Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours

Nature

Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours"


Play all audios:

Loading...

KEY POINTS * Intracranial radiotherapy leads to permanent and substantial cognitive disability in 50–90% of patients * The pathophysiology of radiotherapy-associated cognitive disability


remains poorly understood and there are no effective preventive measures or long-term treatments * Historically, most research has addressed markers of damage and the cognitive decline that


appears 6 months to 1 year or more after irradiation * More-sensitive imaging techniques have revealed subtle evidence of CNS damage much sooner than 6 months after radiation * These early


forms of CNS damage can persist and synergize over time to cause long-term, irreversible deficits in neurons and supporting cell lineages that are vital to cognition * Consideration of early


forms of radiation-induced CNS damage could help to identify early treatments that can reverse degenerative processes before they cause permanent disability ABSTRACT Standard treatment of


primary and metastatic brain tumours includes high-dose megavoltage-range radiation to the cranial vault. About half of patients survive >6 months, and many attain long-term control or


cure. However, 50–90% of survivors exhibit disabling cognitive dysfunction. The radiation-associated cognitive syndrome is poorly understood and has no effective prevention or long-term


treatment. Attention has primarily focused on mechanisms of disability that appear at 6 months to 1 year after radiotherapy. However, recent studies show that CNS alterations and dysfunction


develop much earlier following radiation exposure. This finding has prompted the hypothesis that subtle early forms of radiation-induced CNS damage could drive chronic pathophysiological


processes that lead to permanent cognitive decline. This Review presents evidence of acute radiation-triggered CNS inflammation, injury to neuronal lineages, accessory cells and their


progenitors, and loss of supporting structure integrity. Moreover, injury-related processes initiated soon after irradiation could synergistically alter the signalling microenvironment in


progenitor cell niches in the brain and the hippocampus, which is a structure critical to memory and cognition. Progenitor cell niche degradation could cause progressive neuronal loss and


cognitive disability. The concluding discussion addresses future directions and potential early treatments that might reverse degenerative processes before they can cause permanent cognitive


disability. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe


to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF


Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact


customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ASSESSMENT OF COGNITIVE AND NEURAL RECOVERY IN SURVIVORS OF PEDIATRIC BRAIN TUMORS IN A PILOT CLINICAL TRIAL USING METFORMIN Article


27 July 2020 INVESTIGATION OF HIGH-DOSE RADIOTHERAPY'S EFFECT ON BRAIN STRUCTURE AGGRAVATED COGNITIVE IMPAIRMENT AND DETERIORATED PATIENT PSYCHOLOGICAL STATUS IN BRAIN TUMOR TREATMENT


Article Open access 02 May 2024 IRRADIATION AND LITHIUM TREATMENT ALTER THE GLOBAL DNA METHYLATION PATTERN AND GENE EXPRESSION UNDERLYING A SHIFT FROM GLIOGENESIS TOWARDS NEUROGENESIS IN


HUMAN NEURAL PROGENITORS Article Open access 13 July 2023 REFERENCES * Chi, A. & Komaki, R. Treatment of brain metastasis from lung cancer. _Cancers (Basel)_ 2, 2100–2137 (2010). Article


  CAS  Google Scholar  * Shi, L. _ et al_. Aging masks detection of radiation-induced brain injury. _Brain Res._ 1385, 307–316 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Greene-Schloesser, D., Moore, E. & Robbins, M. E. Molecular pathways: radiation-induced cognitive impairment. _Clin. Cancer Res._ 19, 2294–2300 (2013). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Moore, E. D., Kooshki, M., Wheeler, K. T., Metheny-Barlow, L. J. & Robbins, M. E. Differential expression of Homer1a in the hippocampus and cortex likely plays


a role in radiation-induced brain injury. _Radiat. Res._ 181, 21–32 (2014). Article  CAS  PubMed  Google Scholar  * Wu, P. H. _ et al_. Radiation induces acute alterations in neuronal


function. _PLoS ONE_ 7, e37677 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * McTyre, E., Scott, J. & Chinnaiyan, P. Whole brain radiotherapy for brain metastasis.


_Surg. Neurol. Int._ 4, S236–S244 (2013). Article  PubMed  PubMed Central  Google Scholar  * Owonikoko, T. K. _ et al_. Current approaches to the treatment of metastatic brain tumours. _Nat.


Rev. Clin. Oncol._ 11, 203–222 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * McDuff, S. G. _ et al_. Neurocognitive assessment following whole brain radiation therapy and


radiosurgery for patients with cerebral metastases. _J. Neurol. Neurosurg. Psychiatry_ 84, 1384–1391 (2013). Article  PubMed  Google Scholar  * Marsh, J. C., Gielda, B. T., Herskovic, A. M.


& Abrams, R. A. Cognitive sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. _J. Oncol._ 2010, 198208


(2010). Article  PubMed  PubMed Central  Google Scholar  * Jenrow, K. A. _ et al_. Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive


impairment. _Radiat. Res._ 179, 549–556 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lippitz, B. _ et al_. Stereotactic radiosurgery in the treatment of brain metastases:


the current evidence. _Cancer Treat. Rev._ 40, 48–59 (2014). Article  PubMed  Google Scholar  * Phillips, M. H., Stelzer, K. J., Griffin, T. W., Mayberg, M. R. & Winn, H. R. Stereotactic


radiosurgery: a review and comparison of methods. _J. Clin. Oncol._ 12, 1085–1099 (1994). Article  CAS  PubMed  Google Scholar  * Bilimagga, R. S. _ et al_. Role of palliative radiotherapy


in brain metastases. _Indian J. Palliat. Care_ 15, 71–75 (2009). Article  PubMed  PubMed Central  Google Scholar  * Wadasadawala, T., Gupta, S., Bagul, V. & Patil, N. Brain metastases


from breast cancer: management approach. _J. Cancer Res. Ther._ 3, 157–165 (2007). Article  PubMed  Google Scholar  * Packer, R. J. _ et al_. Treatment of children with medulloblastomas with


reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children's Cancer Group study. _J. Clin. Oncol._ 17, 2127–2136 (1999). Article  CAS  PubMed  Google Scholar  *


