Through the eye, slowly; delays and localization errors in the visual system

Nature

Through the eye, slowly; delays and localization errors in the visual system"


Play all audios:

Loading...

KEY POINTS * Afferent delays in the visual system are long and often lead to the mislocalization of objects. When our eyes or visible objects move, temporal errors in transmitting and


processing neural signals can easily translate into spatial errors. This review considers three cases in which this occurs: when we pursue a moving target, when we try to localize a target


that is presented just before a saccadic eye movement, and when we try to locate a moving stimulus with respect to a flashed one. * During smooth pursuit, an image of the moving target is


always on the fovea. However, when that image reaches the level of perception, the eye is already pointing further along the anticipated target trajectory. Therefore, 'what-we-see'


might not correspond to 'where-we-are-looking-at-that-instant'. Experimental data indicate that this is indeed the case. If so, our brain does not attempt to compensate for visual


afferent delays. * The delay problem encountered in smooth pursuit is exacerbated during saccades because they are so fast. A large saccade can be performed during the time it takes for the


image of a flashed object to reach the level of perception. How, then, can we localize the object? In the absence of any other visual cue, we have to rely on internal information about the


trajectory and time course of the performed saccade. Experimental data show that this information (called the eye-position signal, or EPS) is available, although it is quite distorted. The


distortion causes systematic mislocalizations, which affect stimuli presented not only during a saccade, but also before and after, when the eye is stable. * A number of illusions caused by


stimulus motion are strikingly similar to perisaccadic mislocalization. The best known is the flash-lag effect, in which the perceived spatial relationship between a moving object and a


stable one that is briefly flashed in the dark seems to be distorted. We argue that the cause of the illusion might be the indeterminacy of the exact time of an event (such as the flash).


Recent data show that our current models of peaks of activity in visual maps are too simplistic to account for localization in the presence of change. * Analogous misperceptions can occur


with other types of change, apart from stimulus–retinal slip. The problem can be formulated in general terms: when a variable changes (eye, body or stimulus variable), even predictably, how


does the brain determine its state at the instant specified by an event? To answer this question, we have to understand how the brain encodes a changing variable (for example, position


versus velocity signals), and how it reads that code (continuously or by sampling). ABSTRACT Reviews on the visual system generally praise its amazing performance. Here we deal with its


biggest weakness: sluggishness. Inherent delays lead to mislocalization when things move or, more generally, when things change. Errors in time translate into spatial errors when we pursue a


moving object, when we try to localize a target that appears just before a gaze shift, or when we compare the position of a flashed target with the instantaneous position of a continuously


moving one (or one that appears to be moving even though no change occurs in the retinal image). Studying such diverse errors might rekindle our thinking about how the brain copes with


real-time changes in the world. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read


our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HIERARCHICAL MOTION PERCEPTION AS CAUSAL INFERENCE Article Open access 24 April 2025 THE HUMAN PRIMARY VISUAL


CORTEX (V1) ENCODES THE PERCEIVED POSITION OF STATIC BUT NOT MOVING OBJECTS Article Open access 01 March 2022 LAWFUL KINEMATICS LINK EYE MOVEMENTS TO THE LIMITS OF HIGH-SPEED PERCEPTION


Article Open access 08 May 2025 REFERENCES * Hazelhoff, F. & Wiersma, H. Die Wahrnehmungszeit. _Z. Psychol._ 96, 181–188 (1924). Google Scholar  * Schmolesky, M. T. et al. Signal timing


across the macaque visual system. _J. Neurophysiol._ 79, 3272–3278 (1998). CAS  PubMed  Google Scholar  * Ward, F. in _Eye Movements and Psychological Processes_ (eds Monty, R. A. &


Senders, J. W.) 289–297 (Erlbaum, Hillsdale, New Jersey, 1976). Google Scholar  * Mateeff, S., Yakimoff, N. & Dimitrov, G. Localization of brief stimuli during pursuit eye movements.


