Cooperative structure of the heterotrimeric pre-mrna retention and splicing complex

Nature

Cooperative structure of the heterotrimeric pre-mrna retention and splicing complex"


Play all audios:

Loading...

ABSTRACT The precursor mRNA (pre-mRNA) retention and splicing (RES) complex is a spliceosomal complex that is present in yeast and humans and is important for RNA splicing and retention of


unspliced pre-mRNA. Here, we present the solution NMR structure of the RES core complex from _Saccharomyces cerevisiae_. Complex formation leads to an intricate folding of three


components—Snu17p, Bud13p and Pml1p—that stabilizes the RNA-recognition motif (RRM) fold of Snu17p and increases binding affinity in tertiary interactions between the components by more than


100-fold compared to that in binary interactions. RES interacts with pre-mRNA within the spliceosome, and through the assembly of the RES core complex RNA binding efficiency is increased.


The three-dimensional structure of the RES core complex highlights the importance of cooperative folding and binding in the functional organization of the spliceosome. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print


issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS MECHANISM FOR THE INITIATION OF SPLICEOSOME DISASSEMBLY Article 26 June 2024 RNA RECOGNITION BY NPL3P REVEALS U2 SNRNA-BINDING COMPATIBLE WITH A CHAPERONE ROLE DURING


SPLICING Article Open access 07 November 2023 STRUCTURAL BASIS OF HUMAN U5 SNRNP LATE BIOGENESIS AND RECYCLING Article 11 March 2024 ACCESSION CODES PRIMARY ACCESSIONS BIOLOGICAL MAGNETIC


RESONANCE DATA BANK * 19766 PROTEIN DATA BANK * 2MKC REFERENCED ACCESSIONS PROTEIN DATA BANK * 2FHO * 2PEH REFERENCES * Will, C.L. & Luhrmann, R. Spliceosome structure and function.


_Cold Spring Harb. Perspect. Biol._ 3, a3003707 (2011). Article  CAS  Google Scholar  * Brow, D.A. Allosteric cascade of spliceosome activation. _Annu. Rev. Genet._ 36, 333–360 (2002).


Article  CAS  PubMed  Google Scholar  * Dziembowski, A. et al. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. _EMBO J._ 23, 4847–4856


(2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gottschalk, A., Bartels, C., Neubauer, G., Luhrmann, R. & Fabrizio, P. A novel yeast U2 snRNP protein, Snu17p, is required


for the first catalytic step of splicing and for progression of spliceosome assembly. _Mol. Cell. Biol._ 21, 3037–3046 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tuo,


S., Nakashima, K. & Pringle, J.R. Apparent defect in yeast bud-site selection due to a specific failure to splice the pre-mRNA of a regulator of cell-type-specific transcription. _PLoS


ONE_ 7, e47621 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Scherrer, F.W. Jr. & Spingola, M. A subset of Mer1p-dependent introns requires Bud13p for splicing


activation and nuclear retention. _RNA_ 12, 1361–1372 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schmidlin, T. et al. Single-gene deletions that restore mating


competence to diploid yeast. _FEMS Yeast Res._ 8, 276–286 (2008). Article  CAS  PubMed  Google Scholar  * Zhou, Y., Chen, C. & Johansson, M.J. The pre-mRNA retention and splicing complex


controls tRNA maturation by promoting TAN1 expression. _Nucleic Acids Res._ 41, 5669–5678 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Spingola, M., Armisen, J. &


Ares, M. Jr. Mer1p is a modular splicing factor whose function depends on the conserved U2 snRNP protein Snu17p. _Nucleic Acids Res._ 32, 1242–1250 (2004). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Hausmann, S. et al. Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small


nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. _J. Biol. Chem._ 283, 31706–31718 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Wang, Q. & Rymond, B.C. Rds3p is required for stable U2 U2 snRNP recruitment to the splicing apparatus. _Mol. Cell. Biol._ 23, 7339–7349 (2003). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Wang, Q., He, J., Lynn, B. & Rymond, B.C. Interactions of the yeast SF3b splicing factor. _Mol. Cell. Biol._ 25, 10745–10754 (2005). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Brooks, M.A. et al. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. _Nucleic Acids Res._ 37, 129–143 (2009). Article  CAS 


