Exceptionally bright optical emission from a rare and distant gamma-ray burst

Nature

Exceptionally bright optical emission from a rare and distant gamma-ray burst"


Play all audios:

Loading...

ABSTRACT Long gamma-ray bursts are produced by energy dissipation within ultra-relativistic jets launched by newborn black holes after the collapse of a peculiar class of massive stars.


Right after the luminous and highly variable gamma-ray emission, a multi-wavelength afterglow is released by external dissipation of the jet energy in the medium that surrounds the


progenitor star. We report the discovery of a very bright (~10 mag) optical emission ~28 s after the explosion of the extremely luminous and energetic GRB 210619B located at redshift 1.937.


We observed the transition from a bright reverse to the forward shock emission, demonstrating that the early and late gamma-ray-burst multi-wavelength emission originated from a narrow,


magnetized jet propagating into a rarefied interstellar medium. These conditions are found to be optimal to produce the bright optical flash from the reverse shock. Slower jets propagating


in denser media are expected to cause a flash of very-high-energy radiation, which is yet to be discovered. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PRECISE MEASUREMENTS OF SELF-ABSORBED RISING REVERSE


SHOCK EMISSION FROM GAMMA-RAY BURST 221009A Article Open access 29 June 2023 PROMPT-TO-AFTERGLOW TRANSITION OF OPTICAL EMISSION IN A LONG GAMMA-RAY BURST CONSISTENT WITH A FIREBALL Article


10 April 2023 GAMMA-RAY FLARES FROM RELATIVISTIC MAGNETIC RECONNECTION IN THE JET OF THE QUASAR 3C 279 Article Open access 21 August 2020 DATA AVAILABILITY Swift/XRT raw data are public and


available from the UK Swift Science Data Centre at the University of Leicester. The light curve data are available at: https://www.swift.ac.uk/xrt_curves/GRB_ID/flux.qdp where GRB_ID is the


GRB observation ID. The spectra were obtained at: https://www.swift.ac.uk/xrt_spectra/addspec.php?targ=GRB_ID. The details of the automatic spectral analysis are available at:


https://www.swift.ac.uk/xrt_spectra/docs.php. Fermi/LAT raw data are public and can be downloaded using GTBURST software at:


https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html. Fermi/LAT 2nd GRB catalogue data are available at: https://www-glast.stanford.edu/pub_data/953/. All reduced data are


available from the corresponding author upon reasonable request. CODE AVAILABILITY HEASoft, Xspec and PyXspec are freely available at: https://heasarc.gsfc.nasa.gov/docs/software/heasoft,


https://heasarc.gsfc.nasa.gov/xanadu/xspec and https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/python/html/index.html. Gtburst is one of the Fermi Science Tools packages, freely available


at: https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/. The details of the gtburst analysis can be found at: https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html. The


emcee Python package is available at: https://emcee.readthedocs.io/en/stable/user/install/. All computer code is available from the corresponding author upon reasonable request. REFERENCES *


D’Avanzo, P. et al. GRB 210619B: Swift detection of a bright burst and optical counterpart. _GRB Coord. Netw. Circ._ No. 30261 (2021). * Zhao, Y. et al. GECAM detection of GRB 210619B. _GRB


Coord. Netw. Circ._ No. 30264 (2021). * Svinkin, D. et al. Konus-Wind detection of GRB 210619B. _GRB Coord. Netw. Circ._ No. 30276 (2021). * Poolakkil, S. & Meegan, C. GRB 210619B:


Fermi GBM detection. _GRB Coord. Netw. Circ._ No. 30279 (2021). * Nekola, M. et al. Robotic telescopes for high energy astrophysics in Ondřejov. _Exp. Astron._ 28, 79–85 (2010). ADS  Google


Scholar  * Jelinek, M., Strobl, J., Hudec, R. & Polasek, C. GRB 210619B: Ondrejov D50 detection. _GRB Coord. Netw. Circ._ No. 30263 (2021). * Beskin, G. M. et al. Wide-field optical


monitoring with Mini-MegaTORTORA (MMT-9) multichannel high temporal resolution telescope. _Astrophys. Bull._ 72, 81–92 (2017). ADS  Google Scholar  * de Ugarte Postigo, A. et al. GRB


210619B: redshift from OSIRIS/GTC. _GRB Coord. Netw. Circ._ No. 30272 (2021). * Rees, M. J. & Meszaros, P. Unsteady outflow models for cosmological gamma-ray bursts. _Astrophys. J.


