Distinguishing between resistance, tolerance and persistence to antibiotic treatment
Distinguishing between resistance, tolerance and persistence to antibiotic treatment"
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Antibiotic tolerance is associated with the failure of antibiotic treatment and the relapse of many bacterial infections. However, unlike resistance, which is commonly measured
using the minimum inhibitory concentration (MIC) metric, tolerance is poorly characterized, owing to the lack of a similar quantitative indicator. This may lead to the misclassification of
tolerant strains as resistant, or vice versa, and result in ineffective treatments. In this Opinion article, we describe recent studies of tolerance, resistance and persistence, outlining
how a clear and distinct definition for each phenotype can be developed from these findings. We propose a framework for classifying the drug response of bacterial strains according to these
definitions that is based on the measurement of the MIC together with a recently defined quantitative indicator of tolerance, the minimum duration for killing (MDK). Finally, we discuss
genes that are associated with increased tolerance — the 'tolerome' — as targets for treating tolerant bacterial strains. Access through your institution Buy or subscribe This is a
preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per
year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated
during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MODULATING THE
EVOLUTIONARY TRAJECTORY OF TOLERANCE USING ANTIBIOTICS WITH DIFFERENT METABOLIC DEPENDENCIES Article Open access 09 May 2022 THE PHYSIOLOGY AND GENETICS OF BACTERIAL RESPONSES TO ANTIBIOTIC
COMBINATIONS Article 03 March 2022 MOLECULAR MECHANISMS OF ANTIBIOTIC RESISTANCE REVISITED Article 21 November 2022 REFERENCES * McKeegan, K. S., Borges-Walmsley, M. I. & Walmsley, A.
R. Microbial and viral drug resistance mechanisms. _Trends Microbiol._ 10, S8–S14 (2002). Article CAS PubMed Google Scholar * Scholar, E. M. & Pratt, W. B. (eds) _The Antimicrobial
Drugs_ (Oxford Univ. Press, 2000). Google Scholar * D'Costa, V. M., McGrann, K. M., Hughes, D. W. & Wright, G. D. Sampling the antibiotic resistome. _Science_ 311, 374–377 (2006).
Article CAS PubMed Google Scholar * Bigger, J. W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. _Lancet_ 244, 497–500 (1944). Article Google
Scholar * Hobby, G. L., Meyer, K. & Chaffee, E. Observations on the mechanism of action of penicillin. _Proc. Soc. Exp. Biol. Med._ 50, 281–285 (1942). Article CAS Google Scholar *
Horne, D. & Tomasz, A. Tolerant response of _Streptococcus sanguis_ to β-lactams and other cell-wall inhibitors. _Antimicrob. Agents Chemother._ 11, 888–896 (1977). Article CAS PubMed
PubMed Central Google Scholar * Balaban, N. Q., Gerdes, K., Lewis, K. & McKinney, J. D. A problem of persistence: still more questions than answers? _Nat. Rev. Microbiol._ 11,
587–591 (2013). Article CAS PubMed Google Scholar * Kester, J. C. & Fortune, S. M. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria.
_Crit. Rev. Biochem. Mol. Biol._ 49, 91–101 (2014). Article CAS PubMed Google Scholar * Handwerger, S. & Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. _Annu.
Rev. Pharmacol. Toxicol._ 25, 349–380 (1985). Article CAS PubMed Google Scholar * Tuomanen, E., Cozens, R., Tosch, W., Zak, O. & Tomasz, A. The rate of killing of _Escherichia coli_
by β-lactam antibiotics is strictly proportional to the rate of bacterial growth. _J. Gen. Microbiol._ 132, 1297–1304 (1986). CAS PubMed Google Scholar * McDermott, W. Microbial
persistence. _Yale J. Biol. Med._ 30, 257–291 (1958). CAS PubMed Google Scholar * Lederberg, J. & Zinder, N. Concentration of biochemical mutants of bacteria with penicillin. _J. Am.