_Acta Psychol. (Amst.)_ 48, 133–140 (1981). CAS  Google Scholar  * Brenner E., Smeets, J. B. J. & van den Berg, A. V. Smooth eye movements and spatial localisation. _Vision Res._ 41,


2253–2259 (2001). CAS  PubMed  Google Scholar  * Smeets, J. B. J. & Brenner, E. Perception and action are based on the same visual information: distinction between position and velocity.


_J. Exp. Psychol. Hum. Percept. Perform._ 21, 19–31 (1995). CAS  PubMed  Google Scholar  * Newsome, W. T., Wurtz, R. H. & Komatsu, H. Relation of cortical areas MT and MST to pursuit


eye movements. II. Differentiation of retinal from extraretinal inputs. _J. Neurophysiol._ 60, 604–620 (1988). CAS  PubMed  Google Scholar  * Paillard, J. Quelques données


psychophysiologiques relatives au déclenchement de la commande motrice. _Année Psychol._ 48, 28–47 (1948). Google Scholar  * Aschersleben, G. & Prinz, W. Synchronizing actions with


events: the role of sensory information. _Percept. Psychophys._ 57, 305–317 (1995). CAS  PubMed  Google Scholar  * Aschersleben, G. in _Cognitive Contributions to the Perception of Spatial


and Temporal Events_ (eds Aschersleben, G., Bachmann, T. & Müsseler, J.) 293–318 (Elsevier, Amsterdam, 1999). Google Scholar  * Churchland, M. M. & Lisberger, S. G. Experimental and


computational analysis of monkey smooth pursuit eye movements. _J. Neurophysiol._ 86, 741–759 (2001). CAS  PubMed  Google Scholar  * Dassonville, P., Schlag, J. & Schlag-Rey, M.


Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates. _Vis. Neurosci._ 9, 261–269 (1992). CAS  PubMed  Google Scholar  *


Dassonville, P., Schlag, J. & Schlag-Rey, M. Direction constancy in the oculo-motor system. _Curr. Dir. Psychol. Sci._ 2, 143–147 (1993). Google Scholar  * Mitrani, L., Mateeff, S. &


Yakimoff, N. Smearing of the retinal image during voluntary saccadic eye movements. _Vision Res._ 10, 405–409 (1970). CAS  PubMed  Google Scholar  * Matin, L. & Pearce, D. G. Visual


perception of direction for stimuli flashed during voluntary saccadic eye movement. _Science_ 148, 1485–1488 (1965).ALTHOUGH NOT THE FIRST ONE ON THIS TOPIC, THIS IS THE MOST INFLUENTIAL


PAPER TO HAVE DRAWN ATTENTION TO MISLOCALIZATION NEAR THE TIME OF SACCADES. CAS  PubMed  Google Scholar  * Bischof, F. & Kramer, E. Untersuchungen und Überlegungen zur


Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen. _Psychol. Forsch._ 32, 185–218 (1968). CAS  PubMed  Google Scholar  * Hallett, P. E. & Lightstone, A. D. Saccadic eye


movements toward stimuli triggered by prior saccades. _Vision Res._ 16, 99–106 (1976).THIS STUDY PROVIDED EVIDENCE THAT THE BRAIN USES AN EPS TO LOCATE VISUAL TARGETS IN THE DARK. CAS 


PubMed  Google Scholar  * Hansen, R. M. & Skavenski, A. A. Accuracy of spatial localization near the time of saccadic eye movements. _Vision Res._ 25, 1077–1082 (1985). CAS  PubMed 


Google Scholar  * Honda, H. Spatial localization in saccade and pursuit-eye-movement conditions: a comparison of perceptual and motor measures. _Percept. Psychophys._ 38, 41–46 (1985). CAS 