Lett._ 430, L93 (1994). ADS  Google Scholar  * Drenkhahn, G. & Spruit, H. C. Efficient acceleration and radiation in Poynting flux powered GRB outflows. _Astron. Astrophys._ 391,


1141–1153 (2002). ADS  Google Scholar  * Lyutikov, M. & Blandford, R. Gamma ray bursts as electromagnetic outflows. Preprint at _arXiv_ https://doi.org/10.48550/arXiv.astro-ph/0312347


(2003). * Derishev, E. V., Kocharovsky, V. V. & Kocharovsky, V. V. Physical parameters and emission mechanism in gamma-ray bursts. _Astron. Astrophys._ 372, 1071–1077 (2001). ADS  Google


Scholar  * Piran, T., Sari, R. & Zou, Y.-C. Observational limits on inverse Compton processes in gamma-ray bursts. _Mon. Not. R. Astron. Soc._ 393, 1107–1113 (2009). ADS  Google Scholar


  * Derishev, E. V., Kocharovsky, V. V. & Kocharovsky, V. V. The neutron component in fireballs of gamma-ray bursts: dynamics and observable imprints. _Astrophys. J._ 521, 640–649


(1999). ADS  Google Scholar  * Beloborodov, A. M. Nuclear composition of gamma-ray burst fireballs. _Astrophys. J._ 588, 931–944 (2003). ADS  Google Scholar  * Fan, Y.-Z., Zhang, B. &


Wei, D.-M. Naked-eye optical flash from gamma-ray burst 080319B: tracing the decaying neutrons in the outflow. _Phys. Rev. D_ 79, 021301 (2009). ADS  Google Scholar  * Ghirlanda, G. et al.


Bulk Lorentz factors of gamma-ray bursts. _Astron. Astrophys._ 609, A112 (2018). Google Scholar  * Mészáros, P. & Rees, M. J. Poynting jets from black holes and cosmological gamma-ray


bursts. _Astrophys. J. Lett._ 482, L29–L32 (1997). ADS  Google Scholar  * Sari, R. & Piran, T. Predictions for the very early afterglow and the optical flash. _Astrophys. J._ 520,


641–649 (1999). ADS  Google Scholar  * Kobayashi, S. Light curves of gamma-ray burst optical flashes. _Astrophys. J._ 545, 807–812 (2000). ADS  Google Scholar  * Laskar, T. et al. A reverse


shock in GRB 130427A. _Astrophys. J._ 776, 119 (2013). ADS  Google Scholar  * Laskar, T. et al. ALMA detection of a linearly polarized reverse shock in GRB 190114C. _Astrophys. J. Lett._


878, L26 (2019). ADS  Google Scholar  * Laskar, T. et al. A reverse shock in GRB 181201A. _Astrophys. J._ 884, 121 (2019). ADS  Google Scholar  * Perley, D. A. et al. The afterglow of GRB


130427A from 1 to 1016 GHz. _Astrophys. J._ 781, 37 (2014). ADS  Google Scholar  * Racusin, J. L. et al. Broadband observations of the naked-eye γ-ray burst GRB080319B. _Nature_ 455, 183–188


(2008). ADS  Google Scholar  * Beskin, G. et al. Fast optical variability of a naked-eye burst—manifestation of the periodic activity of an internal engine. _Astrophys. J. Lett._ 719,


L10–L14 (2010). ADS  Google Scholar  * Akerlof, C. et al. Observation of contemporaneous optical radiation from a γ-ray burst. _Nature_ 398, 400–402 (1999). ADS  Google Scholar  * Paczynski,


