Immune adaptations that maintain homeostasis with the intestinal microbiota

Nature

Immune adaptations that maintain homeostasis with the intestinal microbiota"


Play all audios:

Loading...

KEY POINTS * The human intestine contains ∼100 trillion bacteria that make essential contributions to human metabolism and establish symbiotic relationships with their hosts. However, these


organisms pose an ongoing threat of invasion owing to their enormous numbers. * The intestinal immune system has evolved unique immune adaptations that allow it to manage its high bacterial


load. These immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade are killed rapidly and do not penetrate to


systemic sites. * A key element of the mammalian intestinal strategy for maintaining homeostasis with the microbiota is to minimize contact between luminal microorganisms and the intestinal


epithelial cell surface. This is accomplished by enhancing the physical barrier through the production of mucus, antimicrobial proteins and IgA. * A second layer of intestinal immune


protection relies on the rapid detection and killing of bacteria that penetrate the epithelial cell surface. This occurs by several immune mechanisms, including bacterial uptake and


phagocytosis by innate immune cells and a complex set of T cell-mediated responses. * A third immune barrier is presented by the mesenteric lymph nodes, which constitute an immune


'firewall' limiting penetration by commensal microorganisms to the systemic immune system. This allows induction of adaptive immune responses to resident bacteria to be confined to


the mucosal immune compartment. * An increasing amount of evidence suggests that inflammatory bowel disease (IBD) arises from dysregulated control of host–microorganism interactions. In


support of this hypothesis, several IBD risk alleles compromise intestinal immune mechanisms that maintain homeostasis with the microbiota. ABSTRACT Humans harbour nearly 100 trillion


intestinal bacteria that are essential for health. Millions of years of co-evolution have moulded this human–microorganism interaction into a symbiotic relationship in which gut bacteria


make essential contributions to human nutrient metabolism and in return occupy a nutrient-rich environment. Although intestinal microorganisms carry out essential functions for their hosts,


they pose a constant threat of invasion owing to their sheer numbers and the large intestinal surface area. In this Review, we discuss the unique adaptations of the intestinal immune system


that maintain homeostatic interactions with a diverse resident microbiota. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DIVERSITY AND DYNAMISM OF IGA−MICROBIOTA INTERACTIONS Article 10


February 2021 LONG-DISTANCE RELATIONSHIPS - REGULATION OF SYSTEMIC HOST DEFENSE AGAINST INFECTIONS BY THE GUT MICROBIOTA Article 22 June 2022 UNCONVENTIONAL IMMUNE CELLS IN THE GUT MUCOSAL


BARRIER: REGULATION BY SYMBIOTIC MICROBIOTA Article Open access 11 September 2023 CHANGE HISTORY * _ 07 APRIL 2015 In figure 4 of the original article, the cytokines that promote the


differentiation of T helper 2 (TH2) cells and TH17 cells were included in the wrong order. This has now been corrected in the online HTML and PDF versions of the article. Nature Reviews


Immunology apologizes for this error. _ REFERENCES * Mathers, C. D., Boerma, T. & Ma Fat, D. Global and regional causes of death. _Br. Med. Bull._ 92, 7–32 (2009). Article  PubMed 


Google Scholar  * Xu, J. et al. A genomic view of the human-_Bacteroides thetaiotaomicron_ symbiosis. _Science_ 299, 2074–2076 (2003). Article  CAS  PubMed  Google Scholar  * Sonnenburg, J.


L. et al. Glycan foraging _in vivo_ by an intestine-adapted bacterial symbiont. _Science_ 307, 1955–1959 (2005). Article  CAS  PubMed  Google Scholar  * Martens, E. C., Chiang, H. C. &


Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. _Cell Host Microbe_ 4, 447–457 (2008). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. _Nature Rev. Microbiol._


6, 776–788 (2008). Article  CAS  Google Scholar  * Xu, J. & Gordon, J. I. Inaugural article: honor thy symbionts. _Proc. Natl Acad. Sci. USA_ 100, 10452–10459 (2003). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. _Science_ 291, 881–884 (2001). THIS PAPER SHOWS