Chem. Soc._ 70, 4267–4268 (1948). Article CAS PubMed Google Scholar * Gefen, O. & Balaban, N. Q. The importance of being persistent: heterogeneity of bacterial populations under
antibiotic stress. _FEMS Microbiol. Rev._ 33, 704–717 (2009). Article CAS PubMed Google Scholar * Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial
persistence as a phenotypic switch. _Science_ 305, 1622–1625 (2004). Article CAS PubMed Google Scholar * Wakamoto, Y. et al. Dynamic persistence of antibiotic-stressed mycobacteria.
_Science_ 339, 91–95 (2013). Article CAS PubMed Google Scholar * Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E. & Courvalin, P. Modes and modulations of antibiotic
resistance gene expression. _Clin. Microbiol. Rev._ 20, 79–114 (2007). Article CAS PubMed PubMed Central Google Scholar * Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. &
Piddock, L. J. Molecular mechanisms of antibiotic resistance. _Nat. Rev. Microbiol._ 13, 42–51 (2015). Article CAS PubMed Google Scholar * Chait, R., Craney, A. & Kishony, R.
Antibiotic interactions that select against resistance. _Nature_ 446, 668–671 (2007). Article CAS PubMed Google Scholar * Wiegand, I., Hilpert, K. & Hancock, R. E. Agar and broth
dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. _Nat. Protoc._ 3, 163–175 (2008). Article CAS PubMed Google Scholar * Mattie, H.
Antibiotic efficacy _in vivo_ predicted by _in vitro_ activity. _Int. J. Antimicrob. Agents_ 14, 91–98 (2000). Article CAS PubMed Google Scholar * Paterson, D. L. et al. Outcome of
cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum β-lactamases: implications for the clinical microbiology laboratory. _J.
Clin. Microbiol._ 39, 2206–2212 (2001). Article CAS PubMed PubMed Central Google Scholar * Ishida, K., Guze, P. A., Kalmanson, G. M., Albrandt, K. & Guze, L. B. Variables in
demonstrating methicillin tolerance in _Staphylococcus aureus_ strains. _Antimicrob. Agents Chemother._ 21, 688–690 (1982). Article CAS PubMed PubMed Central Google Scholar * Wolfson,
J., Hooper, D., McHugh, G., Bozza, M. & Swartz, M. Mutants of _Escherichia coli_ K-12 exhibiting reduced killing by both quinolone and β-lactam antimicrobial agents. _Antimicrob. Agents
Chemother._ 34, 1938–1943 (1990). Article CAS PubMed PubMed Central Google Scholar * Mueller, M., de la Pena, A. & Derendorf, H. Issues in pharmacokinetics and pharmacodynamics of
anti-infective agents: kill curves versus MIC. _Antimicrob. Agents Chemother._ 48, 369–377 (2004). Article CAS PubMed PubMed Central Google Scholar * Barry, L. A. et al. _Methods for
determining bactericidal activity of antimicrobial agents; approved guideline_. (National Committee for Clinical Laboratory Standards, 1999). Google Scholar * Keren, I., Kaldalu, N.,
Spoering, A., Wang, Y. P. & Lewis, K. Persister cells and tolerance to antimicrobials. _Fems Microbiol. Lett._ 230, 13–18 (2004). Article CAS PubMed Google Scholar * Pasticci, M. B.
et al. Bactericidal activity of oxacillin and glycopeptides against _Staphylococcus aureus_ in patients with endocarditis: looking for a relationship between tolerance and outcome. _Ann.
Clin. Microbiol. Antimicrob._ 10, 26 (2011). Article CAS PubMed PubMed Central Google Scholar * Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of
lag time underlies antibiotic tolerance in evolved bacterial populations. _Nature_ 513, 418–421 (2014). Article CAS PubMed Google Scholar * Regoes, R. R. et al. Pharmacodynamic
functions: a multiparameter approach to the design of antibiotic treatment regimens. _Antimicrob. Agents Chemother._ 48, 3670–3676 (2004). Article CAS PubMed PubMed Central Google
Scholar * Gefen, O., Gabay, C., Mumcuoglu, M., Engel, G. & Balaban, N. Q. Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria.
