Enhanced cognitive flexibility and phasic striatal dopamine dynamics in a mouse model of low striatal tonic dopamine

Nature

Enhanced cognitive flexibility and phasic striatal dopamine dynamics in a mouse model of low striatal tonic dopamine"


Play all audios:

Loading...

ABSTRACT The catecholamine neuromodulators dopamine and norepinephrine are implicated in motor function, motivation, and cognition. Although roles for striatal dopamine in these aspects of


behavior are well established, the specific roles for cortical catecholamines in regulating striatal dopamine dynamics and behavior are less clear. We recently showed that elevating cortical


dopamine but not norepinephrine suppresses hyperactivity in dopamine transporter knockout (DAT-KO) mice, which have elevated striatal dopamine levels. In contrast, norepinephrine


transporter knockout (NET-KO) mice have a phenotype distinct from DAT-KO mice, as they show elevated extracellular cortical catecholamines but reduced baseline striatal dopamine levels. Here


we evaluated the consequences of altered catecholamine levels in NET-KO mice on cognitive flexibility and striatal dopamine dynamics. In a probabilistic reversal learning task, NET-KO mice


showed enhanced reversal learning, which was consistent with larger phasic dopamine transients (dLight) in the dorsomedial striatum (DMS) during reward delivery and reward omission, compared


to WT controls. Selective depletion of dorsal medial prefrontal cortex (mPFC) norepinephrine in WT mice did not alter performance on the reversal learning task but reduced nestlet


shredding. Surprisingly, NET-KO mice did not show altered breakpoints in a progressive ratio task, suggesting intact food motivation. Collectively, these studies show novel roles of cortical


catecholamines in the regulation of tonic and phasic striatal dopamine dynamics and cognitive flexibility, updating our current views on dopamine regulation and informing future therapeutic


strategies to counter multiple psychiatric disorders. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Subscribe to this journal Receive 13 print issues and online access $259.00 per year only $19.92 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DISTINCT ROLES FOR DOPAMINE CLEARANCE MECHANISMS IN REGULATING BEHAVIORAL


FLEXIBILITY Article Open access 30 June 2021 THE EFFECT OF SELECTIVE NIGROSTRIATAL DOPAMINE EXCESS ON BEHAVIORS LINKED TO THE COGNITIVE AND NEGATIVE SYMPTOMS OF SCHIZOPHRENIA Article 15


November 2022 LASTING DYNAMIC EFFECTS OF THE PSYCHEDELIC 2,5-DIMETHOXY-4-IODOAMPHETAMINE ((±)-DOI) ON COGNITIVE FLEXIBILITY Article Open access 07 February 2024 DATA AVAILABILITY All data


related to this manuscript are stored on a University of Florida OneDrive or Dropbox account and will be made available upon request. REFERENCES * Schultz W. Getting formal with dopamine and


reward. Neuron. 2002;36:241–63. Article  CAS  PubMed  Google Scholar  * Palmiter RD. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from


dopamine-deficient mice. Ann N Y Acad Sci. 2008;1129:35–46. https://doi.org/10.1196/annals.1417.003. Article  CAS  PubMed  PubMed Central  Google Scholar  * Cox J, Witten IB. Striatal


circuits for reward learning and decision-making. Nat Rev Neurosci. 2019;20:482–94. https://doi.org/10.1038/s41583-019-0189-2. Article  CAS  PubMed  PubMed Central  Google Scholar  * Aarts


E, van Holstein M, Cools R. Striatal Dopamine and the Interface between Motivation and Cognition. Front Psychol. 2011;2:163 https://doi.org/10.3389/fpsyg.2011.00163. Article  PubMed  PubMed


Central  Google Scholar  * Sulzer D. How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron. 2011;69:628–49. https://doi.org/10.1016/j.neuron.2011.02.010. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Abi-Dargham A. From “bedside” to “bench” and back: A translational approach to studying dopamine dysfunction in schizophrenia. Neurosci Biobehav


Rev. 2018. https://doi.org/10.1016/j.neubiorev.2018.12.003. * Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and


Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20:415–55. Article  CAS  PubMed  Google Scholar  * Hitchcott PK, Quinn JJ, Taylor JR. Bidirectional


modulation of goal-directed actions by prefrontal cortical dopamine. Cereb Cortex. 2007;17:2820–7. https://doi.org/10.1093/cercor/bhm010. Article  PubMed  Google Scholar  * Barker JM,


Torregrossa MM, Taylor JR. Bidirectional modulation of infralimbic dopamine D1 and D2 receptor activity regulates flexible reward seeking. Front Neurosci. 2013;7:126


https://doi.org/10.3389/fnins.2013.00126. Article  PubMed  PubMed Central  Google Scholar  * Natsheh JY, Shiflett MW. Dopaminergic Modulation of Goal-Directed Behavior in a Rodent Model of


Attention-Deficit/Hyperactivity Disorder. Front Integr Neurosci. 2018;12:45 https://doi.org/10.3389/fnint.2018.00045. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ahmari SE,


Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science. 2013;340:1234–9.


https://doi.org/10.1126/science.1234733. * Burguiere E, Monteiro P, Feng G, Graybiel AM. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors.


Science. 2013;340:1243–6. https://doi.org/10.1126/science.1232380. * Dalton GL, Wang NY, Phillips AG, Floresco SB. Multifaceted Contributions by Different Regions of the Orbitofrontal and


Medial Prefrontal Cortex to Probabilistic Reversal Learning. J Neurosci. 2016;36:1996–2006. https://doi.org/10.1523/JNEUROSCI.3366-15.2016. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Gremel CM, Costa RM. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun. 2013;4:2264


https://doi.org/10.1038/ncomms3264. Article  CAS  PubMed  Google Scholar  * Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI. Dopamine axon varicosities in the prelimbic division of the


rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci. 1998;18:2697–708. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ciliax BJ, Heilman


C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM, et al. The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci. 1995;15:1714–23. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Lammel S, Hetzel A, Häckel O, Jones I, Liss B, Roeper J. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine


system. Neuron. 2008;57:760–73. https://doi.org/10.1016/j.neuron.2008.01.022. Article  CAS  PubMed  Google Scholar  * Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake


through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002;22:389–95. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants.


Nat Neurosci. 2000;3:465–71. https://doi.org/10.1038/74839. Article  CAS  PubMed  Google Scholar  * Tanda G, Carboni E, Frau R, Di Chiara G. Increase of extracellular dopamine in the


prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology. 1994;115:285–8. https://doi.org/10.1007/BF02244785. Article  CAS  PubMed  Google Scholar  * Harris SS,


Green SM, Kumar M, Urs NM. A role for cortical dopamine in the paradoxical calming effects of psychostimulants. Sci Rep. 2022;12:3129 https://doi.org/10.1038/s41598-022-07029-2. Article  CAS


  PubMed  PubMed Central  Google Scholar  * Markou A, Kosten TR, Koob GF. Neurobiological similarities in depression and drug dependence: a self-medication hypothesis.


Neuropsychopharmacology. 1998;18:135–74. https://doi.org/10.1016/S0893-133X(97)00113-9. Article  CAS  PubMed  Google Scholar  * Amara SG, Kuhar MJ. Neurotransmitter transporters: recent


progress. Annu Rev Neurosci. 1993;16:73–93. https://doi.org/10.1146/annurev.ne.16.030193.000445. Article  CAS  PubMed  Google Scholar  * Shang CY, Lin HY, Gau SS. The norepinephrine


transporter gene modulates intrinsic brain activity, visual memory, and visual attention in children with attention-deficit/hyperactivity disorder. Mol Psychiatry. 2021;26:4026–35.


https://doi.org/10.1038/s41380-019-0545-7. Article  CAS  PubMed  Google Scholar  * Aggarwal S, Mortensen OV. Overview of Monoamine Transporters. Curr Protoc Pharm. 2017;79:12 16 11–12 16 17.


https://doi.org/10.1002/cpph.32. Article  Google Scholar  * Gainetdinov RR, Sotnikova TD, Caron MG. Monoamine transporter pharmacology and mutant mice. Trends Pharmacol Sci. 2002;23:367–73.


