Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies
Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies"
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Polycyclic aromatic hydrocarbon (PAH) molecules are abundant and widespread throughout the Universe, as revealed by their distinctive set of emission bands at 3.3, 6.2, 7.7, 8.6,
11.3 and 12.7 μm, which are characteristic of their vibrational modes. They are ubiquitously seen in a wide variety of astrophysical regions, ranging from planet-forming disks around young
stars to the interstellar medium of the Milky Way and other galaxies out to high redshifts at _z_ ≳ 4. PAHs profoundly influence the thermal budget and chemistry of the interstellar medium
by dominating the photoelectric heating of the gas and controlling the ionization balance. Here I review the current state of knowledge of the astrophysics of PAHs, focusing on their
observational characteristics obtained from the Spitzer Space Telescope and their diagnostic power for probing the local physical and chemical conditions and processes. Special attention is
paid to the spectral properties of PAHs and their variations revealed by the Infrared Spectrograph onboard Spitzer across a much broader range of extragalactic environments (for example,
distant galaxies, early-type galaxies, galactic halos, active galactic nuclei and low-metallicity galaxies) than was previously possible with the Infrared Space Observatory or any other
telescope facilities. Also highlighted is the relation between the PAH abundance and the galaxy metallicity established for the first time by Spitzer. Access through your institution Buy or
subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get
Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per
year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during
checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SPATIAL VARIATIONS
IN AROMATIC HYDROCARBON EMISSION IN A DUST-RICH GALAXY Article 05 June 2023 DETECTIONS OF INTERSTELLAR AROMATIC NITRILES 2-CYANOPYRENE AND 4-CYANOPYRENE IN TMC-1 Article Open access 05
November 2024 AN INVESTIGATION OF SPECTRAL LINE STACKING TECHNIQUES AND APPLICATION TO THE DETECTION OF HC11N Article 11 January 2021 REFERENCES * Gillett, F. C., Forrest, W. J. &
Merrill, K. M. 8–13 μm spectra of NGC 7027, BD+30 3639, and NGC 6572. _Astrophys. J._ 183, 87–93 (1973). ADS Google Scholar * Merrill, K. M., Soifer, B. T. & Russell, R. W. The 2–4 μm
spectrum of NGC 7027. _Astrophys. J._ 200, L37–L39 (1975). ADS Google Scholar * Russell, R. W., Soifer, B. T. & Willner, S. P. The 4–8 μm spectrum of NGC 7027. _Astrophys. J._ 217,
L149–L153 (1977). ADS Google Scholar * Willner, S. P., Soifer, B. T., Russell, R. W., Joyce, R. R. & Gillett, F. C. 2–8 μm spectrophotometry of M82. _Astrophys. J._ 217, L121–L124
(1977). ADS Google Scholar * Léger, A. & Puget, J. L. Identification of the “unidentified” IR emission features of interstellar dust? _Astron. Astrophys._ 137, L5–L8 (1984). ADS
Google Scholar * Allamandola, L. J., Tielens, A. G. G. M. & Baker, J. R. Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands: Auto exhaust along the Milky Way.
_Astrophys. J._ 290, L25–L28 (1985). ADS Google Scholar * Allamandola, L. J., Tielens, A. G. G. M. & Baker, J. R. Interstellar polycyclic aromatic hydrocarbons: the infrared emission
bands, the excitation/emission mechanism, and the astrophysical implications. _Astrophys. J. Suppl._ 71, 733–775 (1989). ADS Google Scholar * Draine, B. T. & Li, A. Infrared emission
from interstellar dust. I. Stochastic heating of small grains. _Astrophys. J._ 551, 807–824 (2001). ADS Google Scholar * Li, A. & Draine, B. T. Infrared emission from interstellar
dust. II. The diffuse interstellar medium. _Astrophys. J._ 554, 778–802 (2001). ADS Google Scholar * Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The
silicate–graphite–PAH model in the post-Spitzer era. _Astrophys. J._ 657, 810–837 (2007). ADS Google Scholar * Zubko, V., Dwek, E. & Arendt, R. G. Interstellar dust models consistent
with extinction, emission, and abundance constraints. _Astrophys. J. Suppl._ 152, 211–249 (2004). ADS Google Scholar * Siebenmorgen, R., Voshchinnikov, N. V. & Bagnulo, S. Dust in the
diffuse interstellar medium. Extinction, emission, linear and circular polarisation. _Astron. Astrophys._ 561, A82 (2014). ADS Google Scholar * Jones, A. P., Köhler, M., Ysard, N.,
Bocchio, M. & Verstraete, L. The global dust modelling framework THEMIS. _Astron. Astrophys._ 602, A46 (2017). ADS Google Scholar * Smith, J. D. T. et al. The mid-infrared spectrum of
star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission. _Astrophys. J._ 656, 770–791 (2007). ADS Google Scholar * Tielens, A. G. G. M. Interstellar polycyclic
aromatic hydrocarbon molecules. _Annu. Rev. Astron. Astrophys._ 46, 289–337 (2008). ADS Google Scholar * Joblin, C., Léger, A. & Martin, P. Contribution of polycyclic aromatic
hydrocarbon molecules to the interstellar extinction curve. _Astrophys. J._ 393, L79–L82 (1992). ADS Google Scholar * Cecchi-Pestellini, C., Malloci, G., Joblin, C. & Williams, D. A.
The role of the charge state of PAHs in ultraviolet extinction. _Astron. Astrophys._ 486, 25–29 (2008). ADS Google Scholar * Mulas, G., Zonca, A., Casu, S. & Cecchi-Pestellini, C.