B. & Rhoads, J. E. Radio transients from gamma-ray bursters. _Astrophys. J. Lett._ 418, L5 (1993). ADS  Google Scholar  * Sari, R., Piran, T. & Narayan, R. Spectra and light curves


of gamma-ray burst afterglows. _Astrophys. J. Lett._ 497, L17–L20 (1998). ADS  Google Scholar  * Eichler, D. & Waxman, E. The efficiency of electron acceleration in collisionless shocks


and gamma-ray burst energetics. _Astrophys. J._ 627, 861–867 (2005). ADS  Google Scholar  * Guilbert, P. W., Fabian, A. C. & Rees, M. J. Spectral and variability constraints on compact


sources. _Mon. Not. R. Astron. Soc._ 205, 593–603 (1983). ADS  Google Scholar  * Evans, P. A. et al. GRB 130925A: an ultralong gamma ray burst with a dust-echo afterglow, and implications


for the origin of the ultralong GRBs. _Mon. Not. R. Astron. Soc._ 444, 250–267 (2014). ADS  Google Scholar  * Laskar, T. et al. GRB 120521C at z ~6 and the properties of high-redshift γ-ray


bursts. _Astrophys. J._ 781, 1 (2014). ADS  Google Scholar  * Laskar, T. et al. Energy injection in gamma-ray burst afterglows. _Astrophys. J._ 814, 1 (2015). ADS  Google Scholar  * Laskar,


T. et al. A reverse shock in GRB 160509A. _Astrophys. J._ 833, 88 (2016). ADS  Google Scholar  * Alexander, K. D. et al. A reverse shock and unusual radio properties in GRB 160625B.


_Astrophys. J._ 848, 69 (2017). ADS  Google Scholar  * Piro, L. et al. A hot cocoon in the ultralong GRB 130925A: hints of a POPIII-like progenitor in a low-density wind environment.


_Astrophys. J. Lett._ 790, L15 (2014). ADS  Google Scholar  * Fan, Y.-Z., Dai, Z.-G., Huang, Y.-F. & Lu, T. Optical flash of GRB 990123: constraints on the physical parameters of the


reverse shock. _Chin. J. Astron. Astrophys._ 2, 449–453 (2002). ADS  Google Scholar  * Zhang, B., Kobayashi, S. & Mészáros, P. Gamma-ray burst early optical afterglows: implications for


the initial Lorentz factor and the central engine. _Astrophys. J._ 595, 950–954 (2003). ADS  Google Scholar  * Zhang, B. & Kobayashi, S. Gamma-ray burst early afterglows: reverse shock


emission from an arbitrarily magnetized ejecta. _Astrophys. J._ 628, 315–334 (2005). ADS  Google Scholar  * Giannios, D., Mimica, P. & Aloy, M. A. On the existence of a reverse shock in


magnetized gamma-ray burst ejecta. _Astron. Astrophys._ 478, 747–753 (2008). ADS  Google Scholar  * Mizuno, Y. et al. Magnetohydrodynamic effects in propagating relativistic jets: reverse


shock and magnetic acceleration. _Astrophys. J. Lett._ 690, L47–L51 (2009). ADS  Google Scholar  * Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known


redshifts. _Astron. Astrophys._ 390, 81–89 (2002). ADS  Google Scholar  * Yonetoku, D. et al. Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation.


_Astrophys. J._ 609, 935–951 (2004). ADS  Google Scholar  * Ghirlanda, G., Ghisellini, G. & Lazzati, D. The collimation-corrected gamma-ray burst energies correlate with the peak energy


of their _νF__ν_ spectrum. _Astrophys. J._ 616, 331–338 (2004). ADS  Google Scholar  * Kobayashi, S., Piran, T. & Sari, R. Can internal shocks produce the variability in gamma-ray


bursts? _Astrophys. J._ 490, 92 (1997). ADS  Google Scholar  * Daigne, F. & Mochkovitch, R. Gamma-ray bursts from internal shocks in a relativistic wind: temporal and spectral


properties. _Mon. Not. R. Astron. Soc._ 296, 275–286 (1998). ADS  Google Scholar  * Beloborodov, A. M. Optical and GeV-TeV flashes from gamma-ray bursts. _Astrophys. J. Lett._ 618, L13–L16


(2005). ADS  Google Scholar  * Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at _arXiv_ https://doi.org/10.48550/arXiv.1612.05560 (2016). * Becker, A. HOTPANTS: high order


transform of PSF and template subtraction. _Astrophysics Source Code Library_ ascl:1504.004 (2015). * Perley, D. A. GRB 210619B: Liverpool telescope imaging of a red afterglow. _GRB Coord.


