Genome-wide mapping and analysis of chromosome architecture

Nature

Genome-wide mapping and analysis of chromosome architecture"


Play all audios:

Loading...

KEY POINTS * Looping of chromatin fibres is an important mechanism for transcription regulation in animals. The past decade has witnessed an explosion of chromosome conformation capture (3C)


technologies aimed at mapping such local or genome-wide chromatin architecture. * Key recent methodological advancements for mapping chromatin conformation include improved methods for


chromatin fragmentation, proximity ligation, single-cell analysis and targeted 3C. These improvements have propelled the field forward with optimized protocols that enhance the efficiency,


scale and resolution of chromatin contact maps. * Improved protocols and advances in ultra-high-throughput DNA-sequencing technology have facilitated the rapid accumulation of 3C data sets.


The need to extract meaningful insight into hierarchical genome architecture has necessitated the development of novel computational algorithms and bioinformatics pipelines. * Accounting for


bias in Hi-C and Capture-HiC data is a critical first step towards appropriately analysing their data sets and reaching grounded conclusions. Current methods to account for bias use either


explicit or implicit assumption models; however, it is recommended that researchers analyse their data using both approaches to ensure the biological relevance of their findings. * Analyses


of chromatin contact maps at various resolutions have revealed principles of hierarchical genome architecture, spanning from chromosome territories, compartments and topologically


associating domains to contact domains, loops and other important contacts mediated by _cis_-regulatory elements. Numerous approaches exist for defining each of these features, and the


selection of each method should be guided by a full understanding of the statistical model used by each approach. * An exhaustive comparison of mapping technologies and analysis methods is


sorely needed. To facilitate the evaluation of the 'accuracy' of each method, future efforts should focus on the development of new interaction data standards that consist of loci,


the interaction tendencies of which have been rigorously characterized using genetic, biochemical and microscopy approaches. ABSTRACT Chromosomes of eukaryotes adopt highly dynamic and


complex hierarchical structures in the nucleus. The three-dimensional (3D) organization of chromosomes profoundly affects DNA replication, transcription and the repair of DNA damage. Thus, a


thorough understanding of nuclear architecture is fundamental to the study of nuclear processes in eukaryotic cells. Recent years have seen rapid proliferation of technologies to


investigate genome organization and function. Here, we review experimental and computational methodologies for 3D genome analysis, with special focus on recent advances in high-throughput


chromatin conformation capture (3C) techniques and data analysis. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS GPSEQ REVEALS THE RADIAL ORGANIZATION OF CHROMATIN IN THE CELL NUCLEUS


Article 25 May 2020 UNDERSTANDING 3D GENOME ORGANIZATION BY MULTIDISCIPLINARY METHODS Article 05 May 2021 INTEGRATIVE GENOME MODELING PLATFORM REVEALS ESSENTIALITY OF RARE CONTACT EVENTS IN


3D GENOME ORGANIZATIONS Article Open access 11 July 2022 REFERENCES * ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. _Nature_ 489, 57–74 (2012). *


Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. _Nature_ 518, 317–330 (2015). * Bickmore, W. A. & van Steensel, B. Genome architecture:


domain organization of interphase chromosomes. _Cell_ 152, 1270–1284 (2013). Article  CAS  PubMed  Google Scholar  * de Laat, W. & Duboule, D. Topology of mammalian developmental


enhancers and their regulatory landscapes. _Nature_ 502, 499–506 (2013). Article  CAS  PubMed  Google Scholar  * de Wit, E. & de Laat, W. A decade of 3C technologies: insights into


nuclear organization. _Genes Dev._ 26, 11–24 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dixon, J. R. et al. Topological domains in mammalian genomes identified by


analysis of chromatin interactions. _Nature_ 485, 376–380 (2012). THE ORIGINAL STUDY TO DESCRIBE TADS FROM HI-C ANALYSIS, USING NOVEL COMPUTATION APPROACHES. IT DISCOVERED THAT TADS ARE