THAT COMMENSAL BACTERIA MANIPULATE HOST CELL FUNCTIONS AND WIDELY INFLUENCE HOST BIOLOGY, REVEALING THE ESSENTIAL NATURE OF THE INTERACTIONS BETWEEN RESIDENT MICROORGANISMS AND THEIR


MAMMALIAN HOSTS. Article  CAS  PubMed  Google Scholar  * Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in


innate immunity. _Nature Immunol._ 4, 269–273 (2003). Article  CAS  Google Scholar  * Stappenbeck, T. S., Hooper, L. V. & Gordon, J. I. Developmental regulation of intestinal


angiogenesis by indigenous microbes via Paneth cells. _Proc. Natl Acad. Sci. USA_ 99, 15451–15455 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * He, B. et al. Intestinal


bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. _Immunity_ 26, 812–826 (2007). Article  CAS  PubMed  Google


Scholar  * Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. _Cell Host Microbe_ 4, 337–349 (2008).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Hall, J. A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses.


_Immunity_ 29, 637–649 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stecher, B. et al. Comparison of _Salmonella enterica_ serovar Typhimurium colitis in germfree mice and


mice pretreated with streptomycin. _Infect. Immun._ 73, 3228–3241 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Klare, I., Werner, G. & Witte, W. Enterococci.


Habitats, infections, virulence factors, resistances to antibiotics, transfer of resistance determinants. _Contrib. Microbiol._ 8, 108–122 (2001). Article  CAS  PubMed  Google Scholar  *


Benson, A., Pifer, R., Behrendt, C. L., Hooper, L. V. & Yarovinsky, F. Gut commensal bacteria direct a protective immune response against _Toxoplasma gondii_. _Cell Host Microbe_ 6,


187–196 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kuwahara, T. et al. Genomic analysis of _Bacteroides fragilis_ reveals extensive DNA inversions regulating cell


surface adaptation. _Proc. Natl Acad. Sci. USA_ 101, 14919–14924 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Johansson, M. E. et al. The inner of the two Muc2


mucin-dependent mucus layers in colon is devoid of bacteria. _Proc. Natl Acad. Sci. USA_ 105, 15064–15069 (2008). THIS PAPER CLEARLY VISUALIZES THE SPATIAL RELATIONSHIPS BETWEEN THE


MICROBIOTA AND THE INTESTINAL EPITHELIAL CELL SURFACE, AND IT SHOWS THAT MUCUS GLYCOPROTEINS ARE ESSENTIAL FOR LIMITING DIRECT CONTACT BETWEEN LUMINAL BACTERIA AND EPITHELIAL CELLS. Article


  CAS  PubMed  PubMed Central  Google Scholar  * Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection.


_Gastroenterology_ 131, 117–129 (2006). Article  CAS  PubMed  Google Scholar  * Celli, J. P. et al. _Helicobacter pylori_ moves through mucus by reducing mucin viscoelasticity. _Proc. Natl


Acad. Sci. USA_ 106, 14321–14326 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guerry, P. Campylobacter flagella: not just for motility. _Trends Microbiol._ 15, 456–461


(2007). Article  CAS  PubMed  Google Scholar  * Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. _Cell_ 139, 485–498 (2009). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. _Nature_ 432, 917–921 (2004). Article  CAS 


PubMed  Google Scholar  * Putsep, K. et al. Germ-free and colonized mice generate the same products from enteric prodefensins. _J. Biol. Chem._ 275, 40478–40482 (2000). Article  CAS  PubMed


  Google Scholar  * Brandl, K., Plitas, G., Schnabl, B., Dematteo, R. P. & Pamer, E. G. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal


_Listeria monocytogenes_ infection. _J. Exp. Med._ 204, 1891–1900 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L.


& Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. _Proc. Natl Acad. Sci. USA_ 105, 20858–20863 (2008).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. _Science_ 307, 731–734


(2005). Article  CAS  PubMed  Google Scholar  * Meyer-Hoffert, U. et al. Secreted enteric antimicrobial activity localizes to the mucus surface layer. _Gut_ 57, 764–771 (2008). Article  CAS


  PubMed  Google Scholar  * Boneca, I. G. et al. A critical role for peptidoglycan N-deacetylation in _Listeria_ evasion from the host innate immune system. _Proc. Natl Acad. Sci. USA_ 104,


997–1002 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. _Cell_ 95,


189–198 (1998). Article  CAS  PubMed  Google Scholar  * Raffatellu, M. et al. Lipocalin-2 resistance confers an advantage to _Salmonella enterica_ serotype Typhimurium for growth and


survival in the inflamed intestine. _Cell Host Microbe_ 5, 476–486 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Suzuki, K. et al. Aberrant expansion of segmented


filamentous bacteria in IgA-deficient gut. _Proc. Natl Acad. Sci. USA_ 101, 1981–1986 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Macpherson, A. J. et al. A primitive T


cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. _Science_ 288, 2222–2226 (2000). Article  CAS  PubMed  Google Scholar  * Macpherson, A. J. & Uhr, T.


Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. _Science_ 303, 1662–1665 (2004). THIS STUDY SHOWS THAT DCS HARBOURING LIVE COMMENSAL BACTERIA ARE


RESTRICTED TO THE MUCOSAL IMMUNE COMPARTMENT BY MESENTERIC LYMPH NODES, WHICH THUS FUNCTION AS AN IMMUNE FIREWALL THAT LIMITS SYSTEMIC PENETRATION OF COMMENSAL BACTERIA. Article  CAS  PubMed


  Google Scholar  * Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. _Nature Immunol._ 2, 361–367 (2001).


Article  CAS  Google Scholar  * Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. _Science_ 307, 254–258 (2005). Article  CAS  PubMed


  Google Scholar  * Fagarasan, S. & Honjo, T. Intestinal IgA synthesis: regulation of front-line body defences. _Nature Rev. Immunol._ 3, 63–72 (2003). Article  CAS  Google Scholar  *


Lee, S. H., Starkey, P. M. & Gordon, S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. _J. Exp. Med._


161, 475–489 (1985). Article  CAS  PubMed  Google Scholar  * Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. _Mucosal


Immunol._ 1, 460–469 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Smythies, L. E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid


phagocytic and bacteriocidal activity. _J. Clin. Invest._ 115, 66–75 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sansonetti, P. J. War and peace at mucosal surfaces.


_Nature Rev. Immunol._ 4, 953–964 (2004). Article  CAS  Google Scholar  * Macpherson, A. J., Geuking, M. B. & McCoy, K. D. Immune responses that adapt the intestinal mucosa to commensal


intestinal bacteria. _Immunology_ 115, 153–162 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T.


S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. _Proc. Natl Acad. Sci. USA_ 102, 99–104 (2005).


Article  CAS  PubMed  Google Scholar  * Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is


required for intestinal homeostasis. _Cell_ 118, 229–241 (2004). Article  CAS  PubMed  Google Scholar  * Shroff, K. E., Meslin, K. & Cebra, J. J. Commensal enteric bacteria engender a


self-limiting humoral mucosal immune response while permanently colonizing the gut. _Infect. Immun._ 63, 3904–3913 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Benveniste, J.,


Lespinats, G. & Salomon, J. Serum and secretory IgA in axenic and holoxenic mice. _J. Immunol._ 107, 1656–1662 (1971). CAS  PubMed  Google Scholar  * Guy-Grand, D. et al. Two gut


intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. _J. Exp. Med._ 173, 471–481 (1991). Article  CAS  PubMed


  Google Scholar  * Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. _Nature Rev. Immunol._ 4, 478–485 (2004). Article  CAS 


Google Scholar  * Barnes, M. J. & Powrie, F. Regulatory T cells reinforce intestinal homeostasis. _Immunity_ 31, 401–411 (2009). Article  CAS  PubMed  Google Scholar  * Kuhn, R., Lohler,


J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. _Cell_ 75, 263–274 (1993). Article  CAS  PubMed  Google Scholar  * Shull, M. M.


et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. _Nature_ 359, 693–699 (1992). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. _Nature_


455, 396–400 (2008). Article  CAS  PubMed  Google Scholar  * Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T


cells. _Immunity_ 1, 553–562 (1994). Article  CAS  PubMed  Google Scholar  * Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin 10 in


the function of regulatory T cells that inhibit intestinal inflammation. _J. Exp. Med._ 190, 995–1004 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Asseman, C., Read, S.