PubMed  Google Scholar  * Honda, H. in _Attention and Performance XIII: Motor Representation and Control_. (ed. Jeannerod, M.) 567–582 (Erlbaum, Hillsdale, New Jersey, 1990). Google Scholar


  * Dassonville, P., Schlag, J. & Schlag-Rey, M. The use of egocentric and exocentric location cues in saccadic programming. _Vision Res._ 35, 2191–2199 (1995). CAS  PubMed  Google


Scholar  * Schlag, J. & Schlag-Rey, M. Illusory localization of stimuli flashed in the dark before saccades. _Vision Res._ 35, 2347–2357 (1995). CAS  PubMed  Google Scholar  * Bockisch,


C. J. & Miller, J. M. Different motor systems use similar damped extraretinal eye position information. _Vision Res._ 39, 1025–1038 (1999). CAS  PubMed  Google Scholar  * Matin, L. et


al. Oculoparalytic illusion: visual-field dependent spatial mislocalizations by humans partially paralyzed with curare. _Science_ 216, 198–201 (1982).PROBABLY THE MOST ELEGANT DEMONSTRATION


OF THE ROLE OF THE INTERNAL EPS IN STIMULUS LOCALIZATION AND OF ITS OVERRIDING BY AMBIENT VISUAL CUES. CAS  PubMed  Google Scholar  * Bridgeman, B. & Delgado, D. Sensory effects of eye


press are due to efference. _Percept. Psychophys._ 36, 482–484 (1984). CAS  PubMed  Google Scholar  * Grüsser, O.-J., Krizic, A. & Weiss, L.-R. After-image movement during saccades in


dark. _Vision Res._ 27, 215–226 (1987). PubMed  Google Scholar  * Mergner, T., Nasios, G., Maurer, C. & Becker, W. Visual localization in space: interaction of retinal, eye position,


vestibular and neck proprioceptive information. _Exp. Brain Res._ 141, 33–51 (2001). CAS  PubMed  Google Scholar  * Goldberg, M. E. & Bruce, C. J. Primate frontal eye fields. III.


Maintenance of spatially accurate saccade signal. _J. Neurophysiol._ 64, 489–508 (1990). CAS  PubMed  Google Scholar  * Moschovakis, A. K., Karalelas, A. B. & Highstein, S. N.


Structure–function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. _J. Neurophysiol._ 60, 263–302 (1988). CAS  PubMed  Google Scholar  *


Quaia, C., Optican, L. M. & Goldberg, M. E. The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields. _Neural Netw._ 11, 1229–1240 (1998). PubMed 


Google Scholar  * Zipser, D. & Andersen, R. A. A back-propagation programmed network that stimulates response properties of a subset of posterior parietal neurons. _Nature_ 331, 679–684


(1988). CAS  PubMed  Google Scholar  * Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements.


_Science_ 255, 90–92 (1992). CAS  PubMed  Google Scholar  * Umeno, M. M. & Goldberg, M. E. Spatial processing in the monkey's frontal eye field. Predictive visual responses. _J.


Neurophysiol._ 78, 1373–1383 (1997). CAS  PubMed  Google Scholar  * Walker, M. F., FitzGibbon, E. J. & Goldberg, M. E. Neurons in the monkey superior colliculus predict the result of


impending saccadic eye movements. _J. Neurophysiol._ 73, 1988–2003 (1995). CAS  PubMed  Google Scholar  * Honda, H. Perceptual localization of visual stimuli flashed during saccades.


_Percept. Psychophys._ 45, 162–174 (1989). CAS  PubMed  Google Scholar  * Boucher, L., Groh, J. M. & Hughes, H. C. Afferent delays and the mislocalization of perisaccadic stimuli.