_Proc. Natl Acad. Sci. USA_ 105, 6145–6149 (2008). Article CAS PubMed PubMed Central Google Scholar * Helaine, S. et al. Dynamics of intracellular bacterial replication at the single
cell level. _Proc. Natl Acad. Sci. USA_ 107, 3746–3751 (2010). Article CAS PubMed PubMed Central Google Scholar * Amato, S. M., Orman, M. A. & Brynildsen, M. P. Metabolic control of
persister formation in _Escherichia coli_. _Mol. Cell_ 50, 475–487 (2013). Article CAS PubMed Google Scholar * Maisonneuve, E., Castro-Camargo, M. & Gerdes, K. (p)ppGpp controls
bacterial persistence by stochastic induction of toxin–antitoxin activity. _Cell_ 154, 1140–1150 (2013). Article CAS PubMed Google Scholar * Chao, L. & Levin, B. R. Structured
habitats and the evolution of anticompetitor toxins in bacteria. _Proc. Natl Acad. Sci. USA_ 78, 6324–6328 (1981). Article CAS PubMed PubMed Central Google Scholar * Rodionov, D. G.
& Ishiguro, E. E. Effects of inhibitors of protein synthesis on lysis of _Escherichia coli_ induced by β-lactam antibiotics. _Antimicrob. Agents Chemother._ 40, 899–903 (1996). Article
CAS PubMed PubMed Central Google Scholar * Orman, M. A. & Brynildsen, M. P. Dormancy is not necessary or sufficient for bacterial persistence. _Antimicrob. Agents Chemother._ 57,
3230–3239 (2013). Article CAS PubMed PubMed Central Google Scholar * Johansen, H. K., Jensen, T. G., Dessau, R. B., Lundgren, B. & Frimodt-Moller, N. Antagonism between penicillin
and erythromycin against _Streptococcus pneumoniae in vitro_ and _in vivo_. _J. Antimicrob. Chemother._ 46, 973–980 (2000). Article CAS PubMed Google Scholar * Thonus, I. P., Fontijne,
P. & Michel, M. F. Ampicillin susceptibility and ampicillin-induced killing rate of _Escherichia coli_. _Antimicrob. Agents Chemother._ 22, 386–390 (1982). Article CAS PubMed PubMed
Central Google Scholar * Mascio, C. T., Alder, J. D. & Silverman, J. A. Bactericidal action of daptomycin against stationary-phase and nondividing _Staphylococcus aureus_ cells.
_Antimicrob. Agents Chemother._ 51, 4255–4260 (2007). Article CAS PubMed PubMed Central Google Scholar * de Steenwinkel, J. E. et al. Time–kill kinetics of anti-tuberculosis drugs, and
emergence of resistance, in relation to metabolic activity of _Mycobacterium tuberculosis_. _J. Antimicrob. Chemother._ 65, 2582–2589 (2010). Article CAS PubMed Google Scholar * Evans,
D. J., Allison, D. G., Brown, M. R. & Gilbert, P. Susceptibility of _Pseudomonas aeruginosa_ and _Escherichia coli_ biofilms towards ciproflaxin: effect of specific growth rate. _J.
Antimicrob. Chemother._ 27, 177–184 (1991). Article CAS PubMed Google Scholar * Manina, G., Dhar, N. & McKinney, J. D. Stress and host immunity amplify _Mycobacterium tuberculosis_
phenotypic heterogeneity and induce nongrowing metabolically active forms. _Cell Host Microbe_ 17, 32–46 (2015). Article CAS PubMed Google Scholar * Kitano, K. & Tomasz, A.
_Escherichia coli_ mutants tolerant to β-lactam antibiotics. _J. Bacteriol._ 140, 955–963 (1979). Article CAS PubMed PubMed Central Google Scholar * Bernier, S. P. et al. Starvation,
together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. _PloS Genet._ 9, e1003144 (2013). Article CAS PubMed PubMed Central Google
Scholar * Sandberg, A. et al. Intra- and extracellular activities of dicloxacillin against _Staphylococcus aureus in vivo_ and _in vitro_. _Antimicrob. Agents Chemother._ 54, 2391–2400
(2010). Article CAS PubMed PubMed Central Google Scholar * Dorr, T., Davis, B. M. & Waldor, M. K. Endopeptidase-mediated β-lactam tolerance. _PloS Pathog._ 11, e1004850 (2015).