& Powrie, F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. _J. Immunol._ 171, 971–978 (2003).


Article  CAS  PubMed  Google Scholar  * Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell


differentiation. _Immunity_ 26, 579–591 (2007). Article  CAS  PubMed  Google Scholar  * Cong, Y., Weaver, C. T., Lazenby, A. & Elson, C. O. Bacterial-reactive T regulatory cells inhibit


pathogenic immune responses to the enteric flora. _J. Immunol._ 169, 6112–6119 (2002). Article  CAS  PubMed  Google Scholar  * Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial


symbiosis factor prevents intestinal inflammatory disease. _Nature_ 453, 620–625 (2008). Article  CAS  PubMed  Google Scholar  * Gaboriau-Routhiau, V. et al. The key role of segmented


filamentous bacteria in the coordinated maturation of gut helper T cell responses. _Immunity_ 31, 677–689 (2009). Article  CAS  PubMed  Google Scholar  * Neurath, M. F. et al. The


transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. _J. Exp. Med._ 195, 1129–1143 (2002). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. _Cell_


122, 107–118 (2005). Article  CAS  PubMed  Google Scholar  * Mazmanian, S. K. & Kasper, D. L. The love–hate relationship between bacterial polysaccharides and the host immune system.


_Nature Rev. Immunol._ 6, 849–858 (2006). Article  CAS  Google Scholar  * Becker, C. et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by


dendritic cells. _J. Clin. Invest._ 112, 693–706 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gautreaux, M. D., Gelder, F. B., Deitch, E. A. & Berg, R. D. Adoptive


transfer of T lymphocytes to T-cell-depleted mice inhibits _Escherichia coli_ translocation from the gastrointestinal tract. _Infect. Immun._ 63, 3827–3834 (1995). CAS  PubMed  PubMed


Central  Google Scholar  * Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties. _Immunity_ 24,


677–688 (2006). Article  CAS  PubMed  Google Scholar  * Lee, Y. K., Mukasa, R., Hatton, R. D. & Weaver, C. T. Developmental plasticity of Th17 and Treg cells. _Curr. Opin. Immunol._ 21,


274–280 (2009). Article  CAS  PubMed  Google Scholar  * Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. _Immunity_ 30, 92–107 (2009). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Maloy, K. J. et al. CD4+CD25+ TR cells suppress innate immune pathology through cytokine-dependent mechanisms. _J. Exp. Med._ 197, 111–119 (2003). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Kullberg, M. C. et al. Bacteria-triggered CD4+ T regulatory cells suppress _Helicobacter hepaticus_-induced colitis. _J. Exp. Med._ 196, 505–515


(2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kullberg, M. C. et al. IL-23 plays a key role in _Helicobacter hepaticus_-induced T cell-dependent colitis. _J. Exp. Med._


203, 2485–2494 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hue, S. et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. _J. Exp. Med._ 203,


2473–2483 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. _Science_ 266,


1253–1255 (1994). Article  CAS  PubMed  Google Scholar  * Chen, Y., Chou, K., Fuchs, E., Havran, W. L. & Boismenu, R. Protection of the intestinal mucosa by intraepithelial γδ T cells.


_Proc. Natl Acad. Sci. USA_ 99, 14338–14343 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC


molecules by intestinal epithelial γδ T cells. _Science_ 279, 1737–1740 (1998). Article  CAS  PubMed  Google Scholar  * Suemizu, H. et al. A basolateral sorting motif in the MICA


cytoplasmic tail. _Proc. Natl Acad. Sci. USA_ 99, 2971–2976 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ismail, A. S., Behrendt, C. L. & Hooper, L. V. Reciprocal


interactions between commensal bacteria and γδ intraepithelial lymphocytes during mucosal injury. _J. Immunol._ 182, 3047–3054 (2009). Article  CAS  PubMed  Google Scholar  * Poussier, P.,


Ning, T., Banerjee, D. & Julius, M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. _J. Exp. Med._ 195, 1491–1497 (2002). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. _Nature Immunol._ 10,


83–91 (2009). Article  CAS  Google Scholar  * Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. _Nature Med._ 14, 282–289


(2008). Article  CAS  PubMed  Google Scholar  * Shiloh, M. U. et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. _Immunity_ 10,


29–38 (1999). THIS STUDY SHOWS THE ESSENTIAL ROLE OF MICROBICIDAL MECHANISMS IN CONTAINING THE COMMENSAL INTESTINAL MICROBIOTA. Article  CAS  PubMed  Google Scholar  * Sansonetti, P.