_Vision Res._ 41, 2631–2644 (2001). CAS  PubMed  Google Scholar  * Pouget, A., Albright, T. & Sejnowski, T. A dynamic model for computing the position of an object from its retinal


location and eye position. _Soc. Neurosci. Abstr._ 18, 1396 (1992). * Pola, J. R & Wyatt, H. J. The time course of the extraretinal signal for saccade-contingent perceived direction may


be as fast as the saccade. _Soc. Neurosci. Abstr._ 31, 58.19 (2001). Google Scholar  * Sperling, G. in _Eye Movements and their Role in Visual and Cognitive Processes_ (ed. Kowler, E.)


307–351 (Elsevier, Amsterdam, 1990). Google Scholar  * Volkmannn, F. C. & Moore, R. K. in _Visual Psychophysics and Physiology_ (eds Armington, J. C., Krauskopf, J. & Wooden, B. R.)


353–362 (Academic, New York, 1978). Google Scholar  * Dassonville, P. Haptic localization and internal representation of the hand in space. _Exp. Brain Res._ 106, 434–448 (1995). CAS  PubMed


  Google Scholar  * Hershberger, W. Saccadic eye movements and the perception of visual direction. _Percept. Psychophys._ 41, 35–44 (1987). CAS  PubMed  Google Scholar  * Kubischik, M. &


Bremmer, F. Peri-saccadic space representation in monkey inferior parietal cortex. _Soc. Neurosci. Abstr._ 25, 1164 (1999). Google Scholar  * Mays, L. E. & Sparks, D. L. Dissociation of


visual and saccade-related responses in superior colliculus neurons. _J. Neurophysiol._ 43, 207–232 (1980). CAS  PubMed  Google Scholar  * Robinson, D. A. & Fuchs, A. F. Eye movements


evoked by stimulation of frontal eye fields. _J. Neurophysiol._ 32, 637–648 (1969). CAS  PubMed  Google Scholar  * Sparks, D. L. & Mays, L. E. Spatial localization of saccade targets. I.


Compensation for stimulus induced perturbations in eye position. _J. Neurophysiol._ 49, 45–74 (1983). CAS  PubMed  Google Scholar  * Schlag, J. & Schlag-Rey, M. Does microstimulation


evoke fixed vector saccades by generating their vector or by specifying their goal? _Exp. Brain Res._ 68, 442–444 (1987). CAS  PubMed  Google Scholar  * Schlag, J. & Schlag-Rey, M.


Colliding saccades may reveal the secret of their marching orders. _Trends Neurosci._ 13, 410–415 (1990). CAS  PubMed  Google Scholar  * Dassonville, P., Schlag, J. & Schlag-Rey, M. The


frontal eye field provides the goal of saccadic eye movement. _Exp. Brain Res._ 89, 300–310 (1992). CAS  PubMed  Google Scholar  * Schlag, J., Schlag-Rey, M. & Dassonville, P.


Interactions between natural and electrically evoked saccades. II. At what time is eye position sampled as a reference for the localization of a target? _Exp. Brain Res._ 76, 548–558 (1989).


CAS  PubMed  Google Scholar  * Schlag-Rey, M., Schlag, J. & Dassonville, P. Interactions between natural and electrically evoked saccades. I. Differences between sites carrying retinal


error and motor command signals in monkey superior colliculus. _Exp. Brain Res._ 76, 537–547 (1989). CAS  PubMed  Google Scholar  * Dominey, P. F., Schlag, J., Schlag-Rey, M. & Arbib, M.


A. Colliding saccades evoked by frontal eye field stimulation: artifact or evidence for an oculomotor compensatory mechanism underlying double-step saccades. _Biol. Cybern._ 76, 41–52


(1997). CAS  PubMed  Google Scholar  * Brenner, E. & Cornelissen, F. W. Separate simultaneous processing of egocentric and relative positions. _Vision Res._ 40, 2557–2564 (2000). CAS 


PubMed  Google Scholar  * Honda, H. Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background. _Vision Res._ 33, 709–716