PubMed  Google Scholar  * Jiang, M. et al. Genome-wide analysis of developmental and sex-regulated gene expression profiles in _Caenorhabditis elegans_. _Proc. Natl. Acad. Sci. USA_ 98,


218–223 (2001). Article  CAS  PubMed  Google Scholar  * Trowitzsch, S., Weber, G., Luhrmann, R. & Wahl, M.C. An unusual RNA recognition motif acts as a scaffold for multiple proteins in


the pre-mRNA retention and splicing complex. _J. Biol. Chem._ 283, 32317–32327 (2008). Article  CAS  PubMed  Google Scholar  * Collinet, B. et al. Strategies for the structural analysis of


multi-protein complexes: lessons from the 3D-Repertoire project. _J. Struct. Biol._ 175, 147–158 (2011). Article  CAS  PubMed  Google Scholar  * Trowitzsch, S., Weber, G., Luhrmann, R. &


Wahl, M.C. Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. _J. Mol. Biol._ 385, 531–541 (2009). Article  CAS  PubMed  Google Scholar  *


Dinkel, H. et al. ELM: the database of eukaryotic linear motifs. _Nucleic Acids Res._ 40, D242–D251 (2012). Article  CAS  PubMed  Google Scholar  * Korneta, I. & Bujnicki, J.M. Intrinsic


disorder in the human spliceosomal proteome. _PLoS Comput. Biol._ 8, e1002641 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kielkopf, C.L., Rodionova, N.A., Green, M.R.


& Burley, S.K. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. _Cell_ 106, 595–605 (2001). Article  CAS  PubMed  Google Scholar  *


Corsini, L. et al. U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. _Nat. Struct. Mol. Biol._ 14, 620–629 (2007). Article  CAS  PubMed  Google


Scholar  * Selenko, P. et al. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. _Mol. Cell_ 11, 965–976 (2003). Article  CAS  PubMed  Google


Scholar  * Thickman, K.R., Swenson, M.C., Kabogo, J.M., Gryczynski, Z. & Kielkopf, C.L. Multiple U2AF65 binding sites within SF3b155: thermodynamic and spectroscopic characterization of


protein-protein interactions among pre-mRNA splicing factors. _J. Mol. Biol._ 356, 664–683 (2006). Article  CAS  PubMed  Google Scholar  * Shen, Y. & Bax, A. Protein backbone and


sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. _J. Biomol. NMR_ 56, 227–241 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Adam, S.A., Nakagawa, T., Swanson, M.S., Woodruff, T.K. & Dreyfuss, G. mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein


consensus sequence. _Mol. Cell. Biol._ 6, 2932–2943 (1986). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fabrizio, P. et al. The evolutionarily conserved core design of the


catalytic activation step of the yeast spliceosome. _Mol. Cell_ 36, 593–608 (2009). Article  CAS  PubMed  Google Scholar  * Ohrt, T. et al. Prp2-mediated protein rearrangements at the


catalytic core of the spliceosome as revealed by dcFCCS. _RNA_ 18, 1244–1256 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Warkocki, Z. et al. Reconstitution of both steps


of _Saccharomyces cerevisiae_ splicing with purified spliceosomal components. _Nat. Struct. Mol. Biol._ 16, 1237–1243 (2009). Article  CAS  PubMed  Google Scholar  * Gozani, O., Feld, R.