Phagocytosis of bacterial pathogens: implications in the host response. _Semin. Immunol._ 13, 381–390 (2001). Article  CAS  PubMed  Google Scholar  * Gowans, J. L. & Knight, E. J. The


route of re-circulation of lymphocytes in the rat. _Proc. R. Soc. Lond. B Biol. Sci._ 159, 257–282 (1964). Article  CAS  PubMed  Google Scholar  * Husband, A. J. & Gowans, J. L. The


origin and antigen-dependent distribution of IgA-containing cells in the intestine. _J. Exp. Med._ 148, 1146–1160 (1978). THIS IS A LANDMARK STUDY OF THE IMMUNE GEOGRAPHY OF THE MUCOSAL


IMMUNE SYSTEM, SHOWING THE DISSEMINATION OF IGA+ PLASMA CELLS THAT HAVE BEEN INDUCED IN THE INTESTINAL MUCOSA THROUGH THE LYMPH AND BLOOD. Article  CAS  PubMed  Google Scholar  * Pierce, N.


F. & Gowans, J. L. Cellular kinetics of the intestinal immune response to cholera toxoid in rats. _J. Exp. Med._ 142, 1550–1563 (1975). Article  CAS  PubMed  Google Scholar  * Nagl, M.


et al. Phagocytosis and killing of bacteria by professional phagocytes and dendritic cells. _Clin. Diagn. Lab. Immunol._ 9, 1165–1168 (2002). PubMed  PubMed Central  Google Scholar  *


Konrad, A., Cong, Y., Duck, W., Borlaza, R. & Elson, C. O. Tight mucosal compartmentation of the murine immune response to antigens of the enteric microbiota. _Gastroenterology_ 130,


2050–2059 (2006). Article  CAS  PubMed  Google Scholar  * Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. _Science_ 325, 617–620


(2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal


flora in patients with inflammatory bowel disease. _J. Clin. Microbiol._ 43, 3380–3389 (2005). Article  PubMed  PubMed Central  Google Scholar  * Hugot, J. P. et al. Association of NOD2


leucine-rich repeat variants with susceptibility to Crohn's disease. _Nature_ 411, 599–603 (2001). CAS  PubMed  Google Scholar  * Ogura, Y. et al. A frameshift mutation in NOD2


associated with susceptibility to Crohn's disease. _Nature_ 411, 603–606 (2001). REFERENCES 88 AND 89 SHOW THAT _NOD2_ POLYMORPHISMS ACCOUNT FOR A PROPORTION OF THE GENETIC RISK OF


CROHN'S DISEASE. THIS WAS THE FIRST OF A LARGE NUMBER OF LINKED GENETIC LOCI TO BE IDENTIFIED AND THE SUSPECTED DYSREGULATION OF HOST–MICROORGANISM MUTUALISM AS A CAUSE OF IBD WAS


REINFORCED BY THE FINDING THAT NOD2 SENSES A BACTERIAL CELL WALL COMPONENT. Article  CAS  PubMed  Google Scholar  * Wehkamp, J. et al. Reduced Paneth cell α-defensins in ileal Crohn's


disease. _Proc. Natl Acad. Sci. USA_ 102, 18129–18134 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cadwell, K. et al. A key role for autophagy and the autophagy gene


_Atg16l1_ in mouse and human intestinal Paneth cells. _Nature_ 456, 259–263 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kaser, A. et al. XBP1 links ER stress to


intestinal inflammation and confers genetic risk for human inflammatory bowel disease. _Cell_ 134, 743–756 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Garabedian, E. M.,


Roberts, L. J., McNevin, M. S. & Gordon, J. I. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. _J. Biol. Chem._ 272, 23729–23740 (1997).


