Regulation of immunity and inflammation by hypoxia in immunological niches

Nature

Regulation of immunity and inflammation by hypoxia in immunological niches"


Play all audios:

Loading...

KEY POINTS * Hypoxia and inflammation are frequently co-incidental microenvironmental features of sites of concentrated physiological or pathological immune activity. * Hypoxia activates


hypoxia-inducible factor, which is a major regulator of multiple aspects of immune cell function. Consequently, hypoxia plays a key role in the regulation of immunity and inflammation. * The


impact of hypoxia on immunity and inflammation is site-specific and cell type-specific. * Pharmacological hydroxylase inhibition, which activates hypoxia-sensitive pathways, is profoundly


protective in multiple models of inflammation. ABSTRACT Immunological niches are focal sites of immune activity that can have varying microenvironmental features. Hypoxia is a feature of


physiological and pathological immunological niches. The impact of hypoxia on immunity and inflammation can vary depending on the microenvironment and immune processes occurring in a given


niche. In physiological immunological niches, such as the bone marrow, lymphoid tissue, placenta and intestinal mucosa, physiological hypoxia controls innate and adaptive immunity by


modulating immune cell proliferation, development and effector function, largely via transcriptional changes driven by hypoxia-inducible factor (HIF). By contrast, in pathological


immunological niches, such as tumours and chronically inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction and disease development through immune cell


dysregulation. Here, we differentiate between the effects of physiological and pathological hypoxia on immune cells and the consequences for immunity and inflammation in different


immunological niches. Furthermore, we discuss the possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio


journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per


year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HOW


OXYGENATION SHAPES IMMUNE RESPONSES: EMERGING ROLES FOR PHYSIOXIA AND PATHOLOGICAL HYPOXIA Article 30 September 2024 THE EFFECT OF HIF ON METABOLISM AND IMMUNITY Article 20 June 2022 HYPOXIA


SIGNALING IN HUMAN HEALTH AND DISEASES: IMPLICATIONS AND PROSPECTS FOR THERAPEUTICS Article Open access 07 July 2022 REFERENCES * Beerman, I., Luis, T. C., Singbrant, S., Lo Celso, C. &


Méndez-Ferrer, S. The evolving view of the hematopoietic stem cell niche. _Exp. Hematol._ 50, 22–26 (2017). Article  PubMed  PubMed Central  Google Scholar  * Shah, D. K. &


Zúñiga-Pflücker, J. C. An overview of the intrathymic intricacies of T cell development. _J. Immunol._ 192, 4017–4023 (2014). Article  CAS  PubMed  Google Scholar  * Campbell, E. L., Kao, D.


J. & Colgan, S. P. Neutrophils and the inflammatory tissue microenvironment in the mucosa. _Immunol. Rev._ 273, 112–120 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Lin, E. W., Karakasheva, T. A., Hicks, P. D., Bass, A. J. & Rustgi, A. K. The tumor microenvironment in esophageal cancer. _Oncogene_ 35, 5337–5349 (2016). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Maru, Y. The lung metastatic niche. _J. Mol. Med. (Berl.)_ 93, 1185–1192 (2015). Article  CAS  Google Scholar  * Biswas, S. et al. Microenvironmental control of


stem cell fate in intestinal homeostasis and disease. _J. Pathol._ 237, 135–145 (2015). Article  PubMed  PubMed Central  Google Scholar  * Hallenbeck, J. M., Hansson, G. K. & Becker, K.


J. Immunology of ischemic vascular disease: plaque to attack. _Trends Immunol._ 26, 550–556 (2005). Article  CAS  PubMed  Google Scholar  * Gobert, A. P. & Wilson, K. T. The immune


battle against _Helicobacter pylori_ infection: NO offense. _Trends Microbiol._ 24, 366–376 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Quante, M. & Wang, T. C.


Inflammation and stem cells in gastrointestinal carcinogenesis. _Physiology (Bethesda)_ 23, 350–359 (2008). CAS  Google Scholar  * Multhoff, G., Molls, M. & Radons, J. Chronic


inflammation in cancer development. _Front. Immunol._ 2, 98 (2012). Article  PubMed  PubMed Central  Google Scholar  * Taylor, C. T., Doherty. G., Fallon, P. G. & Cummins, E. P.