Modeling galactic extinction with dust and “real” polycyclic aromatic hydrocarbons. _Astrophys. J. Suppl._ 207, 7 (2013). ADS Google Scholar * Steglich, M. et al. Electronic spectroscopy
of medium-sized polycyclic aromatic hydrocarbons: implications for the carriers of the 2175 Å UV bump. _Astrophys. J._ 712, L16–L20 (2011). ADS Google Scholar * Salama, F. et al.
Polycyclic aromatic hydrocarbons and the diffuse interstellar bands: a survey. _Astrophys. J._ 728, 154 (2011). ADS Google Scholar * Witt, A. N. Blue luminescence and extended red
emission: possible connections to the diffuse interstellar bands. _Proc. Int. Astronom. Union_ 9, 173–179 (2014). ADS Google Scholar * Draine, B. T. Interstellar dust grains. _Annu. Rev.
Astron. Astrophys._ 41, 241–289 (2003). ADS Google Scholar * Dickinson, C. et al. The state-of-play of anomalous microwave emission (AME) research. _New Astron. Rev._ 80, 1–28 (2018). ADS
Google Scholar * Bakes, E. & Tielens, A. G. G. M. The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons. _Astrophys. J._ 427,
822–838 (1994). ADS Google Scholar * Weingartner, J. C. & Draine, B. T. Photoelectric emission from interstellar dust: grain charging and gas heating. _Astrophys. J. Suppl._ 134,
263–282 (2001). ADS Google Scholar * Kamp, I. & Dullemond, C. P. The gas temperature in the surface layers of protoplanetary disks. _Astrophys. J._ 615, 991–999 (2004). ADS Google
Scholar * Verstraete, L. The role of PAHs in the physics of the interstellar medium. _EAS Publ. Ser._ 46, 415–426 (2011). Google Scholar * Hudgins, D. M. & Allamandola, L. J. Steps
toward identifying PAHs: A summary of some recent results. _IAUS_ 231, 443–454 (2005). ADS Google Scholar * Sellgren, K., Werner, M. W. & Dinerstein, H. L. Extended near-infrared
emission from visual reflection nebulae. _Astrophys. J._ 271, L13–L17 (1983). ADS Google Scholar * Greenberg, J. M. in _Stars and Stellar Systems_ Vol. 7 (eds Middlehurst, B. M. &
Aller, L. H.) 221–364 (Univ. Chicago Press, 1968). * Sellgren, K. The near-infrared continuum emission of visual reflection nebulae. _Astrophys. J._ 277, 623–633 (1984). ADS Google Scholar
* Geballe, T. R., Lacy, J. H., Persson, S. E., McGregor, P. J. & Soifer, B. T. Spectroscopy of the 3 μm emission features. _Astrophys. J._ 292, 500–505 (1985). ADS Google Scholar *
Jourdain de Muizon, M., Geballe, T. R., d’Hendecourt, L. B. & Baas, F. New emission features in the infrared spectra of two IRAS sources. _Astrophys. J._ 306, L105–L108 (1986). ADS
Google Scholar * Joblin, C., Tielens, A. G. G. M., Allamandola, L. J. & Geballe, T. R. Spatial variation of the 3.29 and 3.40 μm emission bands within reflection nebulae and the
photochemical evolution of methylated polycyclic aromatic hydrocarbons. _Astrophys. J._ 458, 610–620 (1996). ADS Google Scholar * Cohen, M., Tielens, A. G. G. M. & Allamandola, L. J. A
new emission feature in IRAS spectra and the polycyclic aromatic hydrocarbon spectrum. _Astrophys. J._ 299, L93–L97 (1985). ADS Google Scholar * Tokunaga, A. T. A summary of the “UIR”
bands. _ASP Conf. Ser._ 124, 149–160 (1997). ADS Google Scholar * Cohen, M. et al. The infrared emission bands. III. Southern IRAS sources. _Astrophys. J._ 341, 246–269 (1989). ADS Google
Scholar * Peeters, E., Allamandola, L. J., Hudgins, D. M., Hony, S. & Tielens, A. G. G. M. The unidentified infrared features after ISO. _ASP Conf. Ser._ 309, 141–162 (2004). ADS
Google Scholar * Moutou, C., Verstraete, L., Léger, A., Sellgren, K., Schmidt, W. & New, P. A. H. mode at 16.4 μm. _Astron. Astrophys._ 354, L17–L20 (2000). ADS Google Scholar *
Schutte, W. A. et al. ISO-SWS observations of infrared absorption bands of the diffuse interstellar medium: the 6.2 μm feature of aromatic compounds. _Astron. Astrophys._ 337, 261–274
(1998). ADS Google Scholar * Chiar, J. E. et al. The composition and distribution of dust along the line of sight toward the Galactic Center. _Astrophys. J._ 537, 749–762 (2000). ADS
Google Scholar * Peeters, E. et al. The rich 6 to 9 μm spectrum of interstellar PAHs. _Astron. Astrophys._ 390, 1089–1113 (2002). ADS Google Scholar * Mattila, K. et al. Spectrophotometry
of UIR bands in the diffuse emission of the Galactic Disk. _Astron. Astrophys._ 315, L353–L356 (2000). ADS Google Scholar * Onaka, T., Yamamura, I., Tanabe, T., Roellig, T. L. & Yuen,
L. Detection of the mid-infrared unidentified bands in the diffuse galactic emission by IRTS. _Publ. Astron. Soc. Jpn_ 48, L59–L63 (1996). ADS Google Scholar * Tanaka, M. et al. IRTS
observation of the unidentified 3.3 μm band in the diffuse galactic emission. _Publ. Astron. Soc. Jpn_ 48, L53–L57 (1996). ADS Google Scholar * Siebenmorgen, R., Prusti, T., Natta, A.