Article PubMed PubMed Central CAS Google Scholar * Dorr, T., Vulic, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in _Escherichia coli_. _PloS
Biol._ 8, e1000317 (2010). Article PubMed PubMed Central CAS Google Scholar * Wiuff, C. & Andersson, D. I. Antibiotic treatment _in vitro_ of phenotypically tolerant bacterial
populations. _J. Antimicrob. Chemother._ 59, 254–263 (2007). Article CAS PubMed Google Scholar * Johnson, P. J. T. & Levin, B. R. Pharmacodynamics, population dynamics, and the
evolution of persistence in _Staphylococcus aureus_. _PloS Genet._ 9, e1003123 (2013). Article CAS PubMed PubMed Central Google Scholar * Gefen, O., Fridman, O., Ronin, I. &
Balaban, N. Q. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. _Proc. Natl Acad. Sci. USA_ 111, 556–561
(2014). Article CAS PubMed Google Scholar * Lewis, K. Persister cells, dormancy and infectious disease. _Nat. Rev. Microbiol._ 5, 48–56 (2007). Article CAS PubMed Google Scholar *
Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. _Science_ 334, 982–986 (2011). Article CAS PubMed PubMed Central
Google Scholar * Levin-Reisman, I. et al. Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. _Nat. Methods_ 7, 737–739 (2010). Article CAS PubMed
Google Scholar * Luidalepp, H., Joers, A., Kaldalu, N. & Tenson, T. Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered
persistence. _J. Bacteriol._ 193, 3598–3605 (2011). Article CAS PubMed PubMed Central Google Scholar * Madar, D. et al. Promoter activity dynamics in the lag phase of _Escherichia
coli_. _BMC Syst. Biol._ 7, 136 (2013). Article PubMed PubMed Central CAS Google Scholar * Joers, A., Kaldalu, N. & Tenson, T. The frequency of persisters in _Escherichia coli_
reflects the kinetics of awakening from dormancy. _J. Bacteriol._ 192, 3379–3384 (2010). Article CAS PubMed PubMed Central Google Scholar * Putrinš, M., Kogermann, K., Lukk, E. &
Lippus, M. Phenotypic heterogeneity enables uropathogenic _Escherichia coli_ to evade killing by antibiotics and serum complement. _Infect. Immun._ 83, 1056–1067 (2015). Article PubMed
PubMed Central CAS Google Scholar * Pearl, S., Gabay, C., Kishony, R., Oppenheim, A. & Balaban, N. Q. Nongenetic individuality in the host–phage interaction. _PloS Biol._ 6, 957–964
(2008). Article CAS Google Scholar * Baranyi, J. Stochastic modelling of bacterial lag phase. _Int. J. Food Microbiol._ 73, 203–206 (2002). Article PubMed Google Scholar * Akerlund,
T., Nordstrom, K. & Bernander, R. Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of _Escherichia coli_. _J. Bacteriol._ 177, 6791–6797
(1995). Article CAS PubMed PubMed Central Google Scholar * Hartman, B. J. & Tomasz, A. Expression of methicillin resistance in heterogeneous strains of _Staphylococcus aureus_.
_Antimicrob. Agents Chemother._ 29, 85–92 (1986). Article CAS PubMed PubMed Central Google Scholar * Levin, B. R. & Rozen, D. E. Non-inherited antibiotic resistance. _Nat. Rev.