Article  CAS  PubMed  Google Scholar  * Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci. 2003;4:13–25.


https://doi.org/10.1038/nrn1008. Article  CAS  PubMed  Google Scholar  * Wang YM, Xu F, Gainetdinov RR, Caron MG. Genetic approaches to studying norepinephrine function: knockout of the


mouse norepinephrine transporter gene. Biol Psychiatry. 1999;46:1124–30. https://doi.org/10.1016/s0006-3223(99)00245-0. Article  CAS  PubMed  Google Scholar  * Belfer I, Phillips G, Taubman


J, Hipp H, Lipsky RH, Enoch MA, et al. Haplotype architecture of the norepinephrine transporter gene SLC6A2 in four populations. J Hum Genet. 2004;49:232–45.


https://doi.org/10.1007/s10038-004-0140-9. Article  CAS  PubMed  Google Scholar  * Klimek V, Stockmeier C, Overholser J, Meltzer HY, Kalka S, Dilley G, et al. Reduced levels of


norepinephrine transporters in the locus coeruleus in major depression. J Neurosci. 1997;17:8451–8. https://doi.org/10.1523/JNEUROSCI.17-21-08451.1997. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Asp Med. 2013;34:197–219.


https://doi.org/10.1016/j.mam.2012.07.002. Article  CAS  Google Scholar  * Buttenschøn HN, Kristensen AS, Buch HN, Andersen JH, Bonde JP, Grynderup M, et al. The norepinephrine transporter


gene is a candidate gene for panic disorder. J Neural Transm. 2011;118:969–76. https://doi.org/10.1007/s00702-011-0624-7. Article  CAS  PubMed  Google Scholar  * Nemoda Z, Angyal N, Tarnok


Z, Birkas E, Bognar E, Sasvari-Szekely M, et al. Differential Genetic Effect of the Norepinephrine Transporter Promoter Polymorphisms on Attention Problems in Clinical and Non-clinical


Samples. Front Neurosci. 2018;12:1051 https://doi.org/10.3389/fnins.2018.01051. Article  PubMed  Google Scholar  * Seu E, Jentsch JD. Effect of acute and repeated treatment with desipramine


or methylphenidate on serial reversal learning in rats. Neuropharmacology. 2009;57:665–72. https://doi.org/10.1016/j.neuropharm.2009.08.007. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Altidor LK, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, et al. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem. 2021;184:107498


https://doi.org/10.1016/j.nlm.2021.107498. Article  PubMed  PubMed Central  Google Scholar  * Seu E, Lang A, Rivera RJ, Jentsch JD. Inhibition of the norepinephrine transporter improves


behavioral flexibility in rats and monkeys. Psychopharmacology. 2009;202:505–19. https://doi.org/10.1007/s00213-008-1250-4. Article  CAS  PubMed  Google Scholar  * Lapiz MD, Bondi CO,


Morilak DA. Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test. Neuropsychopharmacology. 2007;32:1000–10.


https://doi.org/10.1038/sj.npp.1301235. Article  CAS  PubMed  Google Scholar  * Tait DS, Brown VJ, Farovik A, Theobald DE, Dalley JW, Robbins TW. Lesions of the dorsal noradrenergic bundle


impair attentional set-shifting in the rat. Eur J Neurosci. 2007;25:3719–24. https://doi.org/10.1111/j.1460-9568.2007.05612.x. Article  PubMed  Google Scholar  * McGaughy J, Ross RS,


Eichenbaum H. Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience. 2008;153:63–71.


https://doi.org/10.1016/j.neuroscience.2008.01.064. Article  CAS  PubMed  Google Scholar  * Cerpa JC, Piccin A, Dehove M, Lavigne M, Kremer EJ, Wolff M et al. Inhibition of noradrenergic


signalling in rodent orbitofrontal cortex impairs the updating of goal-directed actions. Elife. 2023;12. https://doi.org/10.7554/eLife.81623. * Sadacca BF, Wikenheiser AM, Schoenbaum G.