Netw. Circ._ No. 30271 (2021). * Pei, Y. C. Interstellar dust from the Milky Way to the Magellanic Clouds. _Astrophys. J._ 395, 130 (1992). ADS  Google Scholar  * Caballero-García, M. D. et


al. Multiwavelength study of the luminous GRB 210619B observed with Fermi and ASIM. _Mon. Not. R. Astron. Soc._ 519, 3201–3226 (2023). ADS  Google Scholar  * Evans, P. A. et al. Methods and


results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. _Mon. Not. R. Astron. Soc._ 397, 1177–1201 (2009). ADS  Google Scholar  * Arnaud, K. A. XSPEC: The


first ten years. _Astronomical Data Analysis Software and Systems V, A.S.P. Conference Series, Vol. 101_ (Jacoby, G. H. & Barnes, J. eds), p. 17 (1996). * Kalberla, P. M. W. et al. The


Leiden/Argentine/Bonn (LAB) survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. _Astron. Astrophys._ 440, 775–782 (2005).


ADS  Google Scholar  * Meegan, C. et al. The Fermi gamma-ray burst monitor. _Astrophys. J._ 702, 791–804 (2009). ADS  Google Scholar  * Band, D. et al. BATSE observations of gamma-ray burst


spectra. I. Spectral diversity. _Astrophys. J._ 413, 281 (1993). ADS  Google Scholar  * Oganesyan, G., Nava, L., Ghirlanda, G., Melandri, A. & Celotti, A. Prompt optical emission as a


signature of synchrotron radiation in gamma-ray bursts. _Astron. Astrophys._ 628, A59 (2019). ADS  Google Scholar  * Burgess, J. M. et al. Gamma-ray bursts as cool synchrotron sources. _Nat.


Astron._ 4, 174–179 (2020). ADS  Google Scholar  * Ackermann, M. et al. The first Fermi-LAT Gamma-Ray Burst Catalog. _Astrophys. J. Suppl. Ser._ 209, 11 (2013). ADS  Google Scholar  * Page,


K. L. et al. GRB 210619B: Swift-XRT refined analysis. _GRB Coord. Netw. Circ._ No. 30269 (2021). * Nakar, E. & Piran, T. Early afterglow emission from a reverse shock as a diagnostic


tool for gamma-ray burst outflows. _Mon. Not. R. Astron. Soc._ 353, 647–653 (2004). ADS  Google Scholar  * Blandford, R. D. & McKee, C. F. Fluid dynamics of relativistic blast waves.


_Phys. Fluids_ 19, 1130–1138 (1976). MATH  ADS  Google Scholar  * Granot, J. & Sari, R. The shape of spectral breaks in gamma-ray burst afterglows. _Astrophys. J._ 568, 820–829 (2002).


ADS  Google Scholar  * Rhoads, J. E. How to tell a jet from a balloon: a proposed test for beaming in gamma-ray bursts. _Astrophys. J. Lett._ 487, L1–L4 (1997). ADS  Google Scholar  *


Salafia, O. S. et al. Multiwavelength view of the close-by GRB 190829A sheds light on gamma-ray burst physics. _Astrophys. J. Lett._ 931, L19 (2022). ADS  Google Scholar  * Granot, J.


Interaction of a highly magnetized impulsive relativistic flow with an external medium. _Mon. Not. R. Astron. Soc._ 421, 2442–2466 (2012). ADS  Google Scholar  * Mei, A. et al.


Gigaelectronvolt emission from a compact binary merger. _Nature_ 612, 236–239 (2022). ADS  Google Scholar  * Nava, L. et al. Clustering of LAT light curves: a clue to the origin of


high-energy emission in gamma-ray bursts. _Mon. Not. R. Astron. Soc._ 443, 3578–3585 (2014). ADS  Google Scholar  * Beniamini, P. & van der Horst, A. J. Electrons’ energy in GRB


afterglows implied by radio peaks. _Mon. Not. R. Astron. Soc._ 472, 3161–3168 (2017). ADS  Google Scholar  * Panaitescu, A. & Kumar, P. Analytic light curves of gamma-ray burst


afterglows: homogeneous versus wind external media. _Astrophys. J._ 543, 66–76 (2000). ADS  Google Scholar  * Goodman, J. & Weare, J. Ensemble samplers with affine invariance. _Commun.