Microbiol._ 4, 556–562 (2006). Article CAS PubMed Google Scholar * Nataro, J. P., Blaser, M. J. & Cunningham-Rundles, S. (eds) in _Persistent Bacterial Infections_. 3–10 (ASM Press,
2000). Book Google Scholar * Rotem, E. et al. Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. _Proc. Natl Acad. Sci. USA_ 107,
12541–12546 (2010). Article CAS PubMed PubMed Central Google Scholar * Korch, S. B. & Hill, T. M. Ectopic overexpression of wild-type and mutant _hipA_ genes in _Escherichia coli_:
effects on macromolecular synthesis and persister formation. _J. Bacteriol._ 188, 3826–3836 (2006). Article CAS PubMed PubMed Central Google Scholar * Moyed, H. S. & Bertrand, K. P.
_hipA_, a newly recognized gene of _Escherichia coli_ K-12 that affects frequency of persistence after inhibition of murein synthesis. _J. Bacteriol._ 155, 768–775 (1983). Article CAS
PubMed PubMed Central Google Scholar * Levin-Reisman, I. & Balaban, N. Q. in _Bacterial Persistence: Methods and Protocols_ (eds Michiels, J. & Fauvart, M.) 75–81 (Humana Press,
2015). Google Scholar * El Meouche, I., Siu, Y. & Dunlop, M. J. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells. _Sci.
Rep._ 6, 19538 (2016). Article CAS PubMed PubMed Central Google Scholar * Adams, K. N. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux
mechanism. _Cell_ 145, 39–53 (2011). Article CAS PubMed PubMed Central Google Scholar * Kayser, F. H., Benner, E. J. & Hoeprich, P. D. Acquired and native resistance of
_Staphylococcus aureus_ to cephalexin and other β-lactam antibiotics. _Appl. Microbiol._ 20, 1–5 (1970). Article CAS PubMed PubMed Central Google Scholar * El-Halfawy, O. M. &
Valvano, M. A. Antimicrobial heteroresistance: an emerging field in need of clarity. _Clin. Microbiol. Rev._ 28, 191–207 (2015). Article CAS PubMed PubMed Central Google Scholar *
Adams, K. N., Szumowski, J. D. & Ramakrishnan, L. Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple
anti-tubercular drugs. _J. Infect. Dis._ 210, 456–466 (2014). Article CAS PubMed PubMed Central Google Scholar * Mattie, H., Sekh, B. A., van Ogtrop, M. L. & van Strijen, E.
Comparison of the antibacterial effects of cefepime and ceftazidime against _Escherichia coli in vitro_ and _in vivo_. _Antimicrob. Agents Chemother._ 36, 2439–2443 (1992). Article CAS
PubMed PubMed Central Google Scholar * Coates, A. R. & Hu, Y. Targeting non-multiplying organisms as a way to develop novel antimicrobials. _Trends Pharmacol. Sci._ 29, 143–150
(2008). Article CAS PubMed Google Scholar * Feng, J. et al. Identification of novel activity against _Borrelia burgdorferi_ persisters using an FDA approved drug library. _Emerg.
Microbes Infect._ 3, e49 (2014). Article CAS PubMed PubMed Central Google Scholar * Kim, J. S. et al. Selective killing of bacterial persisters by a single chemical compound without
affecting normal antibiotic-sensitive cells. _Antimicrob. Agents Chemother._ 55, 5380–5383 (2011). Article CAS PubMed PubMed Central Google Scholar * Fleck, L. E. et al. A screen for
and validation of prodrug antimicrobials. _Antimicrob. Agents Chemother._ 58, 1410–1419 (2014). Article PubMed PubMed Central CAS Google Scholar * Conlon, B. P. et al. Activated ClpP
kills persisters and eradicates a chronic biofilm infection. _Nature_ 503, 365–370 (2013). Article CAS PubMed PubMed Central Google Scholar * Roostalu, J., Jõers, A., Luidalepp, H.,
Kaldalu, N. & Tenson, T. Cell division in _Escherichia coli_ cultures monitored at single cell resolution. _BMC Microbiol._ 8, 68 (2008). Article PubMed PubMed Central Google Scholar
* Claudi, B. et al. Phenotypic variation of _Salmonella_ in host tissues delays eradication by antimicrobial chemotherapy. _Cell_ 158, 722–733 (2014). Article CAS PubMed Google Scholar
* Mattie, H., Zhang, L. C., van Strijen, E., Sekh, B. R. & Douwes-Idema, A. E. Pharmacokinetic and pharmacodynamic models of the antistaphylococcal effects of meropenem and cloxacillin
_in vitro_ and in experimental infection. _Antimicrob. Agents Chemother._ 41, 2083–2088 (1997). Article CAS PubMed PubMed Central Google Scholar * Arnoldini, M. et al. Bistable
expression of virulence genes in _Salmonella_ leads to the formation of an antibiotic-tolerant subpopulation. _PLoS Biol._ 12, e1001928 (2014). Article PubMed PubMed Central CAS Google
Scholar * Nickel, J. C., Ruseska, I., Wright, J. B. & Costerton, J. W. Tobramycin resistance of _Pseudomonas aeruginosa_ cells growing as a biofilm on urinary catheter material.