& Müller, T. G. Mid infrared emission of nearby Herbig Ae/Be stars. _Astron. Astrophys._ 361, 258–264 (2006). ADS Google Scholar * Furlan, E. et al. A survey and analysis of Spitzer
Infrared Spectrograph spectra of T Tauri stars in Taurus. _Astrophys. J. Suppl._ 165, 568–605 (2006). ADS Google Scholar * Geers, V. C. et al. C2D Spitzer-IRS spectra of disks around T
Tauri stars. II. PAH emission features. _Astron. Astrophys._ 459, 545–556 (2006). ADS Google Scholar * Seok, J. Y. & Li, A. Polycyclic aromatic hydrocarbons in protoplanetary disks
around Herbig Ae/Be and T Tauri stars. _Astrophys. J._ 835, 291 (2017). ADS Google Scholar * Sandstrom, K. M. et al. The Spitzer spectroscopic survey of the Small Magellanic Cloud (S4MC):
probing the physical state of polycyclic aromatic hydrocarbons in a low-metallicity environment. _Astrophys. J._ 744, 20 (2012). ADS Google Scholar * Hemachandra, D. et al. Mid-infrared
spectroscopy of the Andromeda galaxy. _Astron. Astrophys._ 454, 818–830 (2015). Google Scholar * Boersma, C., Rubin, R. H. & Allamandola, L. J. Spatial analysis of the polycyclic
aromatic hydrocarbon features southeast of the Orion Bar. _Astrophys. J._ 753, 168 (2012). ADS Google Scholar * Boersma, C., Bregman, J. & Allamandola, L. J. Properties of polycyclic
aromatic hydrocarbons in the northwest photon dominated region of NGC 7023. III. Quantifying the traditional proxy for PAH charge and assessing its role. _Astrophys. J._ 806, 121 (2015). ADS
Google Scholar * Shannon, M. J., Stock, D. J. & Peeters, E. Interpreting the subtle spectral variations of the 11.2 and 12.7 μm polycyclic aromatic hydrocarbon bands. _Astrophys. J._
824, 111 (2016). ADS Google Scholar * Smith, J. D. T. et al. Mid-infrared IRS spectroscopy of NGC 7331: a first look at the Spitzer Infrared Nearby Galaxies Survey (SINGS) legacy.
_Astrophys. J. Suppl._ 154, 199–203 (2004). ADS Google Scholar * Werner, M. W. et al. New infrared emission features and spectral variations in NGC 7023. _Astrophys. J. Suppl._ 154,
309–314 (2004). ADS Google Scholar * Beintema, D. A. et al. The rich spectrum of circumstellar PAHs. _Astron. Astrophys._ 315, L369–L372 (1996). ADS Google Scholar * van Kerckhoven, C.
et al. The C–C–C bending modes of PAHs: a new emission plateau from 15 to 20 μm. _Astrophys. J. Suppl._ 357, 1013–1019 (2000). Google Scholar * Cami, J., Bernard-Salas, J., Peeters, E.
& Malek, S. E. Detection of C60 and C70 in a young planetary nebula. _Science_ 329, 1180–1182 (2010). ADS Google Scholar * Sellgren, K. et al. C60 in reflection nebulae. _Astrophys.
J._ 722, L54–L57 (2010). ADS Google Scholar * Witteborn, F. C. et al. New emission features in the 11–13 μm region and their relationship to polycyclic aromatic hydrocarbons. _Astrophys.
J._ 341, 270–277 (1989). ADS Google Scholar * Hony, S. et al. The CH out-of-plane bending modes of PAH molecules in astrophysical environments. _Astron. Astrophys._ 370, 1030–1043 (2001).
ADS Google Scholar * Hudgins, D. M. & Allamandola, L. J. Interstellar PAH emission in the 11–14 μm region: new insights from laboratory data and a tracer of ionized PAHs. _Astrophys.