(1993). CAS  PubMed  Google Scholar  * Karn, K. S., Moller, P. & Hayhoe, M. M. Reference frames in saccadic targeting. _Exp. Brain Res._ 115, 267–282 (1997). CAS  PubMed  Google Scholar


  * Hahnloser, R., Douglas, R. G., Mahowald, M. & Hepp, K. Feedback interactions between neuronal pointers and maps for attentional processing. _Nature Neurosci._ 2, 746–752 (1999). CAS


  PubMed  Google Scholar  * Cai, R. H., Pouget, A., Schlag-Rey, M. & Schlag, J. Perceived geometrical relationships affected by eye-movement signals. _Nature_ 386, 601–604 (1997). CAS 


PubMed  Google Scholar  * Ross, J., Morrone, M. C. & Burr, D. C. Compression of visual space before saccades. _Nature_ 386, 598–601 (1997). CAS  PubMed  Google Scholar  * Morrone, M. C.,


Ross, J. & Burr, D. C. Apparent position of visual targets during real and simulated saccadic eye movements. _J. Neurosci._ 17, 7941–7953 (1997). CAS  PubMed  PubMed Central  Google


Scholar  * Lappe, M., Awater, H. & Krekelberg, B. Postsaccadic visual references generate presaccadic compression of space. _Nature_ 403, 892–895 (2000). CAS  PubMed  Google Scholar  *


Ross, J., Morrone, M. C., Goldberg, M. E. & Burr, D. C. Changes in visual perception at the time of saccades. _Trends Neurosci._ 24, 113–121 (2001). CAS  PubMed  Google Scholar  * van


Beers, R. J., Wolpert, D. M. & Haggard, P. Sensorimotor integration compensates for visual localization errors during smooth pursuit eye movements. _J. Neurophysiol._ 85, 1914–1922


(2001). CAS  PubMed  Google Scholar  * Deubel, H., Schneider, W. X. & Bridgeman, B. Postsaccadic target blanking prevents saccadic suppression of image displacement. _Vision Res._ 36,


985–996 (1996). CAS  PubMed  Google Scholar  * Fröhlich, F. W. Über die Messung der Empfindungszeit. _Z. Sinnesphysiol._ 54, 57–78 (1923). Google Scholar  * Metzger, W. Versuch einer


gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Vefahren zur Messung der Empfindungszeit. _Psychol. Forsch._ 16, 176–200 (1931). Google Scholar  * MacKay, D. M.


Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. _Nature_ 181, 507–508 (1958). CAS  PubMed  Google Scholar  * Nijhawan, R. Motion extrapolation


in catching. _Nature_ 370, 256–257 (1994).THIS SHORT PAPER RENEWED INTEREST IN THE FLASH-LAG PHENOMENON AND STARTED AN INTENSE DEBATE. CAS  PubMed  Google Scholar  * Nijhawan, R. The


flash-lag phenomenon: object motion and eye movements. _Perception_ 30, 263–282 (2001). CAS  PubMed  Google Scholar  * Purushothaman, G., Patel, S. S., Bedell, H. E. & Ogmen, H. Moving


ahead through differential visual latency. _Nature_ 396, 424 (1998). CAS  PubMed  Google Scholar  * Whitney, D. & Murakami, I. Latency difference, not spatial extrapolation. _Nature


Neurosci._ 1, 656–657 (1998). CAS  PubMed  Google Scholar  * Whitney, D., Murakami, I. & Cavanagh, P. Illusory spatial offset of a flash relative to a moving stimulus is caused by


differential latencies for moving and flashed stimuli. _Vision Res._ 40, 137–149 (2000). CAS  PubMed  Google Scholar  * Murakami, I. A flash-lag effect in random motion. _Vision Res._ 41,


3101–3119 (2001). CAS  PubMed  Google Scholar  * Baldo, M. V. C. & Klein, S. A. Extrapolation or attention shift? _Nature_ 378, 565–566 (1995). CAS  PubMed  Google Scholar  * Super, H.,