Appl. Math. Comput. Sci._ 5, 65–80 (2010). MathSciNet  MATH  Google Scholar  * Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. _Publ. Astron. Soc. Pac._


125, 306 (2013). ADS  Google Scholar  * Gomboc, A. et al. Optical flashes, reverse shocks and magnetization. In _Gamma-ray Burst: Sixth Huntsville Symposium_ Conference Series Vol. 1133 (eds


Meegan, C. et al.) 145–150 (American Institute of Physics, 2009). * Sari, R. & Piran, T. Hydrodynamic timescales and temporal structure of gamma-ray bursts. _Astrophys. J. Lett._ 455,


L143 (1995). ADS  Google Scholar  * Haislip, J. B. et al. A photometric redshift of _z_ = 6.39 ± 0.12 for GRB 050904. _Nature_ 440, 181–183 (2006). ADS  Google Scholar  * Troja, E. et al.


Significant and variable linear polarization during the prompt optical flash of GRB 160625B. _Nature_ 547, 425–427 (2017). ADS  Google Scholar  * Vestrand, W. T. et al. The bright optical


flash and afterglow from the gamma-ray burst GRB 130427A. _Science_ 343, 38–41 (2014). ADS  Google Scholar  * Page, K. L. et al. Multiwavelength observations of the energetic GRB 080810:


detailed mapping of the broad-band spectral evolution. _Mon. Not. R. Astron. Soc._ 400, 134–146 (2009). ADS  Google Scholar  * Kobayashi, S. & Zhang, B. GRB 021004: reverse shock


emission. _Astrophys. J. Lett._ 582, L75–L78 (2003). ADS  Google Scholar  * Li, W., Filippenko, A. V., Chornock, R. & Jha, S. The early light curve of the optical afterglow of GRB


021211. _Astrophys. J. Lett._ 586, L9–L12 (2003). ADS  Google Scholar  * Blustin, A. J. et al. Swift panchromatic observations of the bright gamma-ray burst GRB 050525a. _Astrophys. J._ 637,


901–913 (2006). ADS  Google Scholar  * Gomboc, A. et al. Multiwavelength analysis of the intriguing GRB 061126: the reverse shock scenario and magnetization. _Astrophys. J._ 687, 443–455


(2008). ADS  Google Scholar  * Jin, Z.-P. et al. GRB 081007 and GRB 090424: the surrounding medium, outflows, and supernovae. _Astrophys. J._ 774, 114 (2013). ADS  Google Scholar  * Gendre,


B. et al. Testing gamma-ray burst models with the afterglow of GRB 090102. _Mon. Not. R. Astron. Soc._ 405, 2372–2380 (2010). ADS  Google Scholar  * Gruber, D. et al. Fermi/GBM observations


of the ultra-long GRB 091024. A burst with an optical flash. _Astron. Astrophys._ 528, A15 (2011). Google Scholar  * Cano, Z. et al. GRB 091024 : Faulkes telescope north–afterglow


confirmation. _GRB Coord. Netw. Circ._ No. 1066 (2009). * Henden, A., Gross, J., Denny, B., Terrell, D. & Cooney, W. GRB091024: VRcIc afterglow observations. _GRB Coord. Netw. Circ._ No.


1073 (2009). * Updike, A. C. & Hartmann, D. H. GRB 090118: KPNO 4m detection of candidate afterglow. _GRB Coord. Netw. Circ._ No. 8829 (2009). * Gupta, R. et al. GRB 140102A: insight


into prompt spectral evolution and early optical afterglow emission. _Mon. Not. R. Astron. Soc._ 505, 4086–4105 (2021). ADS  Google Scholar  * Huang, X.-L. et al. Very bright prompt and


reverse shock emission of GRB 140512A. _Astrophys. J._ 833, 100 (2016). ADS  Google Scholar  * Jordana-Mitjans, N. et al. Lowly polarized light from a highly magnetized jet of GRB 190114C.