CONSERVED BETWEEN CELL TYPES AND SPECIES, AND DEMARCATED BY CCCTC-BINDING FACTOR (CTCF) BINDING AT TAD BOUNDARIES. Article  CAS  PubMed  PubMed Central  Google Scholar  * Gorkin, D. U.,


Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. _Cell Stem Cell_ 14, 762–775 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Levine, M.,


Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a new era. _Cell_ 157, 13–25 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nora, E. P.,


Dekker, J. & Heard, E. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? _Bioessays_ 35, 818–828 (2013). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. _Nature_ 485, 381–385 (2012). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. _Cell_ 153, 1281–1295 (2013). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. _Cell_ 158, 849–860 (2014). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. _Cell_ 149, 1233–1244


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, A. & Dean, A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. _Mol. Cells_


34, 1–5 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Krivega, I. & Dean, A. Enhancer and promoter interactions-long distance calls. _Curr. Opin. Genet. Dev._ 22, 79–85


(2012). Article  CAS  PubMed  Google Scholar  * Plank, J. L. & Dean, A. Enhancer function: mechanistic and genome-wide insights come together. _Mol. Cell_ 55, 5–14 (2014). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. _Cell_ 159, 374–387 (2014). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Heidari, N. et al. Genome-wide map of regulatory interactions in the human genome. _Genome Res._ 24, 1905–1917 (2014). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. _Nature_ 503, 290–294 (2013). THE FIRST PAPER TO REPORT


HI-C INTERACTION MAPS AT THE RESOLUTION OF INDIVIDUAL RESTRICTION FRAGMENTS IN MAMMALS. THIS STUDY ALSO INTRODUCED THE GLOBAL BACKGROUND MODEL. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. _Cell_ 148, 84–98 (2012). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. _Nature_ 489, 109–113 (2012). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. _Science_ 326, 289–293 (2009).


THE ORIGINAL STUDY DESCRIBING HI-C TECHNOLOGY. THIS STUDY WAS ALSO THE FIRST TO DESCRIBE THE GENOME COMPARTMENTS A AND B, WHICH RESPECTIVELY MARK COLOCALIZING ACTIVE AND REPRESSED REGIONS OF


THE GENOME. Article  CAS  PubMed  PubMed Central  Google Scholar  * Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. _Nature_ 462, 58–64 (2009). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome architectures revealed by tethered chromosome conformation capture and


population-based modeling. _Nat. Biotechnol._ 30, 90–98 (2012). Article  CAS  Google Scholar  * Hughes, J. R. et al. Analysis of hundreds of _cis_-regulatory landscapes at high resolution in


a single, high-throughput experiment. _Nat. Genet._ 46, 205–212 (2014). Article  CAS  PubMed  Google Scholar  * Kolovos, P. et al. Targeted chromatin capture (T2C): a novel high resolution


high throughput method to detect genomic interactions and regulatory elements. _Epigenetics Chromatin_ 7, 10 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rao, S. S. et al.


A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. _Cell_ 159, 1665–1680 (2014). THE HIGHEST-RESOLUTION HI-C ANALYSIS TO DATE, AT 1–5KB RESOLUTION


IN 9 HUMAN AND MOUSE CELL TYPES. THIS STUDY REPORTS THAT THE GENOME IS ORGANIZED GLOBALLY INTO 6 SUB-COMPARTMENTS, WITHIN WHICH THE GENOME IS ORGANIZED INTO ∼10,000 CHROMATIN LOOPS, MANY OF


WHICH ARE CONSERVED ACROSS SPECIES AND CELL TYPES, AND ARE ANCHORED BY CTCF BINDING IN CONVERGENT ORIENTATION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Selvaraj, S., R. Dixon,


J., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. _Nat. Biotechnol._ 31, 1111–1118 (2013). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Selvaraj, S., Schmitt, A. D., Dixon, J. R. & Ren, B. Complete haplotype phasing of the MHC and KIR loci with targeted HaploSeq. _BMC Genomics_ 16, 900 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  * de Vree, P. J. et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. _Nat.


Biotechnol._ 32, 1019–1025 (2014). Article  CAS  PubMed  Google Scholar  * Burton, J. N. et al. Chromosome-scale scaffolding of _de novo_ genome assemblies based on chromatin interactions.