& Reed, R. Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. _Genes Dev._


10, 233–243 (1996). Article  CAS  PubMed  Google Scholar  * McPheeters, D.S. & Muhlenkamp, P. Spatial organization of protein-RNA interactions in the branch site-3′ splice site region


during pre-mRNA splicing in yeast. _Mol. Cell. Biol._ 23, 4174–4186 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Will, C.L. et al. A novel U2 and U11/U12 snRNP protein


that associates with the pre-mRNA branch site. _EMBO J._ 20, 4536–4546 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schellenberg, M.J. et al. Crystal structure of a core


spliceosomal protein interface. _Proc. Natl. Acad. Sci. USA_ 103, 1266–1271 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kuwasako, K. et al. Complex assembly mechanism and


an RNA-binding mode of the human p14–SF3b155 spliceosomal protein complex identified by NMR solution structure and functional analyses. _Proteins_ 71, 1617–1636 (2008). Article  CAS  PubMed


  Google Scholar  * Martin-Tumasz, S., Richie, A.C., Clos, L.J. II, Brow, D.A. & Butcher, S.E. A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop.


_Nucleic Acids Res._ 39, 7837–7847 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Netter, C., Weber, G., Benecke, H. & Wahl, M.C. Functional stabilization of an RNA


recognition motif by a noncanonical N-terminal expansion. _RNA_ 15, 1305–1313 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Avis, J.M. et al. Solution structure of the


N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNA binding. _J. Mol. Biol._ 257, 398–411 (1996). Article  CAS  PubMed  Google Scholar  *


Golovanov, A.P., Hautbergue, G.M., Tintaru, A.M., Lian, L.Y. & Wilson, S.A. The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export


factors and RNA. _RNA_ 12, 1933–1948 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cléry, A. et al. Molecular basis of purine-rich RNA recognition by the human SR-like


protein Tra2-β1. _Nat. Struct. Mol. Biol._ 18, 443–450 (2011). Article  PubMed  CAS  Google Scholar  * Singh, M. et al. Structural basis for telomerase RNA recognition and RNP assembly by


the holoenzyme La family protein p65. _Mol. Cell_ 47, 16–26 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weber, G., Trowitzsch, S., Kastner, B., Luhrmann, R. & Wahl,


M.C. Functional organization of the Sm core in the crystal structure of human U1 snRNP. _EMBO J._ 29, 4172–4184 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Varani, L. et


al. The NMR structure of the 38 kDa U1A protein–PIE RNA complex reveals the basis of cooperativity in regulation of polyadenylation by human U1A protein. _Nat. Struct. Biol._ 7, 329–335


(2000). Article  CAS  PubMed  Google Scholar  * Williamson, J.R. Cooperativity in macromolecular assembly. _Nat. Chem. Biol._ 4, 458–465 (2008). Article  CAS  PubMed  Google Scholar  *


Berglund, J.A., Abovich, N. & Rosbash, M. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. _Genes Dev._ 12, 858–867 (1998). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Corsini, L. et al. Dimerization and protein binding specificity of the U2AF homology motif of the splicing factor Puf60. _J. Biol. Chem._ 284,


630–639 (2009). Article  CAS  PubMed  Google Scholar  * De Guzman, R.N., Goto, N.K., Dyson, H.J. & Wright, P.E. Structural basis for cooperative transcription factor binding to the CBP


coactivator. _J. Mol. Biol._ 355, 1005–1013 (2006). Article  CAS  PubMed  Google Scholar  * Brüschweiler, S. et al. Direct observation of the dynamic process underlying allosteric signal


transmission. _J. Am. Chem. Soc._ 131, 3063–3068 (2009). Article  PubMed  CAS  Google Scholar  * Hom, R.A. et al. Molecular mechanism of MLL PHD3 and RNA recognition by the Cyp33 RRM domain.


_J. Mol. Biol._ 400, 145–154 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cléry, A., Blatter, M. & Allain, F.H. RNA recognition motifs: boring? Not quite. _Curr.


Opin. Struct. Biol._ 18, 290–298 (2008). Article  CAS  PubMed  Google Scholar  * Daubner, G.M., Clery, A. & Allain, F.H. RRM-RNA recognition: NMR or crystallography.and new findings.