J._ 516, L41–L44 (1999). ADS Google Scholar * Matsuura, M. et al. Spitzer Space Telescope spectra of post-AGB stars in the Large Magellanic Cloud — polycyclic aromatic hydrocarbons at low
metallicities. _Mon. Not. R. Astron. Soc._ 439, 1472–1493 (2014). ADS Google Scholar * Sloan, G. C. et al. Carbon-rich dust past the asymptotic giant branch: aliphatics, aromatics, and
fullerenes in the Magellanic Clouds. _Astrophys. J._ 791, 28 (2014). ADS Google Scholar * Hudgins, D. M., Bauschlicher, J. C. W. & Allamandola, L. J. Variations in the peak position of
the 6.2 μm interstellar emission feature: a tracer of N in the interstellar polycyclic aromatic hydrocarbon population. _Astrophys. J._ 632, 316–332 (2005). ADS Google Scholar * Canelo,
C. M., Friaça, A. C. S., Sales, D. A., Pastoriza, M. G. & Ruschel-Dutra, D. Variations in the 6.2 μm emission profile in starburst-dominated galaxies: a signature of polycyclic aromatic
nitrogen heterocycles (PANHs)? _Mon. Not. R. Astron. Soc._ 475, 3746–3763 (2018). ADS Google Scholar * Berné, O. et al. Analysis of the emission of very small dust particles from Spitzer
spectro-imagery data using blind signal separation methods. _Astron. Astrophys._ 469, 575–586 (2007). ADS Google Scholar * Povich, M. S. et al. A Multiwavelength study of M17: the spectral
energy distribution and PAH emission morphology of a massive star formation region. _Astrophys. J._ 660, 346–362 (2007). ADS Google Scholar * Elbaz, D., Le Floc’h, E., Dole, H. &
Marcillac, D. Observational evidence for the presence of PAHs in distant luminous infrared galaxies using ISO and Spitzer. _Astron. Astrophys._ 434, L1–L4 (2004). ADS Google Scholar * Yan,
L. et al. Spitzer detection of polycyclic aromatic hydrocarbon and silicate dust features in the mid-infrared spectra of _z_ ~ 2 ultraluminous infrared galaxies. _Astrophys. J._ 628,
604–610 (2005). ADS Google Scholar * Lutz, D. et al. Mid-infrared spectroscopy of two luminous submillimeter galaxies at _z_ ~ 2.8. _Astrophys. J._ 625, L83–L86 (2005). ADS Google Scholar
* Siana, B. et al. Detection of far-infrared and polycyclic aromatic hydrocarbon emission from the Cosmic Eye: probing the dust and star formation of Lyman break galaxies. _Astrophys. J._
698, 1273–1281 (2009). ADS Google Scholar * Riechers, D. A. et al. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a _z_ > 4 submillimeter galaxy. _Astrophys. J._
786, 31 (2014). ADS Google Scholar * Bernstein, M. P. et al. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. _Science_ 283,
1158–1138 (1999). Google Scholar * Kwok, S. Complex organics in space from Solar System to distant galaxies. _Astron. Astrophys. Rev._ 24, 8 (2016). ADS Google Scholar * Shipley, H. V. et
al. A new star formation rate calibration from polycyclic aromatic hydrocarbon emission features and application to high-redshift galaxies. _Astrophys. J._ 818, 60 (2016). ADS Google
Scholar * Pope, A. et al. Mid-infrared spectral diagnosis of submillimeter galaxies. _Astrophys. J._ 675, 1171–1193 (2008). ADS Google Scholar * Calzetti, D. et al. The calibration of
mid-infrared star formation rate indicators. _Astrophys. J._ 666, 870–895 (2007). ADS Google Scholar * Xie, Y. & Ho, L. C. A new calibration of star formation rate in galaxies based on
polycyclic aromatic hydrocarbon emission. _Astrophys. J._ 884, 136 (2019). ADS Google Scholar * Kaneda, H. et al. Unbiased large spectroscopic surveys of galaxies selected by SPICA using
dust bands. _Publ. Astron. Soc. Aust._ 34, e059 (2017). ADS Google Scholar * Kaneda, H., Onaka, T. & Sakon, I. Detection of PAH emission features from nearby elliptical galaxies with
the Spitzer Infrared Spectrograph. _Astrophys. J._ 632, L83–L86 (2005). ADS Google Scholar * Kaneda, H. et al. Properties of polycyclic aromatic hydrocarbons in local elliptical galaxies
revealed by the Infrared Spectrograph on Spitzer. _Astrophys. J._ 684, 270–281 (2008). ADS Google Scholar * Vega, O. et al. Unusual PAH emission in nearby early-type galaxies: a signature
of an intermediate-age stellar population? _Astrophys. J._ 721, 1090–1104 (2010). ADS Google Scholar * Irwin, J. A. & Madden, S. C. Discovery of PAHs in the halo of NGC 5907. _Astron.
Astrophys._ 445, 123–141 (2005). ADS Google Scholar * Engelbracht, C. W. et al. Extended mid-infrared aromatic feature emission in M82. _Astrophys. J._ 642, 127–132 (2006). ADS Google
Scholar * Beirão, P. et al. Spatially resolved Spitzer-IRS spectral maps of the superwind in M82. _Mon. Not. R. Astron. Soc._ 451, 2640–2655 (2015). ADS Google Scholar * Yamagishi, M. et
al. AKARI near-infrared spectroscopy of the aromatic and aliphatic hydrocarbon emission features in the galactic superwind of M82. _Astron. Astrophys._ 541, A10 (2012). Google Scholar *
Schutte, W. A., Tielens, A. G. G. M. & Allamandola, L. J. Theoretical modeling of the infrared fluorescence from interstellar polycyclic aromatic hydrocarbons. _Astrophys. J._ 415,
397–414 (1993). ADS Google Scholar * Bernstein, M. P., Sandford, S. A. & Allamandola, L. J. Hydrogenated polycyclic aromatic hydrocarbons and the 2940 and 2850 wavenumber (3.40 and
3.51 μm) infrared emission features. _Astrophys. J._ 472, L127–L130 (1996). ADS Google Scholar * Sandford, S. A. The infrared spectra of polycyclic aromatic hydrocarbons with excess
peripheral H atoms (H_n_-PAHs) and their relation to the 3.4 and 6.9 μm PAH emission features. _Astrophys. J. Suppl._ 205, 8 (2013). ADS Google Scholar * Steglich, M. et al. The abundances
of hydrocarbon functional groups in the interstellar medium inferred from laboratory spectra of hydrogenated and methylated polycyclic aromatic hydrocarbons. _Astrophys. J. Suppl._ 208, 26
(2013). ADS Google Scholar * Yang, X. J., Li, A. & Glaser, R. Superhydrogenated polycyclic aromatic hydrocarbon molecules: vibrational spectra in the infrared. _Astrophys. J. Suppl_.
247, 1 (2020). * Baker, J. R., Allamandola, L. J. & Tielens, A. G. G. M. Anharmonicity and the interstellar polycyclic aromatic hydrocarbon infrared emission spectrum. _Astrophys. J._
315, L61–L65 (1987). ADS Google Scholar * Maltseva, E. et al. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 μm region: role of periphery.