Davis, C. M. _ et al_. Effects of X-ray radiation on complex visual discrimination learning and social recognition memory in rats. _PLoS ONE_ 9, e104393 (2014). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Shi, L., Molina, D. P., Robbins, M. E., Wheeler, K. T. & Brunso-Bechtold, J. K. Hippocampal neuron number is unchanged 1 year after fractionated whole-brain


irradiation at middle age. _Int. J. Radiat. Oncol. Biol. Phys._ 71, 526–532 (2008). Article  PubMed  PubMed Central  Google Scholar  * Greene-Schloesser, D. _ et al_. Radiation-induced brain


injury: a review. _Front. Oncol._ 2, 73 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Palmer, S. L., Reddick, W. E. & Gajjar, A. Understanding the cognitive impact on


children who are treated for medulloblastoma. _J. Pediatr. Psychol._ 32, 1040–1049 (2007). Article  PubMed  Google Scholar  * [No authors listed.] Outcomes of cancer treatment for technology


assessment and cancer treatment guidelines. American Society of Clinical Oncology. _J. Clin. Oncol._ 14, 671–679 (1996). * Gustafsson, M., Edvardsson, T. & Ahlstrom, G. The relationship


between function, quality of life and coping in patients with low-grade gliomas. _Support. Care Cancer_ 14, 1205–1212 (2006). Article  PubMed  Google Scholar  * Frost, M. H. & Sloan, J.


A. Quality of life measurements: a soft outcome — or is it? _Am. J. Manag. Care_ 8, S574–S579 (2002). PubMed  Google Scholar  * Lin, N. U. _ et al_. Challenges relating to solid tumour


brain metastases in clinical trials, part 2: neurocognitive, neurological, and quality-of-life outcomes. A report from the RANO group. _Lancet Oncol._ 14, e407–e416 (2013). Article  PubMed 


Google Scholar  * Lee, Y. W., Cho, H. J., Lee, W. H. & Sonntag, W. E. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. _Biomol.


Ther. (Seoul)_ 20, 357–370 (2012). Article  CAS  Google Scholar  * Attia, A., Page, B. R., Lesser, G. J. & Chan, M. Treatment of radiation-induced cognitive decline. _Curr. Treat.


Options Oncol._ 15, 539–550 (2014). Article  PubMed  Google Scholar  * Rooney, J. W. & Laack, N. N. Pharmacological interventions to treat or prevent neurocognitive decline after brain


radiation. _CNS Oncol._ 2, 531–541 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Connor, M. _ et al_. Dose-dependent white matter damage after brain radiotherapy.


_Radiother. Oncol._ http://dx.doi.org/10.1016/j.radonc.2016.10.003 (2016). * Armstrong, C. L., Gyato, K., Awadalla, A. W., Lustig, R. & Tochner, Z. A. A critical review of the clinical


effects of therapeutic irradiation damage to the brain: the roots of controversy. _Neuropsychol. Rev._ 14, 65–86 (2004). Article  PubMed  Google Scholar  * Shi, L. _ et al_. Maintenance of


white matter integrity in a rat model of radiation-induced cognitive impairment. _J. Neurol. Sci._ 285, 178–184 (2009). Article  PubMed  PubMed Central  Google Scholar  * Parihar, V. K. _ et


al_. Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. _Brain Struct. Funct._ 220, 1161–1171 (2015). Article  CAS  PubMed  Google Scholar  *


Ljubimova, N. V., Levitman, M. K., Plotnikova, E. D. & Eidus, L. Endothelial cell population dynamics in rat brain after local irradiation. _Br. J. Radiol._ 64, 934–940 (1991). Article 


CAS  PubMed  Google Scholar  * Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. _J. Comp. Neurol._ 425, 479–494 (2000). Article  CAS 


PubMed  Google Scholar  * Peiffer, A. M. _ et al_. Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline. _Neurology_ 80, 747–753 (2013). Article 


PubMed  PubMed Central  Google Scholar  * Parihar, V. K. & Limoli, C. L. Cranial irradiation compromises neuronal architecture in the hippocampus. _Proc. Natl Acad. Sci. USA_ 110,


12822–12827 (2013). Article  CAS  PubMed  Google Scholar  * Agarwal, S., Manchanda, P., Vogelbaum, M. A., Ohlfest, J. R. & Elmquist, W. F. Function of the blood–brain barrier and


restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. _Drug Metab. Dispos._ 41, 33–39 (2013). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Furnari, F. B. _ et al_. Malignant astrocytic glioma: genetics, biology, and paths to treatment. _Genes Dev._ 21, 2683–2710 (2007). Article  CAS  PubMed  Google Scholar  *


Puhalla, S. _ et al_. Unsanctifying the sanctuary: challenges and opportunities with brain metastases. _Neuro Oncol._ 17, 639–651 (2015). Article  PubMed  PubMed Central  Google Scholar  *


Packer, R. J., Zhou, T., Holmes, E., Vezina, G. & Gajjar, A. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of


Children's Oncology Group trial A9961. _Neuro Oncol._ 15, 97–103 (2013). Article  CAS  PubMed  Google Scholar  * Ruben, J. D. _ et al_. Cerebral radiation necrosis: incidence, outcomes,


and risk factors with emphasis on radiation parameters and chemotherapy. _Int. J. Radiat. Oncol. Biol. Phys._ 65, 499–508 (2006). Article  PubMed  Google Scholar  * Chen, J. _ et al_.


Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. _Radiat. Oncol._ 6, 128 (2011). Article  PubMed  PubMed Central


  Google Scholar  * Dropcho, E. J. Neurotoxicity of radiation therapy. _Neurol. Clin._ 28, 217–234 (2010). Article  PubMed  Google Scholar  * Sheline, G. E., Wara, W. M. & Smith, V.


Therapeutic irradiation and brain injury. _Int. J. Radiat. Oncol. Biol. Phys._ 6, 1215–1228 (1980). Article  CAS  PubMed  Google Scholar  * Saury, J. M. & Emanuelson, I. Cognitive


consequences of the treatment of medulloblastoma among children. _Pediatr. Neurol._ 44, 21–30 (2011). Article  PubMed  Google Scholar  * Deng, W., Aimone, J. B. & Gage, F. H. New neurons


and new memories: how does adult hippocampal neurogenesis affect learning and memory? _Nat. Rev. Neurosci._ 11, 339–350 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Hoffmann, M. The human frontal lobes and frontal network systems: an evolutionary, clinical, and treatment perspective. _ISRN Neurol._ 2013, 892459 (2013). Article  PubMed  PubMed Central 


Google Scholar  * Parihar, V. K. _ et al_. What happens to your brain on the way to Mars. _Sci. Adv._ 1, e1400256 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fuster, J.


M. Frontal lobe and cognitive development. _J. Neurocytol._ 31, 373–385 (2002). Article  PubMed  Google Scholar  * Braun, U. _ et al_. Dynamic reconfiguration of frontal brain networks


during executive cognition in humans. _Proc. Natl Acad. Sci. USA_ 112, 11678–11683 (2015). Article  CAS  PubMed  Google Scholar  * Murphy, E. S. _ et al_. Review of cranial


radiotherapy-induced vasculopathy. _J. Neurooncol._ 122, 421–429 (2015). Article  CAS  PubMed  Google Scholar  * Pellmar, T. C., Schauer, D. A. & Zeman, G. H. Time- and dose-dependent


changes in neuronal activity produced by X radiation in brain slices. _Radiat. Res._ 122, 209–214 (1990). Article  CAS  PubMed  Google Scholar  * Padovani, L., Andre, N., Constine, L. S.


& Muracciole, X. Neurocognitive function after radiotherapy for paediatric brain tumours. _Nat. Rev. Neurol._ 8, 578–588 (2012). Article  CAS  PubMed  Google Scholar  * Panagiotakos, G.


_ et al_. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. _PLoS ONE_ 2, e588 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Gangloff, H. & Haley, T. J. Effects of X-irradiation on spontaneous and evoked brain electrical activity in cats. _Radiat. Res._ 12, 694–704 (1960). Article  CAS  PubMed  Google Scholar


  * Bassant, M. H. & Court, L. Effects of whole-body gamma irradiation on the activity of rabbit hippocampal neurons. _Radiat. Res._ 75, 593–606 (1978). Article  CAS  PubMed  Google


Scholar  * Pellmar, T. C. & Lepinski, D. L. Gamma radiation (5–10 Gy) impairs neuronal function in the guinea pig hippocampus. _Radiat. Res._ 136, 255–261 (1993). Article  CAS  PubMed 


Google Scholar  * Gerstner, H. B., Brooks, P. M. & Smith, S. A. Effect of X-radiation on the flow of perfusion fluid through the isolated rabbit's ear. _Am. J. Physiol._ 182,


459–461 (1955). Article  CAS  PubMed  Google Scholar  * Krueger, H., Wagelie, E. G. & Bogart, R. Radiation and responses of rabbit ear artery to xylene, alcohol, and epinephrine.


_Radiat. Res._ 30, 420–430 (1967). Article  CAS  PubMed  Google Scholar  * Li, Y. Q., Chen, P., Haimovitz-Friedman, A., Reilly, R. M. & Wong, C. S. Endothelial apoptosis initiates acute


blood–brain barrier disruption after ionizing radiation. _Cancer Res._ 63, 5950–5956 (2003). CAS  PubMed  Google Scholar  * Brown, W. R., Thore, C. R., Moody, D. M., Robbins, M. E. &


Wheeler, K. T. Vascular damage after fractionated whole-brain irradiation in rats. _Radiat. Res._ 164, 662–668 (2005). Article  CAS  PubMed  Google Scholar  * Finet, P., Rooijakkers, H.,


Godfraind, C. & Raftopoulos, C. Delayed compressive angiomatous degeneration in a case of mesial temporal lobe epilepsy treated by γ knife radiosurgery: case report. _Neurosurgery_ 67,


218–220 (2010). Article  PubMed  Google Scholar  * Desai, S. S., Paulino, A. C., Mai, W. Y. & Teh, B. S. Radiation-induced moyamoya syndrome. _Int. J. Radiat. Oncol. Biol. Phys._ 65,


1222–1227 (2006). Article  PubMed  Google Scholar  * Ullrich, N. J. _ et al_. Moyamoya following cranial irradiation for primary brain tumors in children. _Neurology_ 68, 932–938 (2007).


Article  CAS  PubMed  Google Scholar  * Hahn, C. A. _ et al_. Dose-dependent effects of radiation therapy on cerebral blood flow, metabolism, and neurocognitive dysfunction. _Int. J. Radiat.


Oncol. Biol. Phys._ 73, 1082–1087 (2009). Article  CAS  PubMed  Google Scholar  * Abayomi, O. K. Pathogenesis of cognitive decline following therapeutic irradiation for head and neck


tumors. _Acta Oncol._ 41, 346–351 (2002). Article  PubMed  Google Scholar  * Calvo, W., Hopewell, J. W., Reinhold, H. S. & Yeung, T. K. Time- and dose-related changes in the white matter


of the rat brain after single doses of X rays. _Br. J. Radiol._ 61, 1043–1052 (1988). Article  CAS  PubMed  Google Scholar  * Filley, C. M. White matter dementia. _Ther. Adv. Neurol.