Toward a theoretical role for tonic norepinephrine in the orbitofrontal cortex in facilitating flexible learning. Neuroscience. 2017;345:124–9.


https://doi.org/10.1016/j.neuroscience.2016.04.017. Article  CAS  PubMed  Google Scholar  * Bissonette GB, Powell EM. Reversal learning and attentional set-shifting in mice.


Neuropharmacology. 2012;62:1168–74. https://doi.org/10.1016/j.neuropharm.2011.03.011. Article  CAS  PubMed  Google Scholar  * Izquierdo A, Wiedholz LM, Millstein RA, Yang RJ, Bussey TJ,


Saksida LM, et al. Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav Brain Res. 2006;171:181–8.


https://doi.org/10.1016/j.bbr.2006.03.029. Article  CAS  PubMed  Google Scholar  * Floresco SB. Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family


of functions. Front Neurosci. 2013;7:62 https://doi.org/10.3389/fnins.2013.00062. Article  PubMed  PubMed Central  Google Scholar  * Bissonette GB, Roesch MR. Neurophysiology of rule


switching in the corticostriatal circuit. Neuroscience. 2017;345:64–76. https://doi.org/10.1016/j.neuroscience.2016.01.062. Article  CAS  PubMed  Google Scholar  * Clarke HF, Hill GJ,


Robbins TW, Roberts AC. Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus. J Neurosci. 2011;31:4290–7. https://doi.org/10.1523/JNEUROSCI.5066-10.2011.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ventura R, Alcaro A, Cabib S, Conversi D, Mandolesi L, Puglisi-Allegra S. Dopamine in the medial prefrontal cortex controls


genotype-dependent effects of amphetamine on mesoaccumbens dopamine release and locomotion. Neuropsychopharmacology. 2004;29:72–80. https://doi.org/10.1038/sj.npp.1300300. Article  CAS 


PubMed  Google Scholar  * Ventura R, Alcaro A, Mandolesi L, Puglisi-Allegra S. In vivo evidence that genetic background controls impulse-dependent dopamine release induced by amphetamine in


the nucleus accumbens. J Neurochem. 2004;89:494–502. https://doi.org/10.1111/j.1471-4159.2004.02342.x. Article  CAS  PubMed  Google Scholar  * Sokolowski JD, Salamone JD. Effects of dopamine


depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Res. 1994;642:20–28. https://doi.org/10.1016/0006-8993(94)90901-6. Article  CAS  PubMed 


Google Scholar  * Pycock CJ, Kerwin RW, Carter CJ. Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature. 1980;286:74–76. Article  CAS  PubMed 


Google Scholar  * Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal


learning task in rats. Neuropsychopharmacology. 2010;35:1290–301. https://doi.org/10.1038/npp.2009.233. Article  CAS  PubMed  PubMed Central  Google Scholar  * Bruno CA, O'Brien C,


Bryant S, Mejaes JI, Estrin DJ, Pizzano C, et al. pMAT: An open-source software suite for the analysis of fiber photometry data. Pharm Biochem Behav. 2021;201:173093


https://doi.org/10.1016/j.pbb.2020.173093. Article  CAS  Google Scholar  * Fischbach-Weiss S, Reese RM, Janak PH. Inhibiting Mesolimbic Dopamine Neurons Reduces the Initiation and


Maintenance of Instrumental Responding. Neuroscience. 2018;372:306–15. https://doi.org/10.1016/j.neuroscience.2017.12.003. Article  CAS  PubMed  Google Scholar  * Garman TS, Setlow B, Orsini


CA. Effects of a high-fat diet on impulsive choice in rats. Physiol Behav. 2021;229:113260 https://doi.org/10.1016/j.physbeh.2020.113260. Article  CAS  PubMed  Google Scholar  * Lustberg D,


Iannitelli AF, Tillage RP, Pruitt M, Liles LC, Weinshenker D. Central norepinephrine transmission is required for stress-induced repetitive behavior in two rodent models of


obsessive-compulsive disorder. Psychopharmacology. 2020;237:1973–87. https://doi.org/10.1007/s00213-020-05512-0. Article  CAS  PubMed  PubMed Central  Google Scholar  * Urs NM, Daigle TL,


Caron MG. A Dopamine D1 Receptor-Dependent beta-Arrestin Signaling Complex Potentially Regulates Morphine-Induced Psychomotor Activation but not Reward in Mice. Neuropsychopharmacology.