Spekreijse, H. & Lamme, V. A. F. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). _Nature Neurosci._ 4, 304–310 (2001). CAS  PubMed  Google Scholar


  * Allik, J. & Kreegipuu, K. Multiple visual latency. _Psychol. Sci._ 9, 135–138 (1998). Google Scholar  * Arnold, D. H., Clifford, C. W. G. & Wenderoth, P. Asynchronous processing


in vision: color leads motion. _Curr. Biol._ 11, 596–600 (2001). CAS  PubMed  Google Scholar  * Bartels, A. & Zeki, S. The theory of multistage integration in the visual brain. _Proc. R.


Soc. Lond. B_ 265, 2327–2332 (1998). CAS  Google Scholar  * Berry, M. J., Brivanlou, I. H., Jordan, T. A. & Meister, M. Anticipation of moving stimuli by the retina. _Nature_ 398,


334–338 (1999). CAS  PubMed  Google Scholar  * Müller, K., Aschersleben, G., Koch, R., Freund, H. & Prinz, W. in _Cognitive Contributions to the Perception of Spatial and Temporal


Events_ (eds Aschersleben, G., Bachmann, T. & Müsseler, J.) 233–250 (Elsevier, Amsterdam, 1999) Google Scholar  * Lappe, M. & Krekelberg, B. The position of moving objects.


_Perception_ 27, 1437–1449 (1998). CAS  PubMed  Google Scholar  * Krekelberg, B. & Lappe, M. Temporal recruitment along the trajectory of moving objects and the perception of position.


_Vision Res._ 39, 2669–2679 (1999). CAS  PubMed  Google Scholar  * Watanabe, K., Nijhawan, R., Khurana, B. & Shimojo, S. Perceptual organization of moving stimuli modulates the flash-lag


effect. _J. Exp. Psychol. Hum. Percept. Perform._ 27, 879–894 (2001). PubMed  Google Scholar  * Brenner, E. & Smeets, J. B. J. Motion extrapolation is not responsible for the flash-lag


effect. _Vision Res._ 40, 1645–1648 (2000). CAS  PubMed  Google Scholar  * Eagleman, D. M. & Sejnowski, T. J. Motion integration and postdiction in visual awareness. _Science_ 287,


2036–2038 (2000). CAS  PubMed  Google Scholar  * Cai, R. H. & Schlag, J. Asynchronous feature binding and the flash-lag illusion. _Invest. Ophthalmol. Vis. Sci._ 42, 3830 (2001). Google


Scholar  * Cai, R. H., Schlag-Rey, M. & Schlag, J. Displacement of the moving bar exists in the flash-lag effect. _Soc. Neurosci. Abstr._ 26, 1502 (2000). Google Scholar  * Snowden, R.


J. Shifts in perception following adaptation to visual motion. _Curr. Biol._ 8, 1343–1345 (1998). CAS  PubMed  Google Scholar  * Schlag, J., Cai, R. H., Dorfman, A., Mohempour, A. &


Schlag-Rey, M. Extrapolating movement without retinal motion. _Nature_ 403, 38–39 (2000). CAS  PubMed  Google Scholar  * Cai, R. H., Jacobson, K., Baloh, R., Schlag-Rey, M. & Schlag, J.


Vestibular signals can distort the perceived spatial relationship of retinal stimuli. _Exp. Brain Res._ 135, 275–278 (2000). CAS  PubMed  Google Scholar  * Bachman, T. & Poder, E. Change


in feature space is not necessary for the flash-lag effect. _Vision Res._ 41, 1103–1106 (2001). Google Scholar  * Sheth, B., Nijhawan, R. & Shimojo, S. Changing objects lead briefly


flashed ones. _Nature Neurosci._ 3, 489–495 (2000). CAS  PubMed  Google Scholar  * Fu, Y.-X., Shen, Y. & Dan, Y. Motion-induced perceptual extrapolation of blurred visual targets. _J.