Hypoxia-dependent regulation of inflammatory pathways in immune cells. _J. Clin. Invest._ 126, 3716–3724 (2016). Article  PubMed  PubMed Central  Google Scholar  * Cummins, E. P., Keogh, C.


E., Crean, D. & Taylor, C. T. The role of HIF in immunity and inflammation. _Mol. Aspects Med._ 47–48, 24–34 (2016). Article  CAS  PubMed  Google Scholar  * Scholz, C. C. & Taylor,


C. T. Targeting the HIF pathway in inflammation and immunity. _Curr. Opin. Pharmacol._ 13, 646–653 (2013). Article  CAS  PubMed  Google Scholar  * Taylor, C. T. & McElwain, J. C. Ancient


atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. _Physiology (Bethesda)_ 25, 272–279 (2010). CAS  Google Scholar  * Colgan, S. P. & Taylor,


C. T. Hypoxia: an alarm signal during intestinal inflammation. _Nat. Rev. Gastroenterol. Hepatol._ 7, 281–287 (2010). Article  PubMed  PubMed Central  Google Scholar  * Zheng, L., Kelly, C.


J. & Colgan, S. P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. _Am. J. Physiol. Cell Physiol._ 309,


C350–C360 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Semenza, G. L. The hypoxic tumor microenvironment: a driving force for breast cancer progression. _Biochim. Biophys.


Acta_ 1863, 382–391 (2016). Article  CAS  PubMed  Google Scholar  * Semenza, G. L. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. _Trends Mol. Med._ 18, 534–543


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Colgan, S. P., Campbell, E. L. & Kominsky, D. J. Hypoxia and mucosal inflammation. _Annu. Rev. Pathol._ 11, 77–100 (2016).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. _N. Engl. J. Med._ 364, 656–665 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Loenarz, C. et al. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. _EMBO Rep._ 12, 63–70


(2011). THIS PAPER IDENTIFIES THE HIGHLY EVOLUTIONARILY CONSERVED NATURE OF THE OXYGEN-SENSING HYDROXYLASE–HIF-DEPENDENT PATHWAY IN ALL METAZOANS. Article  CAS  PubMed  Google Scholar  *


Cummins, E. P. & Taylor, C. T. Hypoxia-responsive transcription factors. _Pflugers Arch._ 450, 363–371 (2005). Article  CAS  PubMed  Google Scholar  * Semenza, G. L. Hypoxia-inducible


factors in physiology and medicine. _Cell_ 148, 399–408 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ratcliffe, P. J. Oxygen sensing and hypoxia signalling pathways in


animals: the implications of physiology for cancer. _J. Physiol._ 591, 2027–2042 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bunn, H. F. & Poyton, R. O. Oxygen


sensing and molecular adaptation to hypoxia. _Physiol. Rev._ 76, 839–885 (1996). Article  CAS  PubMed  Google Scholar  * Taylor, C. T. & Moncada, S. Nitric oxide, cytochrome C oxidase,


and the cellular response to hypoxia. _Arterioscler. Thromb. Vasc. Biol._ 30, 643–647 (2010). Article  CAS  PubMed  Google Scholar  * Kaelin, W. G. Jr. The von Hippel-Lindau tumour


suppressor protein: O2 sensing and cancer. _Nat. Rev. Cancer_ 8, 865–873 (2008). Article  CAS  PubMed  Google Scholar  * Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans:


the central role of the HIF hydroxylase pathway. _Mol. Cell_ 30, 393–402 (2008). Article  CAS  PubMed  Google Scholar  * Selfridge, A. C. et al. Hypercapnia suppresses the HIF-dependent


adaptive response to hypoxia. _J. Biol. Chem._ 291, 11800–11808 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hubbi, M. E. & Semenza, G. L. An essential role for


chaperone-mediated autophagy in cell cycle progression. _Autophagy_ 11, 850–851 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hubbi, M. E., Gilkes, D. M., Hu, H., Kshitiz,


Ahmed, I. & Semenza, G. L. Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1α to promote cell-cycle progression. _Proc. Natl Acad. Sci. USA_ 111,


E3325–E3334 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Intlekofer, A. M. et al. L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH.