Disord._ 5, 267–277 (2012). Article  PubMed  PubMed Central  Google Scholar  * Zhao, W. _ et al_. Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone


during fractionated brain irradiation prevents radiation-induced cognitive impairment. _Int. J. Radiat. Oncol. Biol. Phys._ 67, 6–9 (2007). Article  CAS  PubMed  Google Scholar  * Lee, T.


C. _ et al_. Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive


impairment. _Radiat. Res._ 178, 46–56 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hansson, E. Astroglia from defined brain regions as studied with primary cultures.


_Prog. Neurobiol._ 30, 369–397 (1988). Article  CAS  PubMed  Google Scholar  * Pal, B. Astrocytic actions on extrasynaptic neuronal currents. _Front. Cell. Neurosci._ 9, 474 (2015). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Hamilton, N. B. & Attwell, D. Do astrocytes really exocytose neurotransmitters? _Nat. Rev. Neurosci._ 11, 227–238 (2010). Article  CAS 


PubMed  Google Scholar  * Hwang, S. Y. _ et al_. Ionizing radiation induces astrocyte gliosis through microglia activation. _Neurobiol. Dis._ 21, 457–467 (2006). Article  CAS  PubMed  Google


Scholar  * Ho, G., Zhang, C. & Zhuo, L. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity. _Toxicol. Appl. Pharmacol._ 221, 76–85


(2007). Article  CAS  PubMed  Google Scholar  * Chiang, C. S., McBride, W. H. & Withers, H. R. Radiation-induced astrocytic and microglial responses in mouse brain. _Radiother. Oncol._


29, 60–68 (1993). Article  CAS  PubMed  Google Scholar  * Moore, E. D., Kooshki, M., Metheny-Barlow, L. J., Gallagher, P. E. & Robbins, M. E. Angiotensin-(1–7) prevents radiation-induced


inflammation in rat primary astrocytes through regulation of MAP kinase signaling. _Free Radic. Biol. Med._ 65, 1060–1068 (2013). Article  CAS  PubMed  Google Scholar  * Li, Y. Q., Jay, V.


& Wong, C. S. Oligodendrocytes in the adult rat spinal cord undergo radiation-induced apoptosis. _Cancer Res._ 56, 5417–5422 (1996). CAS  PubMed  Google Scholar  * Kurita, H. _ et al_.


Radiation-induced apoptosis of oligodendrocytes in the adult rat brain. _Neurol. Res._ 23, 869–874 (2001). Article  CAS  PubMed  Google Scholar  * Tsuruda, J. S. _ et al_. Radiation effects


on cerebral white matter: MR evaluation. _AJR Am. J. Roentgenol._ 149, 165–171 (1987). Article  CAS  PubMed  Google Scholar  * Wang, S. _ et al_. Radiation induced brain injury: assessment


of white matter tracts in a pre-clinical animal model using diffusion tensor MR imaging. _J. Neurooncol._ 112, 9–14 (2013). Article  PubMed  Google Scholar  * Hellstrom, N. A.,


Bjork-Eriksson, T., Blomgren, K. & Kuhn, H. G. Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. _Stem Cells_ 27, 634–641


(2009). Article  CAS  PubMed  Google Scholar  * Ming, G. L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. _Neuron_ 70, 687–702


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mizumatsu, S. _ et al_. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. _Cancer Res._ 63, 4021–4027


(2003). CAS  PubMed  Google Scholar  * Kalm, M., Karlsson, N., Nilsson, M. K. & Blomgren, K. Loss of hippocampal neurogenesis, increased novelty-induced activity, decreased home cage


activity, and impaired reversal learning one year after irradiation of the young mouse brain. _Exp. Neurol._ 247, 402–409 (2013). Article  PubMed  Google Scholar  * Manda, K., Ueno, M. &


Anzai, K. Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: attenuation by melatonin pretreatment. _J. Pineal Res._ 46, 71–78 (2009).


Article  CAS  PubMed  Google Scholar  * Tada, E., Parent, J. M., Lowenstein, D. H. & Fike, J. R. X-Irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of


adult rats. _Neuroscience_ 99, 33–41 (2000). Article  CAS  PubMed  Google Scholar  * Rola, R. _ et al_. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive


deficits in young mice. _Exp. Neurol._ 188, 316–330 (2004). Article  CAS  PubMed  Google Scholar  * Raber, J. _ et al_. Radiation-induced cognitive impairments are associated with changes in


indicators of hippocampal neurogenesis. _Radiat. Res._ 162, 39–47 (2004). Article  CAS  PubMed  Google Scholar  * Chen, H. _ et al_. Ionizing radiation perturbs cell cycle progression of


neural precursors in the subventricular zone without affecting their long-term self-renewal. _ASN Neuro_ http://dx.doi.org/10.1177/1759091415578026 (2015). * Monje, M. L., Mizumatsu, S.,


Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. _Nat. Med._ 8, 955–962 (2002). Article  CAS  PubMed  Google Scholar  * Tofilon, P. J. & Fike, J. R.


The radioresponse of the central nervous system: a dynamic process. _Radiat. Res._ 153, 357–370 (2000). Article  CAS  PubMed  Google Scholar  * Acharya, M. M. _ et al_. Human neural stem


cell transplantation ameliorates radiation-induced cognitive dysfunction. _Cancer Res._ 71, 4834–4845 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Acharya, M. M., Roa, D.