_Astrophys. J._ 892, 97 (2020). ADS  Google Scholar  Download references ACKNOWLEDGEMENTS S.K. and M.P. acknowledge support from the European Structural and Investment Fund and the Czech


Ministry of Education, Youth and Sports (Project CoGraDS– CZ.02.1.01/0.0/0.0/15_003/0000437). FRAM-ORM operation is supported by the Czech Ministry of Education, Youth and Sports (project


numbers LM2015046, LM2018105 and LTT17006) and by the European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports (project numbers


CZ.02.1.01/0.0/0.0/16_013/0001403 and CZ.02.1.01/0.0/0.0/18_046/0016007). The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under


the AHEAD2020 project (grant agreement number 871158). B.B. and M.B. acknowledge financial support from MIUR (PRIN 2017 grant number 20179ZF5KS). This research was supported under the


Ministry of Science and Higher Education of the Russian Federation grant number 075-15-2022-262 (13.MNPMU.21.0003). This work made use of data supplied by the UK Swift Science Data Centre at


the University of Leicester. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Gran Sasso Science Institute, L’Aquila, Italy Gor Oganesyan, Samuele Ronchini, Biswajit Banerjee & Marica


Branchesi * INFN–Laboratori Nazionali del Gran Sasso, L’Aquila, Italy Gor Oganesyan, Samuele Ronchini, Biswajit Banerjee & Marica Branchesi * CEICO, Institute of Physics, Czech Academy


of Sciences, Prague, Czech Republic Sergey Karpov, Martin Mašek, Petr Janeček, Jan Ebr, Jakub Juryšek, Ronan Cunniffe & Michael Prouza * Special Astrophysical Observatory, Russian


Academy of Sciences, Nizhniy Arkhyz, Russia Sergey Karpov, Gregory Beskin & Nadezhda Lyapsina * Università degli Studi di Milano-Bicocca, Milano, Italy Om Sharan Salafia *


INAF–Osservatorio Astronomico di Brera, Merate, Italy Om Sharan Salafia * Astronomical Institute, Czech Academy of Sciences (ASU CAS), Ondřejov, Czech Republic Martin Jelínek, Jan Štrobl, 


Cyril Polášek & René Hudec * Kazan Federal University (KFU), Kazan, Russia Gregory Beskin, René Hudec, Anton Biryukov & Vyacheslav Sasyuk * Department of Astronomy and Astrophysics,


Pennsylvania State University, University Park, PA, USA Samuele Ronchini * Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic René Hudec * OJS RPC PSI,


Nizhniy Arkhyz, Russia Eugeny Ivanov, Elena Katkova & Alexey Perkov * Sternberg Astronomical Institute, Moscow State University, Moscow, Russia Anton Biryukov * Faculty of Physics, HSE


University, Moscow, Russia Anton Biryukov Authors * Gor Oganesyan View author publications You can also search for this author inPubMed Google Scholar * Sergey Karpov View author


publications You can also search for this author inPubMed Google Scholar * Om Sharan Salafia View author publications You can also search for this author inPubMed Google Scholar * Martin


Jelínek View author publications You can also search for this author inPubMed Google Scholar * Gregory Beskin View author publications You can also search for this author inPubMed Google


Scholar * Samuele Ronchini View author publications You can also search for this author inPubMed Google Scholar * Biswajit Banerjee View author publications You can also search for this


author inPubMed Google Scholar * Marica Branchesi View author publications You can also search for this author inPubMed Google Scholar * Jan Štrobl View author publications You can also


search for this author inPubMed Google Scholar * Cyril Polášek View author publications You can also search for this author inPubMed Google Scholar * René Hudec View author publications You


can also search for this author inPubMed Google Scholar * Eugeny Ivanov View author publications You can also search for this author inPubMed Google Scholar * Elena Katkova View author


publications You can also search for this author inPubMed Google Scholar * Alexey Perkov View author publications You can also search for this author inPubMed Google Scholar * Anton Biryukov


View author publications You can also search for this author inPubMed Google Scholar * Nadezhda Lyapsina View author publications You can also search for this author inPubMed Google Scholar


* Vyacheslav Sasyuk View author publications You can also search for this author inPubMed Google Scholar * Martin Mašek View author publications You can also search for this author inPubMed