_Curr. Opin. Struct. Biol._ 23, 100–108 (2013). Article  CAS  PubMed  Google Scholar  * Daubner, G.M., Clery, A., Jayne, S., Stevenin, J. & Allain, F.H. A _syn_-_anti_ conformational


difference allows SRSF2 to recognize guanines and cytosines equally well. _EMBO J._ 31, 162–174 (2012). Article  CAS  PubMed  Google Scholar  * Oberstrass, F.C. et al. Structure of PTB bound


to RNA: specific binding and implications for splicing regulation. _Science_ 309, 2054–2057 (2005). Article  CAS  PubMed  Google Scholar  * Tsuda, K. et al. Structural basis for the dual


RNA-recognition modes of human Tra2-beta RRM. _Nucleic Acids Res._ 39, 1538–1553 (2011). Article  CAS  PubMed  Google Scholar  * Cléry, A. et al. Isolated pseudo-RNA-recognition motifs of SR


proteins can regulate splicing using a noncanonical mode of RNA recognition. _Proc. Natl. Acad. Sci. USA_ 110, E2802–E2811 (2013). Article  PubMed  PubMed Central  Google Scholar  *


Williams, S.G. & Hall, K.B. Binding affinity and cooperativity control U2B″/snRNA/U2A′ RNP formation. _Biochemistry_ 53, 3727–3737 (2014). Article  CAS  PubMed  Google Scholar  *


Williams, S.G. & Hall, K.B. Linkage and allostery in snRNP protein/RNA complexes. _Biochemistry_ 53, 3529–3539 (2014). Article  CAS  PubMed  Google Scholar  * Sattler, M., Schleucher, J.


& Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. _Prog. Nucl. Magn. Reson.


Spectrosc._ 34, 93–158 (1999). Article  CAS  Google Scholar  * Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ɛ. chemical shifts


of aromatic residues in 13C-labeled proteins via scalar couplings. _J. Am. Chem. Soc._ 115, 11054–11055 (1993). Article  CAS  Google Scholar  * Bax, A., Clore, G.M. & Gronenborn, A.M.


1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. _J. Magn. Reson._ 88, 425–431 (1990).


CAS  Google Scholar  * Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex. _J.


Am. Chem. Soc._ 119, 6711–6721 (1997). Article  CAS  Google Scholar  * Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. _J. Biomol. NMR_ 6,


277–293 (1995). Article  CAS  PubMed  Google Scholar  * Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. _Proteins_ 59, 687–696 (2005).


Article  CAS  PubMed  Google Scholar  * Yao, L., Ying, J. & Bax, A. Improved accuracy of 15N-1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on


protonated proteins. _J. Biomol. NMR_ 43, 161–170 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Permi, P., Heikkinen, S., Kilpelainen, I. & Annila, A. Measurement of


1JNC′ and 2JHNC′ couplings from spin-state-selective two-dimensional correlation spectrum. _J. Magn. Reson._ 140, 32–40 (1999). Article  CAS  PubMed  Google Scholar  * Zweckstetter, M. NMR:


prediction of molecular alignment from structure using the PALES software. _Nat. Protoc._ 3, 679–690 (2008). Article  CAS  PubMed  Google Scholar  * Pagano, K. et al. Direct and allosteric


inhibition of the FGF2/HSPGs/FGFR1 ternary complex formation by an antiangiogenic, thrombospondin-1-mimic small molecule. _PLoS ONE_ 7, e36990 (2012). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Schanda, P., Kupce, E. & Brutscher, B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. _J.