2011;36:551–8. https://doi.org/10.1038/Npp.2010.186. Article  CAS  PubMed  Google Scholar  * Dalton GL, Phillips AG, Floresco SB. Preferential involvement by nucleus accumbens shell in


mediating probabilistic learning and reversal shifts. J Neurosci. 2014;34:4618–26. https://doi.org/10.1523/JNEUROSCI.5058-13.2014. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of


rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27:699–711. https://doi.org/10.1016/S0893-133X(02)00346-9. Article  CAS 


PubMed  Google Scholar  * Gresch PJ, Sved AF, Zigmond MJ, Finlay JM. Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J Neurochem.


1995;65:111–6. Article  CAS  PubMed  Google Scholar  * Berke JD. What does dopamine mean? Nat Neurosci. 2018;21:787–93. https://doi.org/10.1038/s41593-018-0152-y. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Yin HH, Ostlund SB, Knowlton BJ, Balleine BW. The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci. 2005;22:513–23.


https://doi.org/10.1111/j.1460-9568.2005.04218.x. Article  PubMed  Google Scholar  * Grospe GM, Baker PM, Ragozzino ME. Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat


Dorsomedial Striatum. Neuroscience. 2018;374:80–90. https://doi.org/10.1016/j.neuroscience.2018.01.032. Article  CAS  PubMed  Google Scholar  * Shiflett MW, Balleine BW. Molecular substrates


of action control in cortico-striatal circuits. Prog Neurobiol. 2011;95:1–13. https://doi.org/10.1016/j.pneurobio.2011.05.007. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Giustino TF, Maren S. Noradrenergic Modulation of Fear Conditioning and Extinction. Front Behav Neurosci. 2018;12:43 https://doi.org/10.3389/fnbeh.2018.00043. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci.


2005;28:403–50. https://doi.org/10.1146/annurev.neuro.28.061604.135709. Article  CAS  PubMed  Google Scholar  * Dziedzicka-Wasylewska M, Faron-Górecka A, Kuśmider M, Drozdowska E, Rogóz Z,


Siwanowicz J, et al. Effect of antidepressant drugs in mice lacking the norepinephrine transporter. Neuropsychopharmacology. 2006;31:2424–32. https://doi.org/10.1038/sj.npp.1301064. Article


  CAS  PubMed  Google Scholar  * Moret C, Briley M. The importance of norepinephrine in depression. Neuropsychiatr Dis Treat. 2011;7:9–13,. https://doi.org/10.2147/NDT.S19619. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Dorninger F, Zeitler G, Berger J. Nestlet Shredding and Nest Building Tests to Assess Features of Psychiatric Disorders in Mice. Bio Protoc.


2020;10. https://doi.org/10.21769/BioProtoc.3863. * Spear DJ, Katz JL. Cocaine and food as reinforcers: effects of reinforcer magnitude and response requirement under second-order


fixed-ratio and progressive-ratio schedules. J Exp Anal Behav. 1991;56:261–75. https://doi.org/10.1901/jeab.1991.56-261. Article  CAS  PubMed  PubMed Central  Google Scholar  * Balleine BW,


O’Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology. 2010;35:48–69.


https://doi.org/10.1038/npp.2009.131. Article  PubMed  Google Scholar  * Arnsten AF, Pliszka SR. Catecholamine influences on prefrontal cortical function: relevance to treatment of attention


deficit/hyperactivity disorder and related disorders. Pharm Biochem Behav. 2011;99:211–6. https://doi.org/10.1016/j.pbb.2011.01.020. Article  CAS  Google Scholar  * Arnsten AF, Dudley AG.


Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit


Hyperactivity Disorder. Behav Brain Funct. 2005;1:2 https://doi.org/10.1186/1744-9081-1-2. Article  CAS  PubMed  PubMed Central  Google Scholar  * Goldman-Rakic PS. The cortical dopamine


system: role in memory and cognition. Adv Pharm. 1998;42:707–11. https://doi.org/10.1016/s1054-3589(08)60846-7. Article  CAS  Google Scholar  * Brennan BP, Tkachenko O, Schwab ZJ, Juelich


RJ, Ryan EM, Athey AJ, et al. An Examination of Rostral Anterior Cingulate Cortex Function and Neurochemistry in Obsessive-Compulsive Disorder. Neuropsychopharmacology. 2015;40:1866–76.


https://doi.org/10.1038/npp.2015.36. Article  CAS  PubMed  PubMed Central  Google Scholar  * Riffkin J, Yücel M, Maruff P, Wood SJ, Soulsby B, Olver J, et al. A manual and automated MRI


study of anterior cingulate and orbito-frontal cortices, and caudate nucleus in obsessive-compulsive disorder: comparison with healthy controls and patients with schizophrenia. Psychiatry


Res. 2005;138:99–113. https://doi.org/10.1016/j.pscychresns.2004.11.007. Article  PubMed  Google Scholar  * Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, et al. Phasic


firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324:1080–4. https://doi.org/10.1126/science.1168878. * Starkweather CK, Uchida N. Dopamine signals as


temporal difference errors: recent advances. Curr Opin Neurobiol. 2021;67:95–105. https://doi.org/10.1016/j.conb.2020.08.014. Article  CAS  PubMed  Google Scholar  * Wang Y, Toyoshima O,


Kunimatsu J, Yamada H, Matsumoto M. Tonic firing mode of midbrain dopamine neurons continuously tracks reward values changing moment-by-moment. Elife. 2021;10.


https://doi.org/10.7554/eLife.63166. * Solich J, Faron-Gorecka A, Kusmider M, Palach P, Gaska M, Dziedzicka-Wasylewska M. Norepinephrine transporter (NET) knock-out upregulates dopamine and


serotonin transporters in the mouse brain. Neurochem Int. 2011;59:185–91. https://doi.org/10.1016/j.neuint.2011.04.012. Article  CAS  PubMed  Google Scholar  * Richardson BD, Saha K, Krout


D, Cabrera E, Felts B, Henry LK, et al. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane. Nat Commun. 2016;7:10423


https://doi.org/10.1038/ncomms10423. Article  CAS  PubMed  PubMed Central  Google Scholar  * Cagniard B, Balsam PD, Brunner D, Zhuang X. Mice with chronically elevated dopamine exhibit


enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology. 2006;31:1362–70. https://doi.org/10.1038/sj.npp.1300966. Article  CAS  PubMed  Google Scholar  * Sommer S,


Danysz W, Russ H, Valastro B, Flik G, Hauber W. The dopamine reuptake inhibitor MRZ-9547 increases progressive ratio responding in rats. Int J Neuropsychopharmacol. 2014;17:2045–56.


https://doi.org/10.1017/S1461145714000996. Article  CAS  PubMed  Google Scholar  * Seiler JL, Cosme CV, Sherathiya VN, Schaid MD, Bianco JM, Bridgemohan AS, et al. Dopamine signaling in the


dorsomedial striatum promotes compulsive behavior. Curr Biol. 2022;32:1175–88.e1175. https://doi.org/10.1016/j.cub.2022.01.055. Article  CAS  PubMed  PubMed Central  Google Scholar  Download


references ACKNOWLEDGEMENTS We would like to thank Dr. Marc Caron for providing us with monoamine transporter knockout mice. We would also like to thank Dr. Stan Floresco (U of British