 Google Scholar * Petr Janeček View author publications You can also search for this author inPubMed Google Scholar * Jan Ebr View author publications You can also search for this author


inPubMed Google Scholar * Jakub Juryšek View author publications You can also search for this author inPubMed Google Scholar * Ronan Cunniffe View author publications You can also search for


this author inPubMed Google Scholar * Michael Prouza View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.K. carried out the analysis of the


optical data provided by D50, FRAM-ORM and MMT-9. G.O. analysed the Swift/XRT, Swift/BAT and Fermi/GBM data. G.O. and O.S.S. led the interpretation of the multi-wavelength afterglow


emission. G.O. led the writing of the paper. S.K. and O.S.S. provided major contributions to the writing of the paper. B.B. reduced the Fermi/LAT data. B.B. and S.R. collected the sample of


the bright optical light curves. S.R. conducted the comparison of GRB properties with the population of long GRBs in the Amati and Yonetoku relations. M.J., G.B., J.Š., C.P., R.H., E.I.,


E.K., A.P., A.B., N.L., V.S., M.M., P.J., J.E., J.J., R.C. and M.P. organized the observations, ensured the operation of and provided the data from D50, FRAM-ORM and MMT-9 telescopes. All


the authors contributed to discussions and edited the paper. CORRESPONDING AUTHOR Correspondence to Gor Oganesyan. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Astronomy_ thanks Zhi-Ping Jin and Tanmoy Laskar for their contribution to the peer review of this work. ADDITIONAL INFORMATION


PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION


Supplementary Figs. 1–7 and Tables 1–12. SUPPLEMENTARY TABLE 6 Machine-readable version of Supplementary Table 6. SUPPLEMENTARY TABLE 7 Machine-readable version of Supplementary Table 7.


SUPPLEMENTARY TABLE 8 Machine-readable version of Supplementary Table 8. SUPPLEMENTARY TABLE 9 Machine-readable version of Supplementary Table 9. SUPPLEMENTARY TABLE 10 Machine-readable


version of Supplementary Table 10. SUPPLEMENTARY TABLE 11 Machine-readable version of Supplementary Table 11. SUPPLEMENTARY TABLE 12 Machine-readable version of Supplementary Table 12.


RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other


rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Oganesyan, G., Karpov, S., Salafia, O.S. _et al._ Exceptionally bright optical emission from a rare and distant gamma-ray burst. _Nat Astron_


7, 843–855 (2023). https://doi.org/10.1038/s41550-023-01972-4 Download citation * Received: 21 November 2021 * Accepted: 13 April 2023 * Published: 11 May 2023 * Issue Date: July 2023 *


DOI: https://doi.org/10.1038/s41550-023-01972-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is


not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Uk's position on funding political parties in zimbabwe

World news story UK'S POSITION ON FUNDING POLITICAL PARTIES IN ZIMBABWE The British Embassy in Harare has released ...

Long-lived period-doubled edge modes of interacting and disorder-free floquet spin chains

ABSTRACT Floquet spin chains have been a venue for understanding topological states of matter that are qualitatively dif...

Integrated quantum polariton interferometry

ABSTRACT Exciton-polaritons are hybrid radiation-matter elementary excitations that, thanks to their strong nonlineariti...

First election of lok sabha speaker in about 5 decades today

Earlier, TMC’s Abhishek Banerjee complained that the Congress unilaterally decided to put up K Suresh as the INDIA bloc’...

What is original medicare and what does it cover?

DO I NEED TO BUY ANY SUPPLEMENTAL POLICIES? While original Medicare covers a lot of health care expenses, its coverage h...

Latests News

Exceptionally bright optical emission from a rare and distant gamma-ray burst

ABSTRACT Long gamma-ray bursts are produced by energy dissipation within ultra-relativistic jets launched by newborn bla...

From captain america to avengers: endgame, here are all the marvel filming locations in scotland

New York, London, and the farthest reaches of the galaxy are probably what first comes to mind when you think of Marvel ...

The british contribution to dental materials research and its impact on the future course of treatment in restorative dentistry

You have full access to this article via your institution. Download PDF ARTICLE PDF Authors * J W McLean View author pub...

Perth to celebrate mackillop canonisation

DANIEL EMERSONThe West Australian Perth will take part in a nationwide series of events to celebrate the canonisation of...

Is your gravel driveway a taxable parking space? 🏡🚗

TAXE FONCIÈRE PAYMENTS CAN INCREASE IF ADDITIONS ARE MADE TO A PROPERTY Reader Question: Does a gravel area in front of ...

Top