_Antimicrob. Agents Chemother._ 27, 619–624 (1985). Article CAS PubMed PubMed Central Google Scholar * Hayes, C. S. & Low, D. A. Signals of growth regulation in bacteria. _Curr.
Opin. Microbiol._ 12, 667–673 (2009). Article CAS PubMed PubMed Central Google Scholar * Bhuyan, B. K., Fraser, T. J. & Day, K. J. Cell proliferation kinetics and drug sensitivity
of exponential and stationary populations of cultured L1210 cells. _Cancer Res._ 37, 1057–1063 (1977). CAS PubMed Google Scholar * Sharma, S. V. et al. A chromatin-mediated reversible
drug-tolerant state in cancer cell subpopulations. _Cell_ 141, 69–80 (2010). Article CAS PubMed PubMed Central Google Scholar * Jayaraman, R. Bacterial persistence: some new insights
into an old phenomenon. _J. Biosci._ 33, 795–805 (2008). Article CAS PubMed Google Scholar * Cohen, N. R., Lobritz, M. A. & Collins, J. J. Microbial persistence and the road to drug
resistance. _Cell Host Microbe_ 13, 632–642 (2013). Article CAS PubMed PubMed Central Google Scholar * Potrykus, K. & Cashel, M. (p)ppGpp: still magical? _Annu. Rev. Microbiol._ 62,
35–51 (2008). Article CAS PubMed Google Scholar * Kaspy, I. et al. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. _Nat. Commun._ 4, 3001
(2013). Article PubMed CAS Google Scholar * Germain, E., Castro-Roa, D., Zenkin, N. & Gerdes, K. Molecular mechanism of bacterial persistence by HipA. _Mol. Cell_ 52, 248–254 (2013).
Article CAS PubMed Google Scholar * Hahn, J., Tanner, A. W., Carabetta, V. J., Cristea, I. M. & Dubnau, D. ComGA–RelA interaction and persistence in the _Bacillus subtilis_ K-state.
_Mol. Microbiol._ 97, 454–471 (2015). Article CAS PubMed PubMed Central Google Scholar * Gerdes, K. & Maisonneuve, E. Bacterial persistence and toxin–antitoxin loci. _Annu. Rev.
Microbiol._ 66, 103–123 (2012). Article CAS PubMed Google Scholar * Girgis, H. S., Harris, K. & Tavazoie, S. Large mutational target size for rapid emergence of bacterial
persistence. _Proc. Natl Acad. Sci. USA_ 109, 12740–12745 (2012). Article CAS PubMed PubMed Central Google Scholar * Hansen, S., Lewis, K. & Vulic, M. Role of global regulators and
nucleotide metabolism in antibiotic tolerance in _Escherichia coli_. _Antimicrob. Agents Chemother._ 52, 2718–2726 (2008). Article CAS PubMed PubMed Central Google Scholar * Spoering,
A. L., Vulic, M. & Lewis, K. GlpD and PlsB participate in persister cell formation in _Escherichia coli_. _J. Bacteriol._ 188, 5136–5144 (2006). Article CAS PubMed PubMed Central
Google Scholar * Vazquez-Laslop, N., Lee, H. & Neyfakh, A. A. Increased persistence in _Escherichia coli_ caused by controlled expression of toxins or other unrelated proteins. _J.