Biomol. NMR_ 33, 199–211 (2005). Article  CAS  PubMed  Google Scholar  * Güntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new


program DYANA. _J. Mol. Biol._ 273, 283–298 (1997). Article  PubMed  Google Scholar  * Nederveen, A.J. et al. RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using


restraints from the BioMagResBank. _Proteins_ 59, 662–672 (2005). Article  CAS  PubMed  Google Scholar  * Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The Xplor-NIH NMR


molecular structure determination package. _J. Magn. Reson._ 160, 65–73 (2003). Article  CAS  PubMed  Google Scholar  * Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular


dynamics. _J. Mol. Graph._ 14, 33–38 (1996). Article  CAS  PubMed  Google Scholar  * Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems:


application to microtubules and the ribosome. _Proc. Natl. Acad. Sci. USA_ 98, 10037–10041 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yean, S.L. & Lin, R.J. U4 small


nuclear RNA dissociates from a yeast spliceosome and does not participate in the subsequent splicing reaction. _Mol. Cell. Biol._ 11, 5571–5577 (1991). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. _Methods_ 24, 218–229 (2001). Article  CAS  PubMed 


Google Scholar  * Moore, M.J. & Sharp, P.A. Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. _Science_ 256, 992–997 (1992). Article  CAS  PubMed 


Google Scholar  * Silverman, S.K. & Baum, D.A. Use of deoxyribozymes in RNA research. _Methods Enzymol._ 469, 95–117 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Urlaub, H., Hartmuth, K., Kostka, S., Grelle, G. & Luhrmann, R. A general approach for identification of RNA-protein cross-linking sites within native human spliceosomal small nuclear


ribonucleoproteins (snRNPs). Analysis of RNA-protein contacts in native U1 and U4/U6.U5 snRNPs. _J. Biol. Chem._ 275, 41458–41468 (2000). Article  CAS  PubMed  Google Scholar  Download


references ACKNOWLEDGEMENTS This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Center 860 (project B2 to M.Z.) and the DFG Research Unit 806 (project


A6 to M.C.W. and R.L.). We thank P. Fabrizio and K. Hartmuth for helpful discussions, T. Wandersleben for help with protein preparation and K. Giller for the preparation of expression


constructs. AUTHOR INFORMATION Author notes * Simon Trowitzsch Present address: Present address: European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France, and Unit for


Virus Host-Cell Interactions, Université Grenoble Alpes–European Molecular Biology Laboratory–National Center for Scientific Research, Grenoble, France., AUTHORS AND AFFILIATIONS *


Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Piotr Wysoczański, ShengQi Xiang, Francesca Munari, Stefan Becker & Markus


Zweckstetter * Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Cornelius Schneider, Simon Trowitzsch & Reinhard Lührmann *


Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany Markus C Wahl * German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany Markus Zweckstetter *


Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, Göttingen, Germany Markus Zweckstetter Authors * Piotr Wysoczański View author publications


You can also search for this author inPubMed Google Scholar * Cornelius Schneider View author publications You can also search for this author inPubMed Google Scholar * ShengQi Xiang View


author publications You can also search for this author inPubMed Google Scholar * Francesca Munari View author publications You can also search for this author inPubMed Google Scholar *


Simon Trowitzsch View author publications You can also search for this author inPubMed Google Scholar * Markus C Wahl View author publications You can also search for this author inPubMed 


Google Scholar * Reinhard Lührmann View author publications You can also search for this author inPubMed Google Scholar * Stefan Becker View author publications You can also search for this


author inPubMed Google Scholar * Markus Zweckstetter View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS P.W. designed the project, conducted


protein preparation and ITC and NMR data acquisition and analysis and wrote the paper; C.S. performed immunoprecipitation of Snu17p from spliceosomal complexes; S.X. performed NMR


experiments; F.M. performed NMR data analysis; S.T. designed the project and conducted peptide arrays and protein preparation; M.C.W. designed and supervised the project and interpreted


data; R.L. designed and supervised the project; S.B. designed and supervised the project; M.Z. designed and supervised the project and wrote the paper. CORRESPONDING AUTHOR Correspondence to


Markus Zweckstetter. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. INTEGRATED SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE 1 COMPARISON OF