Neurosci._ 21, RC172 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Deubel, H., Irwin, D. E. & Schneider, W. X. in _Current Oculomotor Research: Physiological and Psychological


Aspects_ (eds Becker, W., Deubel, H. & Mergner, T.) 65–70 (Plenum, New York, 1999). Google Scholar  * Krekelberg, B. The persistence of position. _Vision Res._ 41, 529–539 (2001). CAS 


PubMed  Google Scholar  * Krekelberg, B. & Lappe, M. Neuronal latencies and the position of moving objects. _Trends Neurosci._ 24, 335–339 (2001). CAS  PubMed  Google Scholar  * Tolias,


A. S. et al. Eye movements modulate visual receptive fields of V4 neurons. _Neuron_ 29, 757–767 (2001). CAS  PubMed  Google Scholar  * Paillard, J. & Amblard, B. in _Brain Mechanisms and


Spatial Vision_ (eds Ingle, D. J., Jeannerod, M. & Lee, D. N.) 299–329 (Martinus Nijhoof, Dordrecht, 1985). Google Scholar  * Priebe, N. J., Churchland, M. M. & Lisberger, S. G.


Reconstruction of target speed for the guidance of pursuit eye movements. _J. Neurosci._ 21, 3196–3206 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Krekelberg, B. & Lappe, M. A


model of the perceived relative positions of moving objects based upon a slow averaging process. _Vision Res._ 40, 201–215 (2000). CAS  PubMed  Google Scholar  * Rao, R. P. N., Eagleman, D.


M. & Sejnowski, T. J. Optimal smoothing in visual motion perception. _Neural Comput._ 13, 1243–1253 (2001). CAS  PubMed  Google Scholar  * Van der Heiden, A. H. C., Müsseler, J. &


Bridgeman, B. in _Cognitve Contributions to the Perception of Spatial and Temporal Events_ (eds Aschersleben, G., Bachmann, T. & Müsseler, J.) 19–37 (Elsevier, Amsterdam, 1999). Google


Scholar  * De Valois, R. L. & De Valois, K. K. Vernier acuity with stationary moving Gabors. _Vision Res._ 31, 1619–1626 (1991). CAS  PubMed  Google Scholar  * Nishida, S. &


Johnston, A. Influence of motion signals on the perceived position of spatial pattern. _Nature_ 397, 610–612 (1999). CAS  PubMed  Google Scholar  * Whitney, D. & Cavanagh, P. Motion


distorts visual space: shifting the perceived position of remote stationary objects. _Nature Neurosci._ 3, 954–959 (2000). CAS  PubMed  Google Scholar  * Tian, J.-R. & Lynch, J. C.


Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in _Cebus_ monkeys. _J. Neurophysiol._ 76, 2754–2771 (1996). CAS  PubMed  Google Scholar  *


Andersen, R. A., Asanuma, C., Essick, G. & Siegel, R. M. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. _J.


Comp. Neurol._ 296, 65–113 (1990). CAS  PubMed  Google Scholar  * Boussaoud, D., Ungerleider, L. G. & Desimone, R. Pathways for motion analysis: cortical connections of the medial


superior temporal and fundus of the superior temporal visual areas in the macaque. _J. Comp. Neurol._ 296, 462–495 (1990). CAS  PubMed  Google Scholar  * Cavada, C. & Goldman-Rakic, P.


