubMed Central  Google Scholar  * Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong.


_Science_ 351, 128–129 (2016). CAS  PubMed  Google Scholar  * Grill, G. et al. Mapping the world’s free-flowing rivers. _Nature_ 569, 215–221 (2019). CAS  PubMed  Google Scholar  * Beck, M.


W., Claassen, A. H. & Hundt, P. J. Environmental and livelihood impacts of dams: common lessons across development gradients that challenge sustainability. _Int. J. River Basin Manag._


10, 73–92 (2012). Google Scholar  * Botelho, A., Ferreira, P., Lima, F., Pinto, L. M. C. & Sousa, S. Assessment of the environmental impacts associated with hydropower. _Renew. Sustain.


Energy Rev._ 70, 896–904 (2017). Google Scholar  * Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in


the Amazon. _Biol. Conserv._ 177, 203–209 (2014). Google Scholar  * Benitez-Lopez, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird


populations: a meta-analysis. _Biol. Conserv._ 143, 1307–1316 (2010). Google Scholar  * Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators.


_Nat. Ecol. Evol._ 2, 775–781 (2018). PubMed  Google Scholar  * Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. _Proc. Natl Acad. Sci. USA_ 109, 3232–3237 (2012). CAS


  PubMed  Google Scholar  * Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. _Nature_ 543, 700–704 (2017). CAS  PubMed  Google


Scholar  * D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. _Environ. Res. Lett._ 14, 053001 (2019). Google


Scholar  * Crona, B. I. et al. Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. _Fish Fish._ 17, 1175–1182 (2016). Google Scholar  * Galaz,


V. et al. Tax havens and global environmental degradation. _Nat. Ecol. Evol._ 2, 1352–1357 (2018). PubMed  Google Scholar  * Folke, C. et al. Transnational corporations and the challenge of


biosphere stewardship. _Nat. Ecol. Evol._ 3, 1396–1403 (2019). PubMed  Google Scholar  * United Nations Secretary-General _Progress towards the Sustainable Development Goals: Report of the


Secretary-General_ (UN, 2018). * Stafford-Smith, M. et al. Integration: the key to implementing the Sustainable Development Goals. _Sustain. Sci._ 12, 911–919 (2017). PubMed  Google Scholar


  * Abson, D. J. et al. Leverage points for sustainability transformation. _Ambio_ 46, 30–39 (2017). PubMed  Google Scholar  * Sachs, J. D. et al. Six Transformations to achieve the


Sustainable Development Goals. _Nat. Sustain._ 2, 805–814 (2019). Google Scholar  * Arkema, K. K. et al. Embedding ecosystem services in coastal planning leads to better outcomes for people


and nature. _Proc. Natl Acad. Sci. USA_ 112, 7390–7395 (2015). CAS  PubMed  Google Scholar  * Eakin, H. et al. Identifying attributes of food system sustainability: emerging themes and


consensus. _Agric. Hum. Values_ 34, 757–773 (2017). Google Scholar  * Biggs, R., Schlüter, M. & Schoon, M. L. _Principles for Building Resilience: Sustaining Ecosystem Services in


Social-Ecological Systems_ (Cambridge Univ. Press, 2015). Download references ACKNOWLEDGEMENTS We are grateful to have been part of the Global Assessment of the Intergovernmental


Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) where the initial ideas for this Perspective were born. AUTHOR INFORMATION Author notes * These authors contributed


equally: Belinda Reyers, Elizabeth R. Selig. AUTHORS AND AFFILIATIONS * Future Africa, University of Pretoria, Pretoria, South Africa Belinda Reyers * Stockholm Resilience Centre, Stockholm


University, Stockholm, Sweden Belinda Reyers * Center for Ocean Solutions, Stanford University, Stanford, CA, USA Elizabeth R. Selig Authors * Belinda Reyers View author publications You can


also search for this author inPubMed Google Scholar * Elizabeth R. Selig View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS B.R. and E.R.S.


contributed equally to this work as co-lead authors. CORRESPONDING AUTHOR Correspondence to Belinda Reyers. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Reyers, B., Selig, E.R. Global targets that reveal the social–ecological interdependencies of sustainable


development. _Nat Ecol Evol_ 4, 1011–1019 (2020). https://doi.org/10.1038/s41559-020-1230-6 Download citation * Received: 07 November 2019 * Accepted: 14 May 2020 * Published: 20 July 2020 *


Issue Date: August 2020 * DOI: https://doi.org/10.1038/s41559-020-1230-6 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

404 - Page not found

HomeNG HindiIndiaIndiaAndhra PradeshArunachal PradeshAssamBiharChhattisgarhGoaGujaratHaryanaHimachal PradeshJharkhandKar...

Association of post-diagnostic use of cholera vaccine with survival outcome in breast cancer patients

ABSTRACT BACKGROUND Expensive cancer treatment calls for alternative ways such as drug repurposing to develop effective ...

Wardrobe do-overs for midwinter fashion blues

Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4  G...

Presumed cartel leader freed due to police error—and rearrested

A federal judge ordered the release of a suspected cartel leader in Tabasco on Monday due to police error, but he won’t ...

Multimodal joint deconvolution and integrative signature selection in proteomics

ABSTRACT Deconvolution is an efficient approach for detecting cell-type-specific (cs) transcriptomic signals without cel...

Latests News

Global targets that reveal the social–ecological interdependencies of sustainable development

ABSTRACT We are approaching a reckoning point in 2020 for global targets that better articulate the interconnections bet...

Cmpd officer will not face charges for killing armed suspect in august

A Charlotte-Mecklenburg Police Department officer will not face charges after he shot and killed an armed suspect during...

How to solve sexual desire differences - libido, marriage, relationships

Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4  G...

Interdental care for every patient

Interdental brushes have the potential to be effective in any patient's oral hygiene routine, and the FLEXI interde...

Targeted antigen delivery to antigen–presenting cells including dendritic cells by engineered fas-mediated apoptosis

ABSTRACT Immunity to tumors as well as to viral and bacterial pathogens is often mediated by cytotoxic T lymphocytes (CT...

Top