1H-15N HSQC OF CSNU17P IN VARIOUS COMPLEXES AND SECONDARY CHEMICAL SHIFT OF FREE CPML1P AND CBUD13P. (A) 1H, 15N HSQC of cSnu17p in cPml1p–cSnu17p dimer, cBud13p–cSnu17p dimer, and cRES. (B)


1H, 15N HSQC of cSnu17p in cPml1p–cSnu17p dimer and cSnu17p monomer. (C) 1H, 15N HSQC of cSnu17p in cPml1p–cSnu17p dimer and cBud13p–cSnu17p dimer. (D) 1H, 15N HSQC of cSnu17p in


cPml1p–cSnu17p dimer and cSnu17p monomer. (E) Secondary chemical shift (Δδ) of free cBud13p. (F) Secondary chemical shift (Δδ) of free cPml1p. . SUPPLEMENTARY FIGURE 2 VALIDATION OF THE CRES


STRUCTURE WITH RESIDUAL DIPOLAR COUPLINGS (RDCS). Plots of experimental vs back-calculated RDCs before (upper panel) and after (lower panel) structure refinement with RDCs. RDCs from the


C-terminal α-helix (117-126) backbone amides are indicated in red, those of cPml1p in yellow and cBud13p in blue. SUPPLEMENTARY FIGURE 3 1H-15N CHEMICAL-SHIFT PERTURBATION (CSP) OF


CSNU17P–CBUD13P OR CSNU17P–CPML1P WHEN TITRATED WITH CPML1P OR CBUD13P, RESPECTIVELY. (A) Plot of CSP imposed on cSnu17p–cBud13p dimer when titrated with cPml1p. (B) The aforementioned plot


mapped onto the structure of cRES with spheres colored as described above; T49 is indicated (C) Residues that are common between this CSP experiment (when cSnu17p-cBud13 dimer is titrated


with cPml1p) and when cRES is titrated with RNA (CUUCAUCUUUUUG) are labeled. (D) Plot of CSP imposed on cSnu17p–cPml1p dimer when titrated with cBud13p. (E–F) The aforementioned plot mapped


onto the structure of cRES with spheres colored as described above; T49 is indicated. Only 224 to 238 residues of cBud13p are shown for clarity. Significant CSPs were grouped and color-coded


into three categories according to: medium (light pink) if 2σ>CSP>1σ, strong (pink) if 3σ>CSP>2σ, very strong (red) if CSP>3σ, were σ is the standard deviation of the mean.


SUPPLEMENTARY FIGURE 4 ANALYSIS OF CSNU17P MONOMER, CSNU17P–CPML1P DIMER, CSNU17P–CBUD13P DIMER AND CRES DYNAMICS. (A) Plot of residue specific hydrogen-deuterium exchange half-life H-D1/2


for cRES (black), cSnu17p–cPml1p dimer (yellow), cSnu17p–cBud13p dimer (blue), cSnu17p monomer (red). (B) R2 (black) and R1ρ (grey) plots (left panel) for the aforementioned complexes. Rex


estimates derived from R2 and R1ρ difference (right panel). Positions marked with an asterisk correspond to the five most broadened peaks in C). (C) Normalized intensity vs 1H full width at


half maximum (FWHM) of 1H, 15N HSQC peaks for the aforementioned complexes and cSnu17p monomer. Intensity values are offset between each group by 1. Please note that both cRES and


cSnu17p–cBud13p dimer experience a decrease in the overall tumbling due to apparent increase in size related to peptide binding and/or the presence of C-terminal α-helix. This effect is


small in cSnu17p–cPml1p dimer since cPml1p is shorter and C-terminal α-helix is folded. (D) S2 order parameter derived from the chemical shift for the aforementioned complexes. SUPPLEMENTARY


FIGURE 5 RES-RNA INTERACTION. (A) 1H, 15N chemical shift perturbation (CSP) imposed on cSnu17p in cSnu17p–cPml1p dimer and in cSnu17p–cBud13p dimer upon titration with CUUCAUCUUUUUG RNA.