S. Posterior parietal cortex in rhesus monkey. I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. _J. Comp. Neurol._ 287, 393–421 (1989). CAS 


PubMed  Google Scholar  * Huerta, M. F. & Kaas, J. H. Supplementary eye field as defined by intracortical microstimulation: connections in macaques. _J. Comp. Neurol._ 293, 299–330


(1990). CAS  PubMed  Google Scholar  * Schall, J. D., Morel, A., King, D. J. & Bullier, J. Topography of visual cortex connections with frontal eye field in macaque: convergence and


segregation of processing streams. _J. Neurosci._ 15, 4464–4487 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Yin, J., Schlag-Rey, M. & Schlag, J. Comparison of origins of


projections from LIP to SEF and FEF in primate. _Soc. Neurosci Abstr._ 20, 145 (1994). Google Scholar  * Schlag-Rey, M. & Schlag, J. in _The Neurobiology of Saccadic Eye Movements_ (eds


Wurtz, R. H. & Goldberg, M. E.) 361–390 (Elsevier, Amsterdam, 1989) Google Scholar  * Kraulzlis, R. J. & Stone, L. S. Tracking with the mind's eye. _Trends Neurosci._ 22,


544–550 (1999). Google Scholar  Download references ACKNOWLEDGEMENTS Support was provided by grants from the National Institutes of Health. We thank E. Brenner, P. Dassonville, R. Cai and J.


Park for helpful comments. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Neurobiology, UCLA School of Medicine, Los Angeles, 90095-1763, California, USA John Schlag & 


Madeleine Schlag-Rey * John Schlag & Madeleine Schlag-Rey Authors * John Schlag View author publications You can also search for this author inPubMed Google Scholar * Madeleine


Schlag-Rey View author publications You can also search for this author inPubMed Google Scholar RELATED LINKS RELATED LINKS FURTHER INFORMATION oculomotor system  MIT ENCYCLOPEDIA OF


COGNITIVE SCIENCES eye movements and visual attention oculomotor control spatial perception LINKS _Nature_ GLOSSARY * CLOSED LOOP A system in which the input is made dependent on the output


by feedback. * EFFERENCE COPY A copy of a motor command that is sent back to the central nervous system to inform it of the executed movement. * SPATIAL CONSTANCY The perceptual assumption


that objects are still where they were in the world when the retinal shift of their image is caused by our own movements. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE


CITE THIS ARTICLE Schlag, J., Schlag-Rey, M. Through the eye, slowly; Delays and localization errors in the visual system. _Nat Rev Neurosci_ 3, 191 (2002). https://doi.org/10.1038/nrn750


Download citation * Issue Date: 01 March 2002 * DOI: https://doi.org/10.1038/nrn750 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Is ken paxton's acquittal a true victory for texas republicans?

Texas' Republican attorney general, Ken Paxton, was acquitted by the state Senate of 16 charges in his recent impea...

See Benedict Cumberbatch Rock a Victorian Cape

See Benedict Cumberbatch Rock a Victorian Cape The Oscar nominee is back to work on Sherlock – and looking hot as usualB...

Tulum festival regrets not having canceled event that spread virus

The organizers of a multi-day festival in Tulum, Quintana Roo, last month — described as a coronavirus  superspreading e...

Newcastle could draw real madrid and bayern munich in champions league

NEWCASTLE COULD BE HANDED ONE OF THE TOUGHEST REINTRODUCTIONS BACK TO THE CHAMPIONS LEAGUE 11:00, 01 May 2023Updated 12:...

How One Woman Reinvented Her Career After 50

AARP Foundation helped more than 1 million older adults living with low income secure more than $1 billion in income, be...

Latests News

Through the eye, slowly; delays and localization errors in the visual system

KEY POINTS * Afferent delays in the visual system are long and often lead to the mislocalization of objects. When our ey...

skillcourses

Ranchi, Nov 22: In order to thwart the Jamtara gang of cybercriminals, the Jharkhand government’s Department of Higher a...

Self-similarity of extinction statistics in the fossil record

ABSTRACT The dynamical processes underlying evolution over geological timescales remain unclear1,2. Analyses of time ser...

La county officially returns ownership of bruce's beach resort to heirs of black family

by ATIYA JORDAN July 22, 2022 ------------------------- The heirs of CHARLES and WILLA BRUCE have officially secured own...

12ft

Cleaning Webpage...

Top