E., Bosch, O., Lan, M. L. & Limoli, C. L. Stem cell transplantation strategies for the restoration of cognitive dysfunction caused by cranial radiotherapy. _J. Vis. Exp._


http://dx.doi.org/10.3791/3107 (2011). * Warrington, J. P., Csiszar, A., Mitschelen, M., Lee, Y. W. & Sonntag, W. E. Whole brain radiation-induced impairments in learning and memory are


time-sensitive and reversible by systemic hypoxia. _PLoS ONE_ 7, e30444 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Monje, M. L., Toda, H. & Palmer, T. D.


Inflammatory blockade restores adult hippocampal neurogenesis. _Science_ 302, 1760–1765 (2003). Article  CAS  PubMed  Google Scholar  * Lee, W. H., Sonntag, W. E., Mitschelen, M., Yan, H.


& Lee, Y. W. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. _Int. J. Radiat. Biol._ 86, 132–144 (2010). Article  PubMed  PubMed


Central  Google Scholar  * Ballesteros-Zebadua, P., Chavarria, A., Celis, M. A., Paz, C. & Franco-Perez, J. Radiation-induced neuroinflammation and radiation somnolence syndrome. _CNS


Neurol. Disord. Drug Targets_ 11, 937–949 (2012). Article  CAS  PubMed  Google Scholar  * Kyrkanides, S. _ et al_. Cyclooxygenase-2 modulates brain inflammation-related gene expression in


central nervous system radiation injury. _Brain Res. Mol. Brain Res._ 104, 159–169 (2002). Article  CAS  PubMed  Google Scholar  * Monje, M. L. _ et al_. Impaired human hippocampal


neurogenesis after treatment for central nervous system malignancies. _Ann. Neurol._ 62, 515–520 (2007). Article  PubMed  Google Scholar  * Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia,


Z. & Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. _Proc. Natl Acad. Sci. USA_ 100, 13632–13637 (2003). Article  CAS  PubMed  Google Scholar  * Ingraham, J.


P., Forbes, M. E., Riddle, D. R. & Sonntag, W. E. Aging reduces hypoxia-induced microvascular growth in the rodent hippocampus. _J. Gerontol. A Biol. Sci. Med. Sci._ 63, 12–20 (2008).


Article  PubMed  Google Scholar  * Park, J. A., Choi, K. S., Kim, S. Y. & Kim, K. W. Coordinated interaction of the vascular and nervous systems: from molecule- to cell-based approaches.


_Biochem. Biophys. Res. Commun._ 311, 247–253 (2003). Article  CAS  PubMed  Google Scholar  * Licht, T. _ et al_. Reversible modulations of neuronal plasticity by VEGF. _Proc. Natl Acad.


Sci. USA_ 108, 5081–5086 (2011). Article  CAS  PubMed  Google Scholar  * Kang, S. G. _ et al_. Isolation and perivascular localization of mesenchymal stem cells from mouse brain.


_Neurosurgery_ 67, 711–720 (2010). Article  PubMed  PubMed Central  Google Scholar  * Kim, J. H., Jenrow, K. A. & Brown, S. L. Mechanisms of radiation-induced normal tissue toxicity and


implications for future clinical trials. _Radiat. Oncol. J._ 32, 103–115 (2014). Article  PubMed  PubMed Central  Google Scholar  * Robbins, M. E., Bourland, J. D., Cline, J. M., Wheeler, K.


T. & Deadwyler, S. A. A model for assessing cognitive impairment after fractionated whole-brain irradiation in nonhuman primates. _Radiat. Res._ 175, 519–525 (2011). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Gonzalez Burgos, I., Nikonenko, I. & Korz, V. Dendritic spine plasticity and cognition. _Neural Plast._ 2012, 875156 (2012). PubMed  PubMed


Central  Google Scholar  * Frankfurt, M. & Luine, V. The evolving role of dendritic spines and memory: interaction(s) with estradiol. _Horm. Behav._ 74, 28–36 (2015). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. _Annu. Rev. Neurosci._ 24,


1071–1089 (2001). Article  CAS  PubMed  Google Scholar  * Schwechter, B. & Tolias, K. F. Cytoskeletal mechanisms for synaptic potentiation. _Commun. Integr. Biol._ 6, e27343 (2013).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Hains, A. B., Yabe, Y. & Arnsten, A. F. Chronic stimulation of alpha-2A-adrenoceptors with guanfacine protects rodent prefrontal


cortex dendritic spines and cognition from the effects of chronic stress. _Neurobiol. Stress_ 2, 1–9 (2015). Article  PubMed  PubMed Central  Google Scholar  * Pereira, A. C. _ et al_.


Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering. _Proc. Natl Acad. Sci. USA_ 111, 18733–18738 (2014). Article  CAS 


PubMed  Google Scholar  * Brizzee, K. R., Ordy, J. M., Kaack, M. B. & Beavers, T. Effect of prenatal ionizing radiation on the visual cortex and hippocampus of newborn squirrel monkeys.


_J. Neuropathol. Exp. Neurol._ 39, 523–540 (1980). Article  CAS  PubMed  Google Scholar  * Shors, T. J., Anderson, M. L., Curlik, D. M. II & Nokia, M. S. Use it or lose it: how


neurogenesis keeps the brain fit for learning. _Behav. Brain Res._ 227, 450–458 (2012). Article  CAS  PubMed  Google Scholar  * Kirby, E. D., Kuwahara, A. A., Messer, R. L. & Wyss-Coray,


T. Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF. _Proc. Natl Acad. Sci. USA_ 112, 4128–4133 (2015). Article  CAS  PubMed  Google


Scholar  * Eriksson, P. S. _ et al_. Neurogenesis in the adult human hippocampus. _Nat. Med._ 4, 1313–1317 (1998). Article  CAS  PubMed  Google Scholar  * Seib, D. R. & Martin-Villalba,


A. Neurogenesis in the normal ageing hippocampus: a mini-review. _Gerontology_ 61, 327–335 (2015). Article  CAS  PubMed  Google Scholar  * Christian, K. M., Song, H. & Ming, G. L.