_Astrophys. J. Suppl._ 831, 58 (2016). ADS Google Scholar * Li, A. & Draine, B. T. The carriers of the interstellar unidentified infrared emission features: aromatic or aliphatic?
_Astrophys. J._ 760, L35 (2012). ADS Google Scholar * Yang, X. J., Glaser, R., Li, A. & Zhong, J. X. The carriers of the interstellar unidentified infrared emission features:
constraints from the interstellar C–H stretching features at 3.2–35 μm. _Astrophys. J._ 776, 110 (2013). ADS Google Scholar * Yang, X. J., Glaser, R., Li, A. & Zhong, J. X. The
carriers of the unidentified infrared emission features: clues from polycyclic aromatic hydrocarbons with aliphatic sidegroups. _New Astron. Rev._ 77, 1–22 (2016). ADS Google Scholar *
Yang, X. J., Glaser, R., Li, A. & Zhong, J. X. On the aliphatic versus aromatic content of the carriers of the ‘unidentified’ infrared emission features. _Mon. Not. R. Astron. Soc._ 462,
1551–1562 (2016). ADS Google Scholar * Micelotta, E. R., Jones, A. P. & Tielens, A. G. G. M. Polycyclic aromatic hydrocarbon processing in interstellar shocks. _Astron. Astrophys._
510, A36 (2010). ADS Google Scholar * Shannon, M. J., Peeters, E., Cami, J. & Blommaert, J. A. D. L. Polycyclic aromatic hydrocarbon emission toward the galactic bulge. _Astrophys. J._
855, 32 (2018). ADS Google Scholar * Rand, R. J., Wood, K. & Benjamin, R. A. Infrared spectroscopy of the diffuse ionized halo of NGC 891. _Astrophys. J._ 680, 263–275 (2008). ADS
Google Scholar * Sanders, D. B. & Mirabel, I. F. Luminous infrared galaxies. _Annu. Rev. Astron. Astrophys._ 34, 749–792 (1996). ADS Google Scholar * Higdon, S. J., Higdon, J. L.
& Marshall, J. First detection of PAHs and warm molecular hydrogen in tidal dwarf galaxies. _Astrophys. J._ 640, 768–783 (2006). ADS Google Scholar * Haan, S. et al. Spitzer IRS
spectral mapping of the Toomre sequence: spatial variations of PAH, gas, and dust properties in nearby major mergers. _Astrophys. J. Suppl._ 197, 27 (2011). ADS Google Scholar * Murata, K.
L. et al. A relationship of polycyclic aromatic hydrocarbon features with galaxy merger in star-forming galaxies at _z_ < 0.2. _Mon. Not. R. Astron. Soc._ 472, 39–50 (2017). ADS Google
Scholar * Onaka, T. et al. Near-infrared to mid-infrared observations of galaxy mergers: NGC 2782 and NGC 7727. _Astrophys. J._ 853, 31 (2018). ADS Google Scholar * Voit, G. M.
Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies. _Mon. Not. R. Astron. Soc._ 258, 841–848 (1992). ADS Google Scholar * Siebenmorgen, R., Krügel, E. &
Spoon, H. W. W. Mid-infrared emission of galactic nuclei. TIMMI2 versus ISO observations and models. _Astron. Astrophys._ 414, 123–139 (2004). ADS Google Scholar * Roche, P. F., Aitken, D.
K., Smith, C. H. & Ward, M. J. An atlas of mid-infrared spectra of galaxy nuclei. _Mon. Not. R. Astron. Soc._ 248, 606–629 (1991). ADS Google Scholar * Genezel, R. et al. What powers
ultraluminous IRAS galaxies? _Astrophys. J._ 498, 579–605 (1998). ADS Google Scholar * Esquej, C. W. et al. Nuclear star formation activity and black hole accretion in nearby Seyfert
galaxies. _Astrophys. J._ 780, 86–100 (2014). ADS Google Scholar * Jensen, J. J. et al. PAH features within few hundred parsecs of active galactic nuclei. _Mon. Not. R. Astron. Soc._ 470,
3071–3094 (2017). ADS Google Scholar * Tommasin, S. et al. Spitzer-IRS high-resolution spectroscopy of the 12 μm Seyfert galaxies. II. Results for the complete data set. _Astrophys. J._
709, 1257–1283 (2010). ADS Google Scholar * Murata, K. L. et al. Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the COSMOS field. _Astrophys. J._ 786, 15 (2014).
ADS Google Scholar * Maragkoudakis, A. et al. PAHs and star formation in the H ii regions of nearby galaxies M83 and M33. _Mon. Not. R. Astron. Soc._ 481, 5370–5393 (2018). ADS Google
Scholar * O’Dowd, M. J. et al. Polycyclic aromatic hydrocarbons in galaxies at _z_ ~ 0.1: the effect of star formation and active galactic nuclei. _Astrophys. J._ 705, 885–898 (2009). ADS
Google Scholar * Diamond-Stanic, A. M. & Rieke, G. H. The effect of active galactic nuclei on the mid-infrared aromatic features. _Astrophys. J._ 724, 140–153 (2010). ADS Google
Scholar * Wu, Y. et al. Infrared luminosities and aromatic features in the 24 μm flux-limited sample of 5MUSES. _Astrophys. J._ 723, 895–914 (2010). ADS Google Scholar * Allamandola, L.