_Nat. Biotechnol._ 31, 1119–1125 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kaplan, N. & Dekker, J. High-throughput genome scaffolding from _in vivo_ DNA interaction


frequency. _Nat. Biotechnol._ 31, 1143–1147 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marie-Nelly, H. et al. High-quality genome (re)assembly using chromosomal contact


data. _Nat. Commun._ 5, 5695 (2014). Article  CAS  PubMed  Google Scholar  * Beitel, C. W. et al. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity


ligation products. _PeerJ_ 2, e415 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Burton, J. N., Liachko, I., Dunham, M. J. & Shendure, J. Species-level deconvolution of


metagenome assemblies with Hi-C-based contact probability maps. _G3 (Bethesda)_ 4, 1339–1346 (2014). Article  CAS  Google Scholar  * Marbouty, M. et al. Metagenomic chromosome conformation


capture (meta3C) unveils the diversity of chromosome organization in microorganisms. _eLife_ 3, e03318 (2014). Article  PubMed  PubMed Central  Google Scholar  * Duan, Z. et al. A


three-dimensional model of the yeast genome. _Nature_ 465, 363–367 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell


variability in chromosome structure. _Nature_ 502, 59–64 (2013). Article  CAS  PubMed  Google Scholar  * Snyder, M. W., Adey, A., Kitzman, J. O. & Shendure, J. Haplotype-resolved genome


sequencing: experimental methods and applications. _Nat. Rev. Genet._ 16, 344–358 (2015). Article  CAS  PubMed  Google Scholar  * Flot, J. F., Marie-Nelly, H. & Koszul, R. Contact


genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures. _FEBS Lett._ 589, 2966–2974 (2015). Article  CAS  PubMed  Google Scholar  * Imakaev, M. V.,


Fudenberg, G. & Mirny, L. A. Modeling chromosomes: beyond pretty pictures. _FEBS Lett._ 589, 3031–3036 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Serra, F. et al.


Restraint-based three-dimensional modeling of genomes and genomic domains. _FEBS Lett._ 589, 2987–2995 (2015). Article  CAS  PubMed  Google Scholar  * Dekker, J., Rippe, K., Dekker, M. &


Kleckner, N. Capturing chromosome conformation. _Science_ 295, 1306–1311 (2002). THE ORIGINAL STUDY DESCRIBING 3C TECHNOLOGY. Article  CAS  PubMed  Google Scholar  * Cullen, K. E., Kladde,


M. P. & Seyfred, M. A. Interaction between transcription regulatory regions of prolactin chromatin. _Science_ 261, 203–206 (1993). Article  CAS  PubMed  Google Scholar  * Zhao, Z. et al.


Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. _Nat. Genet._ 38, 1341–1347 (2006). A STUDY


REPORTING CHROMOSOME CONFORMATION CAPTURE-ON-CHIP (4C), WHICH EXPLORES THE GENOME-WIDE INTERACTIONS OF INDIVIDUAL LOCI AT HIGH RESOLUTION. Article  CAS  PubMed  Google Scholar  * van de


Werken, H. J. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. _Nat. Methods_ 9, 969–972 (2012). Article  CAS  PubMed  Google Scholar  * Sexton, T. et al.


Three-dimensional folding and functional organization principles of the _Drosophila_ genome. _Cell_ 148, 458–472 (2012). Article  CAS  PubMed  Google Scholar  * Deng, X. et al. Bipartite


structure of the inactive mouse X chromosome. _Genome Biol._ 16, 152 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ma, W. et al. Fine-scale chromatin interaction maps


reveal the _cis_-regulatory landscape of human lincRNA genes. _Nat. Methods_ 12, 71–78 (2015). THE FIRST STUDY TO REPORT THE USE OF DNASE HI-C AND DNASE CAPTURE-HIC, AND THE FIRST