CSP mapped on the structure of cRES (left of each graph). Significant CSPs were grouped and color-coded into three categories according to: medium (light pink) if 2σ>CSP>1σ, strong


(pink) if 3σ>CSP>2σ, very strong (red) if CSP >3σ, were σ is the standard deviation of the mean for the CUUCAUCUUUUUG to cRES titration. Only 224 to 238 residues of cBud13p are


shown for clarity. (B) CSP binding curves derived from a representative set of residues experiencing high CSP and residue-averaged dissociation constants (_K_d) of CUUCAUUCUUUUUG and all


four members of the cRES assembly pathway. (C) Uncropped western blots from main text Fig. 5a. From left to right, Ponceau-stained membrane, peroxidase-anti-peroxidase detection of RES-TAP


and autoradiography. SUPPLEMENTARY FIGURE 6 1H-15N NORMALIZED CHEMICAL-SHIFT PERTURBATION (CSP) IMPOSED ON CSNU17P IN CRES UPON TITRATION WITH VARIOUS RNAS. (A) NCSP mapped on the structure


of cRES (left of each graph). Significant NCSPs were grouped and color-coded into three categories according to: medium (light pink) if 2σ>NCSP>1σ, strong (pink) if 3σ>NCSP>2σ,


very strong (red) if NCS >3σ, were σ is the standard deviation of the mean. Only 224 to 238 residues of cBud13p are shown for clarity. The given RNA sequence is indicated above each


graph. (B) CSP binding curves derived from a representative set of residues experiencing high CSP upon ACGAAUUAGA titration and average binding affinity (below). * value derived from CSP of


two residues. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Figures 1–6 (PDF 2505 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Wysoczański, P., Schneider, C., Xiang, S. _et al._ Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. _Nat Struct Mol Biol_ 21, 911–918 (2014).


https://doi.org/10.1038/nsmb.2889 Download citation * Received: 14 February 2014 * Accepted: 15 August 2014 * Published: 14 September 2014 * Issue Date: October 2014 * DOI:


https://doi.org/10.1038/nsmb.2889 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Oat growers to gain from opening of new processing plant - farmers weekly

ABSTRACT Powerful emissions from the centres of nearby galaxies may represent dead quasars. Access through your institut...

Location, location, location: trump has the best spot in american politics

History can weigh heavily on a filmmaker, and that is what happens with “Amelia,” a disappointing rendering of the remar...

How to be happy: 5 easy ways to increase your happiness

Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4  G...

Patient mutations alter atrx targeting to pml nuclear bodies

ABSTRACT ATRX is a SWI/SNF-like chromatin remodeling protein mutated in several X-linked mental retardation syndromes. G...

Rear viewing system for safe reversing - farmers weekly

26 OCTOBER 2001 ------------------------- REAR VIEWING SYSTEM FOR SAFE REVERSING SPALDINGS has now launched a full colou...

Latests News

Cooperative structure of the heterotrimeric pre-mrna retention and splicing complex

ABSTRACT The precursor mRNA (pre-mRNA) retention and splicing (RES) complex is a spliceosomal complex that is present in...

Meet the team to enhance your knowledge and gain insight

Whether you are interested in buying, selling, recruiting for or optimising the value of your dental practice or lab - D...

Page Not Found (404) | WFAE 90.7 - Charlotte's NPR News Source

We're sorry; the page you're looking for cannot be found. Please use the search option at the top of the page to find wh...

What is headless cms- why is so popular?

The “head” in “headless CMS” refers to the frontend. A headless content management system consists primarily of an API a...

Police seeking suspect in south boston aggravated assault

Crime THE INCIDENT OCCURRED LAST SUNDAY, JUNE 16, NEAR THE LINCOLN TAVERN AND RESTAURANT. By John Waller June 24, 2024 L...

Top