J., Hudgins, D. M. & Sandford, S. A. Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons. _Astrophys. J._ 511, L115–L119 (1999). ADS Google
Scholar * Bauschlicher, C. W., Ricca, A., Boersma, C. & Allamandola, L. J. The NASA Ames PAH IR spectroscopic database: computational version 3.00 with updated content and the
introduction of multiple scaling factors. _Astrophys. J. Suppl._ 234, 32 (2018). ADS Google Scholar * Galliano, F., Madden, S. C., Tielens, A. G. G. M., Peeters, E. & Jones, A. P.
Variations of the mid-IR aromatic features inside and among galaxies. _Astrophys. J._ 679, 310–345 (2008). ADS Google Scholar * Mattioda, A. L., Hudgins, D. M., Bauschlicher, C. W., Rosi,
M. & Allamandola, L. J. Infrared spectroscopy of matrix-isolated polycyclic aromatic compounds and their ions. 6. Polycyclic aromatic nitrogen heterocycles. _J. Phys. Chem. A_ 107,
1486–1498 (2003). Google Scholar * Mattioda, A. L. et al. Infrared spectroscopy of matrix-isolated neutral polycyclic aromatic nitrogen heterocycles: the acridine series. _Spectrochim. Acta
A_ 181, 286–308 (2017). ADS Google Scholar * Thuan, T. X., Sauvage, M. & Madden, S. Dust in an extremely metal-poor galaxy: mid-infrared observations of SBS 0335−052. _Astrophys. J._
516, 783–787 (1999). ADS Google Scholar * Houck, J. R. et al. The extraordinary mid-infrared spectrum of the blue compact dwarf galaxy SBS 0335−052. _Astrophys. J. Suppl._ 154, 211–214
(2004). ADS Google Scholar * Madden, S. C., Galliano, F., Jones, A. P. & Sauvage, M. ISM properties in low-metallicity environments. _Astron. Astrophys._ 446, 877–896 (2006). ADS
Google Scholar * Wu, Y. et al. Mid-infrared properties of low-metallicity blue compact dwarf galaxies from the Spitzer Infrared Spectrograph. _Astrophys. J._ 639, 157–172 (2006). ADS
Google Scholar * Hunt, L. K., Thuan, T. X., Izotov, Y. I. & Sauvage, M. The Spitzer view of low-metallicity star formation. III. Fine-structure lines, aromatic features, and molecules.
_Astrophys. J._ 712, 164–187 (2010). ADS Google Scholar * Engelbracht, C. W. et al. Metallicity effects on mid-infrared colors and the 8 μm PAH emission in galaxies. _Astrophys. J._ 628,
29–32 (2005). ADS Google Scholar * Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. _Astrophys. J._ 663, 866–894 (2007). ADS Google
Scholar * Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. _Annu. Rev. Astron. Astrophys._ 47, 481–522 (2009). ADS Google Scholar * Gordon, K.
D. et al. The behavior of the aromatic features in M101 H ii regions: evidence for dust processing. _Astrophys. J._ 682, 336–354 (2008). ADS Google Scholar * Wu, R., Hogg, D. W. &
Moustakas, J. The aromatic features in very faint dwarf galaxies. _Astrophys. J._ 730, 111 (2011). ADS Google Scholar * Seok, J. Y., Hirashita, H. & Asano, R. S. Formation history of
polycyclic aromatic hydrocarbons in galaxies. _Mon. Not. R. Astron. Soc._ 439, 2186–2196 (2014). ADS Google Scholar * Galliano, F., Dwek, E. & Chanial, P. Stellar evolutionary effects
on the abundances of polycyclic aromatic hydrocarbons and supernova-condensed dust in galaxies. _Astrophys. J._ 672, 214–243 (2008). ADS Google Scholar * Shivaei, I. et al. The MOSDEF
survey: Metallicity dependence of PAH emission at high redshift and implications for 24 μm inferred IR luminosities and star formation rates at _z_ ~ 2. _Astrophys. J._ 837, 157 (2017). ADS
Google Scholar * Jackson, D. C. et al. Hot dust and polycyclic aromatic hydrocarbon emission at low metallicity: a Spitzer survey of Local Group and other nearby dwarf galaxies.
_Astrophys. J._ 646, 192–204 (2006). ADS Google Scholar * Tappe, A., Rho, J. & Reach, W. T. Shock processing of interstellar dust and polycyclic aromatic hydrocarbons in the supernova
remnant N132D. _Astrophys. J._ 653, 267–279 (2006). ADS Google Scholar * Seok, J. Y., Koo, B.-C. & Onaka, T. Detection of the 3.3 μm aromatic feature in the supernova remnant N49 with
AKARI. _Astrophys. J._ 744, 160 (2012). ADS Google Scholar * Andersen, M. et al. Dust processing in supernova remnants: Spitzer MIPS spectral energy distribution and Infrared Spectrograph
observations. _Astrophys. J._ 742, 7 (2011). ADS Google Scholar * Andrews, H. et al. PAH emission at the bright locations of PDRs: the grand PAH hypothesis. _Mon. Not. R. Astron. Soc._
807, 99 (2015). Google Scholar * Kwok, S. & Zhang, Y. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. _Nature_ 479, 80–83 (2011).