APPLICATION OF CAPTURE-HIC TO SPECIFICALLY ENRICH FOR GENE PROMOTERS. Article  CAS  PubMed  Google Scholar  * Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by


micro-C. _Cell_ 162, 108–119 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by


chromosome conformation capture-on-chip (4C). _Nat. Genet._ 38, 1348–1354 (2006). ANOTHER STUDY REPORTING CHROMOSOME CONFORMATION CAPTURE-ON-CHIP (4C), WHICH EXPLORES THE GENOME- WIDE


INTERACTIONS OF INDIVIDUAL LOCI AT HIGH RESOLUTION. Article  CAS  PubMed  Google Scholar  * Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution


for mapping interactions between genomic elements. _Genome Res._ 16, 1299–1309 (2006). THE ORIGINAL STUDY DESCRIBING 5C, WHICH EXPLORES THE INTERACTION PROFILES OF SEVERAL CONTIGUOUS LOCI


WITH EACH OTHER AT HIGH RESOLUTION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Martin, P. et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions


with related autoimmune risk loci. _Nat. Commun._ 6, 10069 (2015). Article  CAS  PubMed  Google Scholar  * Mifsud, B. et al. Mapping long-range promoter contacts in human cells with


high-resolution capture Hi-C. _Nat. Genet._ 47, 598–606 (2015). Article  CAS  PubMed  Google Scholar  * Sahlen, P. et al. Genome-wide mapping of promoter-anchored interactions with close to


single-enhancer resolution. _Genome Biol._ 16, 156 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting


promoters to their long-range interacting elements. _Genome Res._ 25, 582–597 (2015). THE FIRST APPLICATION OF CAPTURE-HIC TO CAPTURE ALL PROMOTERS IN THE GENOME, DEMONSTRATING THE


FEASIBILITY AND QUALITY OF OBTAINING HIGH-RESOLUTION PROMOTER INTERACTION PROFILES FOR >20,000 LOCI IN A SINGLE ASSAY. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Schoenfelder, S. et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. _Nat. Genet._ 47, 1179–1186 (2015). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Dryden, N. H. et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. _Genome Res._ 24, 1854–1868 (2014). THE ORIGINAL STUDY


DESCRIBING CAPTURE-HIC TECHNOLOGY AND ITS USE TO INTERROGATE THE INTERACTION LANDSCAPES OF SEVERAL DISEASE-ASSOCIATED RISK LOCI. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Jager, R. et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. _Nat. Commun._ 6, 6178 (2015). Article  CAS  PubMed  Google Scholar  * Sanborn, A. L. et


al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. _Proc. Natl Acad. Sci. USA_ 112, E6456–E6465 (2015). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Schmitt, M. W. et al. Sequencing small genomic targets with high efficiency and extreme accuracy. _Nat. Methods_ 12, 423–425 (2015). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. _Nature_ 518, 331–336 (2015). A HIGH-RESOLUTION HI-C ANALYSIS IN


HUMAN EMBRYONIC STEM CELLS AND FOUR DERIVED CELL TYPES, REVEALING A RELATIONSHIP BETWEEN DYNAMIC CHROMATIN ORGANIZATION AND GENE EXPRESSION, AS WELL AS HAPLOTYPE-RESOLVED DYNAMICS IN


CHROMATIN ORGANIZATION PATTERNS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Fraser, J. et al. Hierarchical folding and reorganization of chromosomes are linked to


transcriptional changes in cellular differentiation. _Mol. Syst. Biol._ 11, 852 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Leung, D. et al. Integrative analysis of


haplotype-resolved epigenomes across human tissues. _Nature_ 518, 350–354 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nagano, T. et al. Comparison of Hi-C results using


in-solution versus in-nucleus ligation. _Genome Biol._ 16, 175 (2015). Article  PubMed  PubMed Central  Google Scholar  * Seitan, V. C. et al. Cohesin-based chromatin interactions enable


regulated gene expression within preexisting architectural compartments. _Genome Res._ 23, 2066–2077 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sofueva, S. et al.