Bacteriol._ 188, 3494–3497 (2006). Article CAS PubMed PubMed Central Google Scholar * Shan, Y., Lazinski, D., Rowe, S. E., Camili, A. & Lewis, K. Genetic basis of persister
tolerance to aminoglycosides in _Escherichia coli_. _mBio_ 6, e00078-15 (2015). Article PubMed PubMed Central CAS Google Scholar * Balaban, N. Q. Persistence: mechanisms for triggering
and enhancing phenotypic variability. _Curr. Opin. Genet. Dev._ 21, 768–775 (2011). Article CAS PubMed Google Scholar * Casadesus, J. & Low, D. A. Programmed heterogeneity:
epigenetic mechanisms in bacteria. _J. Biol. Chem._ 288, 13929–13935 (2013). Article CAS PubMed PubMed Central Google Scholar * Huh, D. & Paulsson, J. Non-genetic heterogeneity from
stochastic partitioning at cell division. _Nat. Genet._ 43, 95–100 (2011). Article CAS PubMed Google Scholar * Tsimring, L. S. Noise in biology. _Rep. Progress Phys._ 77, 026601 (2014).
Article CAS Google Scholar * Gelens, L., Hill, L., Vandervelde, A., Danckaert, J. & Loris, R. A general model for toxin–antitoxin module dynamics can explain persister cell formation
in _E. coli_. _PLoS Comput. Biol._ 9, e1003190 (2013). Article CAS PubMed PubMed Central Google Scholar * Maisonneuve, E., Shakespeare, L. J., Jorgensen, M. G. & Gerdes, K.
Bacterial persistence by RNA endonucleases. _Proc. Natl Acad. Sci. USA_ 108, 13206–13211 (2011). Article CAS PubMed PubMed Central Google Scholar * Helaine, S. et al. Internalization of
_Salmonella_ by macrophages induces formation of nonreplicating persisters. _Science_ 343, 204–208 (2014). Article CAS PubMed PubMed Central Google Scholar * Aldridge, B. B. et al.
Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. _Science_ 335, 100–104 (2012). Article CAS PubMed Google Scholar * Kieser, K. J. &
Rubin, E. J. How sisters grow apart: mycobacterial growth and division. _Nat. Rev. Microbiol._ 12, 550–562 (2014). Article CAS PubMed PubMed Central Google Scholar * Vaubourgeix, J. et
al. Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells. _Cell Host Microbe_ 17, 178–190 (2015). Article CAS
PubMed PubMed Central Google Scholar * Wu, Y. X., Vulic, M., Keren, I. & Lewis, K. Role of oxidative stress in persister tolerance. _Antimicrob. Agents Chemother._ 56, 4922–4926
(2012). Article CAS PubMed PubMed Central Google Scholar * Song, Y., Rubio, A., Jayaswal, R. K., Silverman, J. A. & Wilkinson, B. J. Additional routes to _Staphylococcus aureus_
daptomycin resistance as revealed by comparative genome sequencing, transcriptional profiling, and phenotypic studies. _PLoS ONE_ 8, e58469 (2013). Article CAS PubMed PubMed Central
Google Scholar * Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. _Microbiol. Mol. Biol. Rev._ 68, 538–559 (2004). Article CAS
PubMed PubMed Central Google Scholar * Ping, W. et al. Robust growth of _Escherichia coli_. _Curr. Biol._ 20, 1099–1103 (2010). Article CAS Google Scholar * Iino, R., Matsumoto, Y.,
Nishino, K., Yamaguchi, A. & Noji, H. Design of a large-scale femtoliter droplet array for single-cell analysis of drug-tolerant and drug-resistant bacteria. _Front. Microbiol._ 4, 300
(2013). Article PubMed PubMed Central Google Scholar * Shah, D. et al. Persisters: a distinct physiological state of _E. coli_. _BMC Microbiol._ 6, 53 (2006). Article PubMed PubMed
Central CAS Google Scholar * Orman, M. A. & Brynildsen, M. P. Establishment of a method to rapidly assay bacterial persister metabolism. _Antimicrob. Agents Chemother._ 57, 4398–4409
(2013). Article CAS PubMed PubMed Central Google Scholar * Jarzembowski, T., Wisniewska, K., Jozwik, A. & Witkowski, J. Heterogeneity of methicillin-resistant _Staphylococcus
aureus_ strains (MRSA) characterized by flow cytometry. _Curr. Microbiol._ 59, 78–80 (2009). Article CAS PubMed Google Scholar Download references ACKNOWLEDGEMENTS The authors thank N.