Functions and dysfunctions of adult hippocampal neurogenesis. _Annu. Rev. Neurosci._ 37, 243–262 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lie, D. C. _ et al_. Wnt


signaling regulates adult hippocampal neurogenesis. _Nature_ 437, 1370–1375 (2005). Article  CAS  PubMed  Google Scholar  * Acharya, M. M., Christie, L. A., Hazel, T. G., Johe, K. K. &


Limoli, C. L. Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation. _Cell Transplant._ 23, 1255–1266 (2014). Article  PubMed 


Google Scholar  * Bostrom, M., Kalm, M., Karlsson, N., Hellstrom Erkenstam, N. & Blomgren, K. Irradiation to the young mouse brain caused long-term, progressive depletion of neurogenesis


but did not disrupt the neurovascular niche. _J. Cereb. Blood Flow Metab._ 33, 935–943 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Snyder, J. S., Kee, N. &


Wojtowicz, J. M. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. _J. Neurophysiol._ 85, 2423–2431 (2001). Article  CAS  PubMed  Google Scholar  * Wong, C. S.


& Van der Kogel, A. J. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. _Mol. Interv._ 4, 273–284 (2004). Article  CAS  PubMed  Google


Scholar  * Shiraishi-Yamaguchi, Y. & Furuichi, T. The Homer family proteins. _Genome Biol._ 8, 206 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Roloff, A. M.,


Anderson, G. R., Martemyanov, K. A. & Thayer, S. A. Homer 1a gates the induction mechanism for endocannabinoid-mediated synaptic plasticity. _J. Neurosci._ 30, 3072–3081 (2010). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Celikel, T. _ et al_. Select overexpression of homer1a in dorsal hippocampus impairs spatial working memory. _Front. Neurosci._ 1, 97–110


(2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tappe-Theodor, A., Fu, Y., Kuner, R. & Neugebauer, V. Homer1a signaling in the amygdala counteracts pain-related synaptic


plasticity, mGluR1 function and pain behaviors. _Mol. Pain_ 7, 38 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhou, F. W. & Roper, S. N. Impaired hippocampal memory


function and synaptic plasticity in experimental cortical dysplasia. _Epilepsia_ 53, 850–859 (2012). Article  PubMed  Google Scholar  * Ehlers, M. D. Activity level controls postsynaptic


composition and signaling via the ubiquitin-proteasome system. _Nat. Neurosci._ 6, 231–242 (2003). Article  CAS  PubMed  Google Scholar  * Deisseroth, K. _ et al_. Excitation-neurogenesis


coupling in adult neural stem/progenitor cells. _Neuron_ 42, 535–552 (2004). Article  CAS  PubMed  Google Scholar  * Ge, S. _ et al_. GABA regulates synaptic integration of newly generated


neurons in the adult brain. _Nature_ 439, 589–593 (2006). Article  CAS  PubMed  Google Scholar  * Prust, M. J. _ et al_. Standard chemoradiation for glioblastoma results in progressive brain


volume loss. _Neurology_ 85, 683–691 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Karunamuni, R. _ et al_. Dose-dependent cortical thinning after partial brain


irradiation in high-grade glioma. _Int. J. Radiat. Oncol. Biol. Phys._ 94, 297–304 (2016). Article  PubMed  Google Scholar  * Seibert, T. M. _ et al_. Selective vulnerability of cerebral


cortex regions to radiation dose-dependent atrophy. [abstract] _Int. J. Radiat. Oncol. Biol. Phys._ 96, S177–304 (2016). Article  Google Scholar  * Karunamuni, R. A. _ et al_. Radiation


sparing of cerebral cortex in brain tumor patients using quantitative neuroimaging. _Radiother. Oncol._ 118, 29–34 (2016). Article  PubMed  PubMed Central  Google Scholar  * Olsson, E. _ et


al_. Hippocampal volumes in patients exposed to low-dose radiation to the basal brain. A case–control study in long-term survivors from cancer in the head and neck region. _Radiat. Oncol._


7, 202 (2012). Article  PubMed  PubMed Central  Google Scholar  * Nolen, S. C. _ et al_. The effects of sequential treatments on hippocampal volumes in malignant glioma patients. _J.


Neurooncol._ 129, 433–441 (2016). Article  PubMed  PubMed Central  Google Scholar  * Seibert, T. M. _ et al_. Radiation dose-dependent hippocampal atrophy detected with longitudinal


volumetric MRI. _Int. J. Radiat. Oncol. Biol. Phys._ http://dx.doi.org/10.1016/j.ijrobp.2016.10.035 (2016). * Walecki, J. _ et al_. Role of short TE 1H-MR spectroscopy in monitoring of


post-operation irradiated patients. _Eur. J. Radiol._ 30, 154–161 (1999). Article  CAS  PubMed  Google Scholar  * Sundgren, P. C. _ et al_. Metabolic alterations: a biomarker for


radiation-induced normal brain injury-an MR spectroscopy study. _J. Magn. Reson. Imaging_ 29, 291–297 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Movsas, B. _ et al_.


Quantifying radiation therapy-induced brain injury with whole-brain proton MR spectroscopy: initial observations. _Radiology_ 221, 327–331 (2001). Article  CAS  PubMed  Google Scholar  *


Robbins, M. E. _ et al_. Imaging radiation-induced normal tissue injury. _Radiat. Res._ 177, 449–466 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, S. _ et al_.


Radiation induced brain injury: assessment of white matter tracts in a pre-clinical animal model using diffusion tensor MR imaging. _J. Neurooncol._ 112, 9–15 (2013). Article  PubMed  Google


Scholar  * White, N. S. _ et al_. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. _Cancer Res._ 74, 4638–4652 (2014). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the brain. _Neurotherapeutics_ 4, 316–329 (2007).