ADS Google Scholar * Salama, F., Joblin, C. & Allamandola, L. J. Neutral and ionized PAHs: contribution to the interstellar extinction. _Planet. Space Sci._ 43, 1165–1173 (1995). ADS
Google Scholar * Clayton, G. C. et al. The role of polycyclic aromatic hydrocarbons in ultraviolet extinction. I. Probing small molecular polycyclic aromatic hydrocarbons. _Astrophys. J._
592, 947–952 (2003). ADS Google Scholar * Buss, R. H., Tielens, A. G. G. M. & Snow, T. P. The mid-infrared spectrum of the carbon star HD 38218 and its possible relation to polycyclic
aromatic hydrocarbons. _Astrophys. J._ 372, 281–290 (1991). ADS Google Scholar * Speck, A. K. & Barlow, M. J. UIR bands in carbon star spectra. _Astrophys. Space. Sci._ 251, 115–121
(1997). ADS Google Scholar * Boersma, C., Hony, S. & Tielens, A. G. G. M. UIR bands in the ISO SWS spectrum of the carbon star TU Tauri. _Astron. Astrophys._ 447, 213–220 (2006). ADS
Google Scholar * Sloan, G. C. et al. The unusual hydrocarbon emission from the early carbon star HD 100764: the connection between aromatics and aliphatics. _Astrophys. J._ 664, 1144–1153
(2007). ADS Google Scholar * Li, A. & Draine, B. T. Do the infrared emission features need ultraviolet excitation? The polycyclic aromatic hydrocarbon model in UV-poor reflection
nebulae. _Astrophys. J._ 572, 232–237 (2002). ADS Google Scholar * Mattioda, A. L., Hudgins, D. M. & Allamandola, L. J. Experimental near-infrared spectroscopy of polycyclic aromatic
hydrocarbons between 0.7 and 2.5 μm. _Astrophys. J._ 629, 1188–1210 (2005). ADS Google Scholar * Uchida, K. I., Sellgren, K. & Werner, M. W. Do the infrared emission features need
ultraviolet excitation? _Astrophys. J._ 493, L109–L112 (1998). ADS Google Scholar * Jura, M. et al. Polycyclic aromatic hydrocarbons orbiting HD 233517, an evolved oxygen-rich red giant.
_Astrophys. J._ 637, L45–L47 (2006). ADS Google Scholar * Sandstrom, K. M. et al. The Spitzer survey of the Small Magellanic Cloud (S3MC): insights into the life cycle of polycyclic
aromatic hydrocarbons. _Astrophys. J._ 715, 701–723 (2010). ADS Google Scholar * Paradis, D. et al. Spatial variations of dust abundances across the Large Magellanic Cloud. _Astron. J._
138, 196–209 (2009). ADS Google Scholar * Lau, R. M., Werner, M. W., Sahai, R. & Ressler, M. E. Evidence from SOFIA imaging of polycyclic aromatic hydrocarbon formation along a recent
outflow in NGC 7027. _Astrophys. J._ 833, 115 (2016). ADS Google Scholar * Xie, Y., Ho, L. C., Li, A. & Shangguan, J. Y. The widespread presence of nanometer-size dust grains in the
interstellar medium of galaxies. _Astrophys. J._ 867, 91 (2018). ADS Google Scholar * Kwok, S., Volk, K. & Bernath, P. On the origin of infrared plateau features in proto-planetary
nebulae. _Astrophys. J._ 554, L87–L90 (2001). ADS Google Scholar * Uchida, K. I., Sellgren, K., Werner, M. W. & Houdashelt, M. L. Infrared Space Observatory mid-infrared spectra of
reflection nebulae. _Astrophys. J._ 530, 817–833 (2000). ADS Google Scholar * Rapacioli, M., Joblin, C. & Boissel, P. Spectroscopy of polycyclic aromatic hydrocarbons and very small
grains in photodissociation regions. _Astron. Astrophys._ 429, 193–204 (2005). ADS Google Scholar * Peeters, E. et al. The PAH emission characteristics of the reflection nebula NGC 2023.
_Astrophys. J._ 836, 198 (2017). ADS Google Scholar * Xie, Y., Ho, L. C., Li, A. & Shangguan, J. Y. A New technique for measuring polycyclic aromatic hydrocarbon emission in different
environments. _Astrophys. J._ 860, 154 (2018). ADS Google Scholar * Cruz-Diaz, G. A. et al. PAH products and processing by different energy sources. _Astrophys. J._ 882, 44 (2019). ADS
Google Scholar * An, J. H. & Sellgren, K. Spatial separation of the 3.29 μm emission feature and associated 2 μm continuum in NGC 7023. _Astrophys. J._ 599, 312–323 (2003). ADS Google
Scholar * Geballe, T. R. et al. Detection of the overtone of the 3.3 μm emission feature in IRAS 21282+5050. _Astrophys. J_. 434, L15–L18 (1994). * Chen, T., Luo, Y. & Li, A. The
infrared bands of polycyclic aromatic hydrocarbons in the 1.6–17 μm wavelength region. _Astron. Astrophys_. 632, A71 (2019). * Draine, B. T. Can dust explain variations in the D/H ratio?