Columbia) for the Med-PC code for the reversal learning task and related advice. FUNDING This work was supported by a NIMH R21 (MH127377) and R01 (MH130778) grant (NMU) and NARSAD/BBRF Young


Investigator grant (NMU). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA Jena Delaney, Sanya


Nathani, Victor Tan, Carson Chavez, Alexander Orr, Joon Paek & Nikhil M. Urs * Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA Mojdeh Faraji & Barry


Setlow Authors * Jena Delaney View author publications You can also search for this author inPubMed Google Scholar * Sanya Nathani View author publications You can also search for this


author inPubMed Google Scholar * Victor Tan View author publications You can also search for this author inPubMed Google Scholar * Carson Chavez View author publications You can also search


for this author inPubMed Google Scholar * Alexander Orr View author publications You can also search for this author inPubMed Google Scholar * Joon Paek View author publications You can also


search for this author inPubMed Google Scholar * Mojdeh Faraji View author publications You can also search for this author inPubMed Google Scholar * Barry Setlow View author publications


You can also search for this author inPubMed Google Scholar * Nikhil M. Urs View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Jena Delaney


–performed experiments, analyzed data. Sanya Nathani - performed experiments. Victor Tan - performed experiments. Alex Orr - performed experiments. Carson Chavez - performed experiments.


Joon Paek – Analyzed data. Mojdeh Faraji – analyzed data. Barry Setlow - conceptualized experiments, wrote manuscript. Nikhil Urs - conceptualized experiments, performed experiments,


analyzed data, wrote manuscript CORRESPONDING AUTHOR Correspondence to Nikhil M. Urs. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL


INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTAL


FIGURES RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or


other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Delaney, J., Nathani, S., Tan, V. _et al._ Enhanced cognitive flexibility and phasic striatal dopamine dynamics in a mouse model of low


striatal tonic dopamine. _Neuropsychopharmacol._ 49, 1600–1608 (2024). https://doi.org/10.1038/s41386-024-01868-5 Download citation * Received: 20 February 2024 * Revised: 08 April 2024 *


Accepted: 12 April 2024 * Published: 02 May 2024 * Issue Date: September 2024 * DOI: https://doi.org/10.1038/s41386-024-01868-5 SHARE THIS ARTICLE Anyone you share the following link with


will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative


Trending News

Ryan kitson: caution, artist at play

The first words of the wall text for Ryan Kitson’s exhibit, “Suds Ur Duds/Fermentation Elastic”—at the Schneider Museum ...

Javascript support required...

How to lose weight fast with the best diet for weight loss

A study published in the Journal of the American College of Nutrition discovered a plant-based vegetarian diet beats a c...

The value of HPV vaccination | Nature Medicine

Access through your institution Buy or subscribe PERSISTENT INFECTION WITH HIGH-RISK TYPES OF HUMAN PAPILLOMAVIRUS (HPV)...

Thousands of refugees in greece displaced by fire

Fire destroyed much of Greece's largest refugee camp early Wednesday, displacing thousands of refugees and asylum-s...

Latests News

Enhanced cognitive flexibility and phasic striatal dopamine dynamics in a mouse model of low striatal tonic dopamine

ABSTRACT The catecholamine neuromodulators dopamine and norepinephrine are implicated in motor function, motivation, and...

China and germany: a balancing act

Chinese Premier Li Qiang came to Berlin with 10 of his Cabinet ministers, and was received by Germany's head of sta...

Tiki barber in conversation with jpmorgan chase: how to build a multigenerational wealth plan at black men xcel

by DEREK T. DINGLE October 21, 2020 ------------------------- In times of uncertainty, it is critical to know that your ...

Vascular endothelial growth factor polymorphisms and clinical outcome in patients with metastatic breast cancer treated with weekly docetaxel

ABSTRACT The aim of the study was to evaluate the association of vascular endothelial growth factor (_VEGF_) genotypes w...

Quarantine hotel in toronto accused of running out of food & water as guests let loose on staff (videos)

Quarantined travelers formed an angry mob in the lobby of a Toronto hotel after it allegedly ran out of food and bottled...

Top