Article  PubMed  PubMed Central  Google Scholar  * Chan, K. C. _ et al_. MRI of late microstructural and metabolic alterations in radiation-induced brain injuries. _J. Magn. Reson. Imaging_


29, 1013–1020 (2009). Article  PubMed  Google Scholar  * Ravn, S., Holmberg, M., Sorensen, P., Frokjaer, J. B. & Carl, J. Differences in supratentorial white matter diffusion after


radiotherapy — new biomarker of normal brain tissue damage? _Acta Oncol._ 52, 1314–1319 (2013). Article  PubMed  Google Scholar  * Haris, M. _ et al_. Serial diffusion tensor imaging to


characterize radiation-induced changes in normal-appearing white matter following radiotherapy in patients with adult low-grade gliomas. _Radiat. Med._ 26, 140–150 (2008). Article  PubMed 


Google Scholar  * Nagesh, V. _ et al_. Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. _Int. J. Radiat. Oncol.


Biol. Phys._ 70, 1002–1010 (2008). Article  PubMed  PubMed Central  Google Scholar  * Zhu, T. _ et al_. Effect of the maximum dose on white matter fiber bundles using longitudinal diffusion


tensor imaging. _Int. J. Radiat. Oncol. Biol. Phys._ 96, 696–705 (2016). Article  PubMed  PubMed Central  Google Scholar  * Qiu, D., Kwong, D. L., Chan, G. C., Leung, L. H. & Khong, P.


L. Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma


survivors: reflection of regional white matter radiosensitivity? _Int. J. Radiat. Oncol. Biol. Phys._ 69, 846–851 (2007). Article  PubMed  Google Scholar  * Chapman, C. H. _ et al_. Regional


variation in brain white matter diffusion index changes following chemoradiotherapy: a prospective study using tract-based spatial statistics. _PLoS ONE_ 8, e57768 (2013). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Chapman, C. H. _ et al_. Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive


decline. _Int. J. Radiat. Oncol. Biol. Phys._ 82, 2033–2040 (2012). Article  PubMed  Google Scholar  * Khong, P. L. _ et al_. White matter anisotropy in post-treatment childhood cancer


survivors: preliminary evidence of association with neurocognitive function. _J. Clin. Oncol._ 24, 884–890 (2006). Article  PubMed  Google Scholar  * Meyers, C. A., Weitzner, M. A.,


Valentine, A. D. & Levin, V. A. Methylphenidate therapy improves cognition, mood, and function of brain tumor patients. _J. Clin. Oncol._ 16, 2522–2527 (1998). Article  CAS  PubMed 


Google Scholar  * Brown, P. D. _ et al_. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled


trial. _Neuro Oncol._ 15, 1429–1437 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * McGough, J. J. _ et al_. Once-daily OROS methylphenidate is safe and well tolerated in


adolescents with attention-deficit/hyperactivity disorder. _J. Child Adolesc. Psychopharmacol._ 16, 351–356 (2006). Article  PubMed  Google Scholar  * Parsons, C. G., Danysz, W. & Quack,


G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist — a review of preclinical data. _Neuropharmacology_ 38, 735–767 (1999). Article  CAS  PubMed 


Google Scholar  * NRG Oncology. _NRGOncology.org_ [online] NRG-CC001: a randomized phase III Trial of memantine and whole-brain radiotherapy with or without hippocampal avoidance in patients


with brain metastases. https://www.nrgoncology.org/Clinical-Trials/NRG-CC001 (2015). * Howard, R. _ et al_. Donepezil and memantine for moderate-to-severe Alzheimer's disease. _N.


Engl. J. Med._ 366, 893–903 (2012). Article  CAS  PubMed  Google Scholar  * Kleinberg, L. Neurocognitive challenges in brain tumor survivors: is there anything we can do? _J. Clin. Oncol._


33, 1633–1636 (2015). Article  PubMed  PubMed Central  Google Scholar  * Fathpour, P. _ et al_. Bevacizumab treatment for human glioblastoma. Can it induce cognitive impairment? _Neuro


Oncol._ 16, 754–756 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Calabrese, B. & Halpain, S. Essential role for the PKC target MARCKS in maintaining dendritic spine


morphology. _Neuron_ 48, 77–90 (2005). Article  CAS  PubMed  Google Scholar  * Hains, A. B. _ et al_. Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and


cognition from the effects of chronic stress. _Proc. Natl Acad. Sci. USA_ 106, 17957–17962 (2009). Article  CAS  PubMed  Google Scholar  * Starr, P. Midostaurin the first targeted therapy


to improve survival in AML: potentially practice-changing. _Am. Health Drug Benefits_ 9, 1–21 (2016). PubMed  PubMed Central  Google Scholar  * Cifelli, J. L., Dozier, L., Chung, T. S.,


Patrick, G. N. & Yang, J. Benzothiazole amphiphiles promote the formation of dendritic spines in primary hippocampal neurons. _J. Biol. Chem._ 291, 11981–11992 (2016). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Williams, C. A. & Lavik, E. B. Engineering the CNS stem cell microenvironment. _Regen. Med._ 4, 865–877 (2009). Article  PubMed  PubMed Central


  Google Scholar  * Tysseling-Mattiace, V. M. _ et al_. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. _J. Neurosci._ 28,


3814–3823 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, H. D., Dunnavant, F. D., Jarman, T. & Deutch, A. Y. Effects of antipsychotic drugs on neurogenesis in the


forebrain of the adult rat. _Neuropsychopharmacology_ 29, 1230–1238 (2004). Article  CAS  PubMed  Google Scholar  * Pleasure, D., Soulika, A., Singh, S. K., Gallo, V. & Bannerman, P.