Cohesin-mediated interactions organize chromosomal domain architecture. _EMBO J._ 32, 3119–3129 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zuin, J. et al. Cohesin and


CTCF differentially affect chromatin architecture and gene expression in human cells. _Proc. Natl Acad. Sci. USA_ 111, 996–1001 (2014). Article  CAS  PubMed  Google Scholar  * Belton, J. M.


et al. Hi-C: a comprehensive technique to capture the conformation of genomes. _Methods_ 58, 268–276 (2012). Article  CAS  PubMed  Google Scholar  * van Berkum, N. L. et al. Hi-C: a method


to study the three-dimensional architecture of genomes. _J. Vis. Exp._ 39, 1869 (2010). Google Scholar  * Comet, I., Schuettengruber, B., Sexton, T. & Cavalli, G. A chromatin insulator


driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. _Proc. Natl Acad. Sci. USA_ 108, 2294–2299 (2011). Article  PubMed 


PubMed Central  Google Scholar  * van de Werken, H. J. et al. 4C technology: protocols and data analysis. _Methods Enzymol._ 513, 89–112 (2012). Article  CAS  PubMed  Google Scholar  * Adey,


A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density _in vitro_ transposition. _Genome Biol._ 11, R119 (2010). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Williamson, I. et al. Anterior-posterior differences in HoxD chromatin topology in limb development. _Development_ 139, 3157–3167 (2012). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Bickmore, W. A. The spatial organization of the human genome. _Annu. Rev. Genomics Hum. Genet._ 14, 67–84 (2013). Article  CAS  PubMed  Google Scholar  *


Williamson, I. et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence _in situ_ hybridization. _Genes Dev._ 28, 2778–2791 (2014). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal


architecture. _Nat. Genet._ 43, 1059–1065 (2011). Article  CAS  PubMed  Google Scholar  * Hu, M. et al. HiCNorm: removing biases in Hi-C data via Poisson regression. _Bioinformatics_ 28,


3131–3133 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. _Nat. Methods_ 9,


999–1003 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. _Genome Biol._ 16, 259


(2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, W., Gong, K., Li, Q., Alber, F. & Zhou, X. J. Hi-Corrector: a fast, scalable and memory-efficient package for


normalizing large-scale Hi-C data. _Bioinformatics_ 31, 960–962 (2015). Article  CAS  PubMed  Google Scholar  * Knopp, P. & Sinkhorn, R. Concerning nonnegative matrices and doubly


stochastic matrices. _Pacif. J. Math._ 21, 343–348 (1967). Article  Google Scholar  * Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. _IMA J. Numer. Analysis_ 33,


1029–1047 (2012). Article  Google Scholar  * Shavit, Y. & Lio, P. Combining a wavelet change point and the Bayes factor for analysing chromosomal interaction data. _Mol. Biosyst._ 10,


1576–1585 (2014). Article  CAS  PubMed  Google Scholar  * Cairns, J. et al. CHiCAGO: robust detection of DNA looping interactions in capture Hi-C data. _Genome Biol._ 17, 127 (2015). Article


  CAS  Google Scholar  * Cournac, A., Marie-Nelly, H., Marbouty, M., Koszul, R. & Mozziconacci, J. Normalization of a chromosomal contact map. _BMC Genomics_ 13, 436 (2012). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Dekker, J. & Heard, E. Structural and functional diversity of topologically associating domains. _FEBS Lett._ 589, 2877–2884 (2015). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Filippova, D., Patro, R., Duggal, G. & Kingsford, C. Identification of alternative topological domains in chromatin. _Algorithms Mol.


Biol._ 9, 14 (2014). Article  PubMed  PubMed Central  Google Scholar  * Levy-Leduc, C., Delattre, M., Mary-Huard, T. & Robin, S. Two-dimensional segmentation for analyzing Hi-C data.


_Bioinformatics_ 30, i386–i392 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage


compensation. _Nature_ 523, 240–244 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ay, F., Bailey, T. L. & Noble, W. S. Statistical confidence estimation for Hi-C data


reveals regulatory chromatin contacts. _Genome Res._ 24, 999–1011 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mifsud, B. et al. GOTHiC, a simple probabilistic model to


resolve complex biases and to identify real interactions in Hi-C data. Preprint at _bioRxiv_ http://dx.doi.org/10.1101/023317 (2015). * Xu, Z. et al. A hidden Markov random field based


Bayesian method for the detection of long-range chromosomal intereactions in Hi-C data. _Bioinformatics_ 32, 650–656 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lun, A.