Shoresh for illuminating discussions regarding this manuscript, and the members of the Balaban laboratory, I. Kaspy and G. Glaser for comments and suggestions. This work is supported by the
Minerva Center for Stochastic Decision Making in Microorganisms, a European Research Council (ERC) Starting Grant (260871) and the Israel Science Foundation (492/15). AUTHOR INFORMATION
AUTHORS AND AFFILIATIONS * Asher Brauner, Ofer Fridman, Orit Gefen and Nathalie Q. Balaban are at the Racah Institute of Physics and the Harvey M. Kruger Family Center for Nanoscience and
Nanotechnology, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel., Asher Brauner, Ofer Fridman, Orit Gefen & Nathalie Q. Balaban Authors * Asher
Brauner View author publications You can also search for this author inPubMed Google Scholar * Ofer Fridman View author publications You can also search for this author inPubMed Google
Scholar * Orit Gefen View author publications You can also search for this author inPubMed Google Scholar * Nathalie Q. Balaban View author publications You can also search for this author
inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Nathalie Q. Balaban. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. POWERPOINT
SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Brauner, A., Fridman, O., Gefen, O. _et
al._ Distinguishing between resistance, tolerance and persistence to antibiotic treatment. _Nat Rev Microbiol_ 14, 320–330 (2016). https://doi.org/10.1038/nrmicro.2016.34 Download citation *
Published: 15 April 2016 * Issue Date: May 2016 * DOI: https://doi.org/10.1038/nrmicro.2016.34 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content:
Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
Trending News
Salman rushdie's 'feisty and defiant' humour is intact, says sonNew York: Salman Rushdie is still in a critical condition, but his usual feisty and defiant sense of humour remains inta...
Family 'heartbroken' after 'harmless' man stabbed to death in 'race hate crime'The family of a "kind-hearted" and "harmless" man who died after being attacked in a 'race-hate...
Blackstone group invests up to $2 billion in alnylam, a big bet on the cambridge biotechThe private equity firm Blackstone Group is investing up to $2 billion in Alnylam Pharmaceuticals, a big bet on the Camb...
Poll shows print newspaper readership on the decline - aarp bulletinAn era in which Americans read a daily newspaper with their morning coffee, or on the subway on their way to work, is fa...
№ 7 — KVnews.ruСообщение об ошибке Вы можете сообщить администрации газеты «Коммерческие вести» об ошибках и неточностях на сайте. Текс...
Latests News
Distinguishing between resistance, tolerance and persistence to antibiotic treatmentABSTRACT Antibiotic tolerance is associated with the failure of antibiotic treatment and the relapse of many bacterial i...
Big films come with controversies: salman on ‘dabangg 3’ song rowSalman Khan’s film, _Dabangg 3_, landed in controversy recently when a Hindu outfit objected to a sequence in the film’s...
How is va working to end veteran homelessness? | va greater los angeles health care | veterans affairsThe Department of Veterans Affairs (VA) is on a mission to end Veteran homelessness. It is making great strides in this ...
Canada: Reed in the wind | NatureAn agreement by the Ontario government to give a paper company the right to cut timber and build a mill in the largest a...
Actor balakrishna campaigns for people's front, conducts road shows in hydPeople's Front is the only contender for power using film stars for its campaign. Veteran actress Vijayashanti, who...