Inflammation in white matter: clinical and pathophysiological aspects. _Ment. Retard. Dev. Disabil. Res. Rev._ 12, 141–146 (2006). Article  PubMed  Google Scholar  * Nunes, M. C. _ et al_.


Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. _Nat. Med._ 9, 439–447 (2003). Article  CAS  PubMed  Google


Scholar  * Burger, P. C., Mahley, M. S. Jr, Dudka, L. & Vogel, F. S. The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25


cases. _Cancer_ 44, 1256–1272 (1979). Article  CAS  PubMed  Google Scholar  * Fujii, O. _ et al_. White matter changes on magnetic resonance imaging following whole-brain radiotherapy for


brain metastases. _Radiat. Med._ 24, 345–350 (2006). Article  PubMed  Google Scholar  * Mabbott, D. J., Noseworthy, M. D., Bouffet, E., Rockel, C. & Laughlin, S. Diffusion tensor imaging


of white matter after cranial radiation in children for medulloblastoma: correlation with IQ. _Neuro Oncol._ 8, 244–252 (2006). Article  PubMed  PubMed Central  Google Scholar  * Chiang, C.


S., McBride, W. H. & Withers, H. R. Myelin-associated changes in mouse brain following irradiation. _Radiother. Oncol._ 27, 229–236 (1993). Article  CAS  PubMed  Google Scholar  *


Nakagaki, H., Brunhart, G., Kemper, T. L. & Caveness, W. F. Monkey brain damage from radiation in the therapeutic range. _J. Neurosurg._ 44, 3–11 (1976). Article  CAS  PubMed  Google


Scholar  Download references ACKNOWLEDGEMENTS J.A.H.-G. has received funding from NIH (grants #1KL2TR001444 and #UL1TR000100), and has received the American Cancer Society Pilot Award


ACS-IRG 70-002. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, 92093–0819, CA, USA


Milan T. Makale & Jona A. Hattangadi-Gluth * Department of Psychiatry, 9500 Gilman Drive, UC San Diego, La Jolla, 92093–0841, CA, USA Carrie R. McDonald * Department of Translational


Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, 90404, California, USA Santosh Kesari


Authors * Milan T. Makale View author publications You can also search for this author inPubMed Google Scholar * Carrie R. McDonald View author publications You can also search for this


author inPubMed Google Scholar * Jona A. Hattangadi-Gluth View author publications You can also search for this author inPubMed Google Scholar * Santosh Kesari View author publications You


can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.T.M., C.R.M., and J.A.H.-G. contributed to researching the data, writing and reviewing of the manuscript. S.K.


provided substantial contributions to the discussion of the content and revising of the manuscript. CORRESPONDING AUTHORS Correspondence to Milan T. Makale or Santosh Kesari. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS FURTHER INFORMATION WHO description of health POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG.


1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR FIG. 5 POWERPOINT SLIDE FOR FIG. 6 POWERPOINT SLIDE FOR FIG. 7 POWERPOINT SLIDE


FOR TABLE 1 GLOSSARY * Whole-brain radiotherapy Entire brain and brainstem are irradiated to treat a tumour. * Partial-brain radiotherapy Irradiation treatment of the tumour or tumour bed


and surrounding margin; moreover, some healthy brain tissue is subject to incidental irradiation. * Diffusion tensor imaging Models the motion of water as an ellipse, with derived metrics


allowing the study of white matter integrity. * Delayed Match-to-Sample A test used to assess non-verbal elements of short-term memory in humans and primates: the participant must recall


whether a stimulus matches a previously presented 'sample' stimulus. * Homer1a Homer1a is a protein expressed by neurons that selectively inhibits the binding of family 1


metabotropic glutamate receptor (mGluR) to the synapse. * Diffusion-weighted imaging Measures and models the diffusion of water at the cellular level. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Makale, M., McDonald, C., Hattangadi-Gluth, J. _et al._ Mechanisms of radiotherapy-associated cognitive disability in patients with brain


tumours. _Nat Rev Neurol_ 13, 52–64 (2017). https://doi.org/10.1038/nrneurol.2016.185 Download citation * Published: 16 December 2016 * Issue Date: January 2017 * DOI:


https://doi.org/10.1038/nrneurol.2016.185 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Exchange on democracy in america | thearticle

First {{register.errors.names}} Last Gender What's this for? Age bracket What's this for? This is to help us s...

Iran says enemies used lizards to spy

Iran's Western enemies used lizards that "attract atomic waves" to spy on the country's nuclear prog...

Fifa suspends 2026 world cup bidding amid scandal

Bidding for the 2026 FIFA soccer World Cup has been suspended as corruption allegations engulf the organization. The dec...

One-pot wonders: the best warm and comfort food for winter

Run the frozen spinach under cold water in a colander to thaw and get rid of the excess ice. Squeeze as much water as yo...

'jupiter's legacy' decodes the superhero genre without subverting it

You'd be forgiven for wondering how Netflix's _Jupiter's Legacy_ compares to other recent entries in the ...

Latests News

Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours

KEY POINTS * Intracranial radiotherapy leads to permanent and substantial cognitive disability in 50–90% of patients * T...

Eastenders spoilers: linda carter loses custody of ollie?

Executive producer Jon Sen told Digital Spy: ”This autumn the Carters will face one of their biggest crises to date when...

Boy, 16, arrested after 'dangerous driving' leaves 3 injured

A boy aged 16 has been arrested after three people were hurt in a crash on a Leicestershire road yesterday (Saturday, Ma...

Mortgage rates: how to get best mortgage rates & avoid paying too much

Mortgages can make the expenditure you face on a property more manageable. Although, that’s not to say that everyone wil...

How to live longer - best exercise to add years onto your lifespan

The key to living longer could be to eat a healthy, balanced diet - including at least five portions of fruit and vegeta...

Top