T. & Smyth, G. K. diffHic: a bioconductor package to detect differential genomic interactions in Hi-C data. _BMC Bioinformatics_ 16, 258 (2015). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. _Bioinformatics_ 26,


139–140 (2010). Article  CAS  PubMed  Google Scholar  * Nagano, T. et al. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell.


_Nat. Protoc._ 10, 1986–2003 (2015). Article  CAS  PubMed  Google Scholar  * Dekker, J. The three 'C' s of chromosome conformation capture: controls, controls, controls. _Nat.


Methods_ 3, 17–21 (2006). Article  CAS  PubMed  Google Scholar  * Hagege, H. et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). _Nat. Protoc._ 2, 1722–1733


(2007). Article  CAS  PubMed  Google Scholar  * Louwers, M., Splinter, E., van Driel, R., de Laat, W. & Stam, M. Studying physical chromatin interactions in plants using chromosome


conformation capture (3C). _Nat. Protoc._ 4, 1216–1229 (2009). Article  CAS  PubMed  Google Scholar  * Naumova, N., Smith, E. M., Zhan, Y. & Dekker, J. Analysis of long-range chromatin


interactions using chromosome conformation capture. _Methods_ 58, 192–203 (2012). Article  CAS  PubMed  Google Scholar  * Ribeiro de Almeida, C. et al. The DNA-binding protein CTCF limits


proximal Vκ recombination and restricts κ enhancer interactions to the immunoglobulin κ light chain locus. _Immunity_ 35, 501–513 (2011). Article  CAS  PubMed  Google Scholar  * Stadhouders,


R. et al. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. _Nat. Protoc._ 8, 509–524 (2013).


Article  CAS  PubMed  Google Scholar  * Wurtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture


methodology. _Chromosome Res._ 14, 477–495 (2006). Article  CAS  PubMed  Google Scholar  * Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair


interferon-gamma signalling response. _Nature_ 470, 264–268 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gondor, A., Rougier, C. & Ohlsson, R. High-resolution circular


chromosome conformation capture assay. _Nat. Protoc._ 3, 303–313 (2008). Article  CAS  PubMed  Google Scholar  * Splinter, E. et al. The inactive X chromosome adopts a unique


three-dimensional conformation that is dependent on _Xist_ RNA. _Genes Dev._ 25, 1371–1383 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gheldof, N., Leleu, M.,


Noordermeer, D., Rougemont, J. & Reymond, A. Detecting long-range chromatin interactions using the chromosome conformation capture sequencing (4C-seq) method. _Methods Mol. Biol._ 786,


211–225 (2012). Article  CAS  PubMed  Google Scholar  * Splinter, E., de Wit, E., van de Werken, H. J., Klous, P. & de Laat, W. Determining long-range chromatin interactions for selected


genomic sites using 4C-seq technology: from fixation to computation. _Methods_ 58, 221–230 (2012). Article  CAS  PubMed  Google Scholar  * Schoenfelder, S. et al. Preferential associations


between co-regulated genes reveal a transcriptional interactome in erythroid cells. _Nat. Genet._ 42, 53–61 (2010). Article  CAS  PubMed  Google Scholar  * Sexton, T. et al. Sensitive


detection of chromatin coassociations using enhanced chromosome conformation capture on chip. _Nat. Protoc._ 7, 1335–1350 (2012). Article  CAS  PubMed  Google Scholar  * Ling, J. Q. et al.


CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. _Science_ 312, 269–272 (2006). Article  CAS  PubMed  Google Scholar  * Ling, J. & Hoffman, A. R. Associated


chromosome trap for identifying long-range DNA interactions. _J. Vis. Exp._ 50, 2621 (2011). Google Scholar  * Dostie, J., Zhan, Y. & Dekker, J. Chromosome conformation capture carbon


copy technology. _Curr. Protoc. Mol. Biol._ http://dx.doi.org/10.1002/0471142727.mb2114s80 (2007). * Ferraiuolo, M. A., Sanyal, A., Naumova, N., Dekker, J. & Dostie, J. From cells to


chromatin: capturing snapshots of genome organization with 5C technology. _Methods_ 58, 255–267 (2012). Article  CAS  PubMed  Google Scholar  * Fraser, J., Ethier, S. D., Miura, H. &


Dostie, J. A. Torrent of data: mapping chromatin organization using 5C and high-throughput sequencing. _Methods Enzymol._ 513, 113–141 (2012). Article  CAS  PubMed  Google Scholar  *


Umbarger, M. A. Chromosome conformation capture assays in bacteria. _Methods_ 58, 212–220 (2012). Article  CAS  PubMed  Google Scholar  * Rodley, C. D., Bertels, F., Jones, B. &


O'Sullivan, J. M. Global identification of yeast chromosome interactions using genome conformation capture. _Fungal Genet. Biol._ 46, 879–886 (2009). Article  CAS  PubMed  Google


Scholar  * Duan, Z. et al. A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes. _Methods_ 58, 277–288 (2012). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Tanizawa, H. et al. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. _Nucleic


Acids Res._ 38, 8164–8177 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS The authors dedicate this manuscript in loving memory of Joseph


Schmitt. They would like to give special thanks to members of the Ren laboratory for their suggestions. This work is supported by the Ludwig Institute for Cancer Research, La Jolla,


California, USA, and grants from US National Institutes of Health (NIH; grant U54DK107977 to B.R. and M.H., and grants U54 HG006997 and R01 ES024984 to B.R.). A.D.S. is supported by NIH


genetics training grant T32 GM008666. AUTHOR INFORMATION Author notes * Ming Hu Present address: Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, Moores


Cancer Center and Institute of Genomic Medicine, University of California, San Diego (UCSD) School of Medicine, 9500 Gilman Drive, La Jolla, 92093, California, USA * Bing Ren Present


address: Present address: Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA., AUTHORS AND


AFFILIATIONS * Ludwig Institute for Cancer Research and the University of California, San Diego (UCSD) Biomedical Sciences Graduate Program, 9500 Gilman Drive, La Jolla, 92093, California,


USA Anthony D. Schmitt * Department of Population Health, Division of Biostatistics, New York University School of Medicine, 650 First Avenue, Room 540, New York, 10016, New York, USA Ming


Hu * Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, Moores Cancer Center and Institute of Genomic Medicine, University of California, San Diego (UCSD)


School of Medicine, 9500 Gilman Drive, La Jolla, 92093, California, USA Bing Ren * Present address: Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic


Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA., Ming Hu Authors * Anthony D. Schmitt View author publications You can also search for this author inPubMed Google Scholar * Ming


Hu View author publications You can also search for this author inPubMed Google Scholar * Bing Ren View author publications You can also search for this author inPubMed Google Scholar


CORRESPONDING AUTHORS Correspondence to Ming Hu or Bing Ren. ETHICS DECLARATIONS COMPETING INTERESTS B.R. is a co-founder of Arima Genomics, Inc. A.D.S. is a consultant for Arima Genomics,


Inc. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR TABLE 1 POWERPOINT SLIDE FOR TABLE 2 POWERPOINT SLIDE FOR TABLE 3 POWERPOINT SLIDE FOR


TABLE 4 POWERPOINT SLIDE FOR TABLE 5 RELATED LINKS RELATED LINKS FURTHER INFORMATION 4C protocol variant 4D Nucleome Project https://commonfund.nih.gov/4dnucleome/index GLOSSARY * Hi-C A


high-throughput, genome-wide chromosome conformation capture assay using affinity purification of labelled-DNA ligation junctions to measure pairwise interaction frequencies in cell


populations. * Chromosome conformation capture carbon copy (5C). A high-throughput chromosome conformation capture assay that examines the spatial proximity of two defined sets of genomic


regions, measured using a pair of DNA oligos corresponding to the sequences upstream and downstream of the ligation junction. * Target size The cumulative length (in base pairs) targeted by