Article  CAS  PubMed  Google Scholar  * Chapel, H. et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. _Blood_ 112, 277–286 (2008). Article  CAS 


PubMed  Google Scholar  * Notarangelo, L. et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases


Classification Committee Meeting in Budapest, 2005. _J. Allergy Clin. Immunol._ 117, 883–896 (2006). Article  PubMed  Google Scholar  * Casanova, J. L. & Abel, L. Primary


immunodeficiencies: a field in its infancy. _Science_ 317, 617–619 (2007). Article  CAS  PubMed  Google Scholar  * Eckburg, P. B. et al. Diversity of the human intestinal microbial flora.


_Science_ 308, 1635–1638 (2005). THIS LANDMARK STUDY USES MOLECULAR PROFILING TO REVEAL THE DIVERSITY OF THE HUMAN MICROFLORA AND ESTABLISH THE DOMINANT BACTERIAL PHYLOTYPES THAT INHABIT THE


HUMAN GASTROINTESTINAL TRACT. Article  PubMed  PubMed Central  Google Scholar  * Ogura, Y. et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. _Gut_ 52,


1591–1597 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for


Crohn's disease. _J. Biol. Chem._ 278, 5509–5512 (2003). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS L.V.H. thanks the students and colleagues from her


laboratory for the many discussions that contributed to the ideas in this manuscript. Work in L.V.H.'s laboratory is supported by the Howard Hughes Medical Institute, the US National


Institutes of Health (DK070855), the Burroughs Wellcome Foundation and the Crohn's and Colitis Foundation. A.M. acknowledges K. McCoy, E. Slack, S. Hapfelmeier, M. Stoehl and M.


Geuking. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * The Howard Hughes Medical Institute and The Department of Immunology, The University of Texas Southwestern Medical Center, Dallas,


75390, Texas, USA Lora V. Hooper * The Department of Clinical Research (DFK), Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), University of Bern,


3008, Bern, Switzerland Andrew J. Macpherson * Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4L8, Ontario, Canada Andrew J. Macpherson Authors *


Lora V. Hooper View author publications You can also search for this author inPubMed Google Scholar * Andrew J. Macpherson View author publications You can also search for this author


inPubMed Google Scholar ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS RELATED LINKS FURTHER INFORMATION Lora V. Hooper's


homepage Andrew J. Macpherson's homepage GLOSSARY * Microbiota The microorganisms that are harboured by normal, healthy individuals. These microorganisms live in the digestive tract and


at other body sites. * Sepsis A systemic response to severe infection or tissue damage, leading to a hyperactive and unbalanced network of pro-inflammatory mediators. Vascular permeability,


cardiac function and metabolic balance are affected, resulting in tissue necrosis, multi-organ failure and death. * Metagenome All the genetic material present in a population of


microorganisms, consisting of the genomes of many individual organisms. * Goblet cell A mucus-producing cell found in the epithelial cell lining of the intestine and lungs. * Defensin A


class of antimicrobial peptide that has activity against Gram-positive and Gram-negative bacteria, fungi and viruses. α-defensins are produced by intestinal Paneth cells and neutrophils, and


β-defensins are expressed by most epithelial cells. * C-type lectin An animal receptor protein that binds to carbohydrates, frequently in a Ca2+-dependent manner. The binding activity of


C-type lectins is based on the structure of the carbohydrate-recognition domain, which is highly conserved among members of this family. * Paneth cells A specialized epithelial cell lineage


that produces most of the antimicrobial proteins in the small intestine. * Peyer's patches Groups of lymphoid nodules present in the small intestine (usually the ileum). They occur


massed together on the intestinal wall, opposite the line of attachment of the mesentery. Peyer's patches consist of a dome area, B cell follicles and interfollicular T cell areas. High


endothelial venules are present mainly in the interfollicular areas. * Lamina propria Connective tissue that underlies the epithelium of the mucosa and contains various myeloid and lymphoid


cells, including macrophages, dendritic cells, T cells and B cells. * Plasma cell A non-dividing, terminally differentiated, immobile antibody-secreting cell of the B cell lineage. *