_ASP Conf. Ser._ 348, 58–69 (2006). ADS Google Scholar * Peeters, E. et al. Deuterated interstellar polycyclic aromatic hydrocarbons. _Astrophys. J._ 604, 252–257 (2004). ADS Google
Scholar * Onaka, T. et al. Search for the infrared emission features from deuterated interstellar polycyclic aromatic hydrocarbons. _Astrophys. J._ 780, 114 (2014). ADS Google Scholar *
Doney, K. D., Candian, A., Mori, T., Onaka, T. & Tielens, A. G. G. M. Deuterated polycyclic aromatic hydrocarbons: revisited. _Astron. Astrophys._ 586, 65–74 (2016). ADS Google Scholar
* Peeters, E., Tielens, A. G. G. M., Boogert, A. C. A., Hayward, T. L. & Allamandola, L. J. The prominent dust emission feature near 8.9 μm in four H ii regions. _Astrophys. J._ 620,
774–785 (2005). ADS Google Scholar * Verstraete, L. et al. The aromatic infrared bands as seen by ISO-SWS: probing the PAH model. _Astron. Astrophys._ 372, 981–997 (2001). ADS Google
Scholar * van Diedenhoven, B. et al. The profiles of the 3–12 μm polycyclic aromatic hydrocarbon features. _Astron. Astrophys._ 611, 928–939 (2004). Google Scholar * Schütz, O., Meeus, G.,
Sterzik, M. F. & Peeters, E. Mid-IR observations of circumstellar disks. Part III. A mixed sample of PMS stars and Vega-type objects. _Astron. Astrophys._ 507, 261–276 (2009). ADS
Google Scholar * Sloan, G. C. et al. Mid-infrared spectra of polycyclic aromatic hydrocarbon emission in Herbig Ae/Be stars. _Astrophys. J._ 632, 956–963 (2005). ADS Google Scholar *
Ingalls, J. G. et al. Spitzer Infrared Spectrograph detection of molecular hydrogen rotational emission towards translucent clouds. _Astrophys. J._ 743, 174 (2011). ADS Google Scholar *
Mathis, J. S., Mezger, P. G. & Panagia, N. Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. _Astron. Astrophys._ 128,
212–229 (1983). ADS Google Scholar * Berné, O. & Tielens, A. G. G. M. Formation of buckminsterfullerene (C60) in interstellar space. _Proc. Natl Acad. Sci. USA_ 109, 401–406 (2012).
ADS Google Scholar * García-Hernández, D. A. et al. The formation of fullerenes: clues from new C60, C70, and (possible) planar C24 detections in Magellanic Cloud planetary nebulae.
_Astrophys. J._ 737, L30 (2011). ADS Google Scholar * Li, Q., Li, A. & Jiang, B. W. How much graphene in space? _Mon. Not. R. Astron. Soc._ 490, 3875–3881 (2019). ADS Google Scholar
* Chen, T. & Li, A. Synthesizing carbon nanotubes in space. _Astron. Astrophys._ 631, A54 (2019). ADS Google Scholar * Derenne, S. & Robert, F. Model of molecular structure of the
insoluble organic matter isolated from Murchison meteorite. _Meteorit. Planet. Sci._ 45, 1461–1475 (2010). ADS Google Scholar Download references ACKNOWLEDGEMENTS I dedicate this article
to the 60th anniversary of the Department of Astronomy of Beijing Normal University, the 2nd astronomy programme in the modern history of China. I thank B. T. Draine, L. C. Ho, M. Karouzos
and X. J. Yang for useful comments and suggestions. I thank L. Armus, P. Beirão, J. G. Ingalls, H. Kaneda, D. Lutz, K. Mattila, D. A. Riechers, B. Siana, O. Vega, M. Yamagishi and L. Yan for
providing the PAH spectra shown in Figs. 1–4. This work is supported in part by NASA grants 80NSSC19K0572 and 80NSSC19K0701. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of
Physics and Astronomy, University of Missouri, Columbia, MO, USA Aigen Li Authors * Aigen Li View author publications You can also search for this author inPubMed Google Scholar
CORRESPONDING AUTHOR Correspondence to Aigen Li. ETHICS DECLARATIONS COMPETING INTERESTS The author declares no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature
remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE
Li, A. Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies. _Nat Astron_ 4, 339–351 (2020). https://doi.org/10.1038/s41550-020-1051-1 Download citation * Received: 27
November 2019 * Accepted: 17 February 2020 * Published: 23 March 2020 * Issue Date: April 2020 * DOI: https://doi.org/10.1038/s41550-020-1051-1 SHARE THIS ARTICLE Anyone you share the
following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer
Nature SharedIt content-sharing initiative
Trending News
Farms can claim £20,000 each for flood repairs, defra says - farmers weekly© FLPA/REX Shutterstock Flood-hit farmers in north-west England will be able to claim up to £20,000 to help restore dama...
Channelnews : microsoft takes on apple, google with mobile games app storeMicrosoft is planning to launch a new app store for games on both iPhones and Android smartphones – as long as its A$100...
Surge in imported dengue fever cases to france from overseasTHERE ARE CONCERNS THAT TIGER MOSQUITOES WILL SPREAD THE DISEASE WITHIN THE COUNTRY There have been 500 cases of dengue ...
Princess charlotte: how kate makes sure her daughter stand outAs the Duchess of Cambridge walked her daughter to class on her first day, a small, sparkly unicorn keyring could be spo...
Tories must u-turn on loans sending families into energy debt — scottish national partyCONTACT Scottish National Party Gordon Lamb House 3 Jackson's Entry Edinburgh, Scotland EH8 8PJ tel: 0800 633 5432 ...
Latests News
Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxiesABSTRACT Polycyclic aromatic hydrocarbon (PAH) molecules are abundant and widespread throughout the Universe, as reveale...
Adjusting your vehicle’s head restraints - driver safetyMemorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4 G...
Why the quest for a single currency for west africa won’t materialise soonIt’s been nearly two decades since the idea of a single currency for West Africa was first mooted. Yet the sub-region is...
Fir filed against covid-19 positive singer kanika kapoor for negligence - scoopwhoopSinger Kanika Kapoor recently tested positive for Covid-19 after returning from London. However, instead of quarantining...
Volunteer with aarp driver safetyMANY ADDITIONAL VOLUNTEER OPPORTUNITIES ARE AVAILABLE Do you have a background in marketing or are you good at organizin...