capture probes in a Capture-HiC experiment. * Bin size A measure of Hi-C data resolution. A bin is a fixed, non-overlapping genomic span to which Hi-C reads are grouped to increase the


signal of chromatin interaction frequency. * Restriction enzyme fragment lengths The total genomic length in each bin that is within 500 bp of restriction enzyme cut sites used in the Hi-C


library preparation. * Mappability The probability of a read-mapping uniquely to the effective fragment length sequence within each bin. * Poisson distribution A probability distribution for


the discrete random variable in which the variance is the same as the mean. * Negative binomial distribution A probability distribution for the discrete random variable in which the


variance is larger than the mean. * Hi-C contact matrices Symmetric, two-dimensional matrices (M), for which each matrix entry (Mij) represents the raw or normalized contact frequency


between bin i and bin j. * Bait-specific bias An experimental bias in the Capture-HiC procedure, referring to the unequal probability of probe hybridization to the target sequence as a


result of variable sequence content and hybridization properties. * Other-end-specific bias An experimental bias in the Capture-HiC procedure, referring to the unequal probability of


ligation between the bait locus and its interacting restriction fragment as a result of variable local genomic features. * Principal component analysis (PCA). A statistical approach for


multivariate data analysis. PCA converts a set of correlated variables into a set of linearly uncorrelated variables named principal components, each of which is a linear combination of the


original correlated variables. * First eigenvector The coefficients of the linear combination in the first principle component, which has the largest variance among all principal components.


In Hi-C data analysis, the sign of the first eigenvector was used to determinate the A and B compartments. * Hidden Markov model (HMM). A statistical model assuming that the observed data


are determined by a set of unobserved (hidden) states with the Markov property: the future state depends on only the current state and is independent of all the previous states. * Heuristic


tuning parameters The parameters in the statistical models and computational pipelines that are not estimated from the observed data but are determined based on prior knowledge and


expectation. * Global background model The statistical model for the expected chromatin contact frequency estimated from genome-wide measurements. It is used to systematically identify


significant pairwise Hi-C interactions throughout the genome. All interacting loci pairs at a given linear distance share the same global background model. * Non-parametric spline A


statistical approach to fit the observed data using a piecewise-defined polynomial function. * Benjamini–Hochberg multiple-testing correction A statistical procedure that uses stringent


statistical significance thresholds to control the false discovery rate when performing multiple comparisons. * Local background model The statistical model for the expected chromatin


contact frequency estimated from local chromatin interaction properties. Each pair of interacting loci has a unique local background model, which depends on the definition of its local


neighbouring regions. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Schmitt, A., Hu, M. & Ren, B. Genome-wide mapping and analysis of chromosome


architecture. _Nat Rev Mol Cell Biol_ 17, 743–755 (2016). https://doi.org/10.1038/nrm.2016.104 Download citation * Published: 01 September 2016 * Issue Date: December 2016 * DOI:


https://doi.org/10.1038/nrm.2016.104 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Hubert | Terra Nova

NotePour l’expérimentation de salles de consommation superviséeSoutenue par des acteurs de premier plan, la mise en plac...

Mind matters: placebo enhances reward learning in parkinson's disease

ABSTRACT Expectations have a powerful influence on how we experience the world. Neurobiological and computational models...

Oncogene - volume 36 issue 46, 16 november 2017

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best expe...

Javascript support required...

Sorry!

The Week...

Latests News

Genome-wide mapping and analysis of chromosome architecture

KEY POINTS * Looping of chromatin fibres is an important mechanism for transcription regulation in animals. The past dec...

TJ

Loading......

Complex affect dynamics add limited information to the prediction of psychological well-being

ABSTRACT Over the years, many studies have demonstrated a relation between emotion dynamics and psychological well-being...

Getting tough on illegal immigration is morally right  | thearticle

What with the failed arrest of two illegal immigrants hidden away in the heart of Glasgow, and the now notorious photo o...

Apoplectic middlesbrough mayor blasts tvca at 11th hour meeting

The mayor of Middlesbrough unleashed a furious tirade against TVCA at an 11th hour meeting. At a hastily arranged single...

Top