Transcytosis Process of transport of material across a cell monolayer by uptake on one side of the cell into a coated vesicle, which might then be sorted through the _trans_-Golgi network


and transported to the opposite side of the cell. * Germ-free mouse A mouse that is born and raised in isolators, without exposure to microorganisms. * Germinal centre Located in peripheral


lymphoid tissues (for example, the spleen), these structures are sites of B cell proliferation and selection for clones that produce antigen-specific antibodies of higher affinity. *


Recombination-activating gene (_Rag_). A gene expressed by developing lymphocytes. Mice that are deficient for either _Rag1_ or _Rag2_ fail to produce B or T cells owing to a developmental


block in the gene rearrangement that is necessary for antigen receptor expression. * Severe combined immunodeficiency (SCID). A phenotype of mice with a defect in DNA recombination. SCID


mice lack B and T cells and do not reject tissue grafts from allogeneic and xenogeneic sources. * Intraepithelial CD8αα+ T cell A type of T cell that is found in the intestinal epithelium.


The CD8 molecule that they express is a homodimer of CD8α, rather than the CD8αβ heterodimer that is expressed by conventional CD8+ T cells in the lymph nodes. It has been proposed that


these cells are self-reactive T cells that have regulatory properties. * Lymphoid-tissue inducer cell (LTi cell). A cell that is present in developing lymph nodes, Peyer's patches and


nasopharynx-associated lymphoid tissue. LTi cells are required for the development of these lymphoid organs and are characterized by expression of the transcription factor retinoic acid


receptor-related orphan receptor-γt (RORγt), interleukin-7 receptor-α and lymphotoxin-α1β;2. * Specific pathogen-free (SPF) mice Mice kept in specific vivarium conditions whereby a number of


pathogens are excluded or eradicated from the colony. These animals are maintained in the absence of most of the known chronic and latent persistent pathogens. Although this enables better


control of experimental conditions related to immunity and infection, it also sets apart such animal models from pathogen-exposed humans or non-human primates, whose immune systems are in


constant contact with potential pathogens. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Hooper, L., Macpherson, A. Immune adaptations that maintain


homeostasis with the intestinal microbiota. _Nat Rev Immunol_ 10, 159–169 (2010). https://doi.org/10.1038/nri2710 Download citation * Issue Date: March 2010 * DOI:


https://doi.org/10.1038/nri2710 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Aarp the magazine aug/sept 2023 issue - members only access

The August/September 2023 issue of _AARP The Magazine_ gives readers a closer look into the lives of intriguing celebrit...

Normal service has resumed in politics — with a broken promise | thearticle

Schools and offices have gone back; rush hour traffic and road rage are back; soon the world will be back to pre-pandemi...

John swinney’s opening statement at the scottish leaders’ tv debate — scottish national party

As your First Minister, I will be totally focused on the issues that matter to you. I know these debates can often turn ...

Pardon Our Interruption

Pardon Our Interruption As you were browsing something about your browser made us think you were a bot. There are a few ...

About va form 10-7959c | veterans affairs

* Form name: CHAMPVA—Other Health Insurance (OHI) Certification Form revision date: August 2013 Related to: Family membe...

Latests News

Immune adaptations that maintain homeostasis with the intestinal microbiota

KEY POINTS * The human intestine contains ∼100 trillion bacteria that make essential contributions to human metabolism a...

Cheese Board Pinwheels Recipe - Members Only Access

Makes about 52 pinwheels We all know how clutch a great cheese board can be when you have a crowd coming over for the ho...

Bishop william j. Barber ii delivers his last sermon after announcing his retirement

by STACY JACKSON June 20, 2023 ------------------------- Bishop William J. Barber II, pastor and civil rights leader, is...

Where are the 3,000 local bridges reported to have structural faults in france?

TOO MUCH ROAD TRAFFIC, CLIMATE CHANGE, A LACK OF MAINTENANCE AND REPAIR ARE ALL FACTORS More than 3,000 local bridges in...

Webinar- 8 80 Cities 'Rules' of Community Engagement

55:29 AARP Videos Webinar- 8 80 Cities 'Rules' of Community Engagement 8 80 Cities explains how it uses simple but creat...

Top