_Nat. Chem. Biol._ 13, 494–500 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. _Nature_ 540,


236–241 (2016). THIS STUDY DEMONSTRATES THAT THE HIF PATHWAY PLAYS A KEY ROLE IN REGULATING ANTITUMOUR ACTIVITY IN CYTOTOXIC T LYMPHOCYTES. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. _Nature_ 483, 484–488 (2012). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. _Nature_ 496, 238–242 (2013). THIS STUDY DEMONSTRATES THAT SUCCINATE IS AN


IMMUNOMETABOLITE THAT REGULATES INNATE IMMUNITY THROUGH THE HIF PATHWAY. Article  CAS  PubMed  PubMed Central  Google Scholar  * Chandel, N. S. Mitochondrial regulation of oxygen sensing.


_Adv. Exp. Med. Biol._ 661, 339–354 (2010). Article  CAS  PubMed  Google Scholar  * Schödel, J., Mole, D. R. & Ratcliffe, P. J. Pan-genomic binding of hypoxia-inducible transcription


factors. _Biol. Chem._ 394, 507–517 (2013). Article  CAS  PubMed  Google Scholar  * Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA


binding with expression profiling of hypoxia-inducible transcripts. _J. Biol. Chem._ 284, 16767–16775 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Duan, C.


Hypoxia-inducible factor 3 biology: complexities and emerging themes. _Am. J. Physiol. Cell Physiol._ 310, C260–269 (2016). Article  PubMed  Google Scholar  * Palazon, A., Goldrath, A. W.,


Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. _Immunity_ 41, 518–528 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lenihan, C. R.


& Taylor, C. T. The impact of hypoxia on cell death pathways. _Biochem. Soc. Trans._ 41, 657–663 (2013). Article  CAS  PubMed  Google Scholar  * Haase, V. H. Regulation of erythropoiesis


by hypoxia-inducible factors. _Blood Rev._ 27, 41–53 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cummins, E. P. & Crean, D. Hypoxia and inflammatory bowel disease.


_Microbes Infect._ 19, 210–221 (2017). Article  CAS  PubMed  Google Scholar  * Glover, L. E. Lee, J. S. & Colgan, S. P. Oxygen metabolism and barrier regulation in the intestinal mucosa.


_J. Clin. Invest._ 126, 3680–3688 (2016). Article  PubMed  PubMed Central  Google Scholar  * Ramakrishnan, S. K. & Shah, Y. M. Role of intestinal HIF-2α in health and disease. _Annu.


Rev. Physiol._ 78, 301–325 (2016). Article  CAS  PubMed  Google Scholar  * Ivan, M. & Kaelin, W. G. Jr. The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. _Mol. Cell_ 66,


772–779 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Harris, A. J., Thompson, A. R., Whyte, M. K. & Walmsley, S. R. HIF-mediated innate immune responses: cell


signaling and therapeutic implications. _Hypoxia (Auckl.)_ 2, 47–58 (2014). Google Scholar  * Lin, N. & Simon, M. C. Hypoxia-inducible factors: key regulators of myeloid cells during


inflammation. _J. Clin. Invest._ 126, 3661–3671 (2016). Article  PubMed  PubMed Central  Google Scholar  * Mills, E. & O'Neill, L. A. Succinate: a metabolic signal in inflammation.


_Trends Cell Biol._ 24, 313–320 (2014). Article  CAS  PubMed  Google Scholar  * Hammami, A., Charpentier, T., Smans, M. & Stäger, S. IRF-5-mediated inflammation limits CD8+ T Cell


expansion by inducing HIF-1α and impairing dendritic cell functions during Leishmania infection. _PLoS Pathog._ 11, e1004938 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Wobben, R. et al. Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells. _Biol. Chem._ 394, 495–505 (2013). Article  CAS  PubMed  Google Scholar  * Cho, S. H.


et al. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. _Nature_ 537, 234–238 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ward,


J. B. et al. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea. _FASEB J._ 25, 535–543 (2011). Article  CAS  PubMed  Google


Scholar  * Kelly, C. J. et al. Fundamental role for HIF-1α in constitutive expression of human β defensin-1. _Mucosal Immunol._ 6, 1110–1118 (2013). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Du, J. et al. pVHL negatively regulates antiviral signaling by targeting MAVS for proteasomal degradation. _J. Immunol._ 195, 1782–1790 (2015). Article  CAS  PubMed  Google


Scholar  * Stehle, F. et al. VHL-dependent alterations in the secretome of renal cell carcinoma: association with immune cell response? _Oncotarget_ 6, 43420–43437 (2015). Article  PubMed 


PubMed Central  Google Scholar  * Scholz, C. C. & Taylor, C. T. Hydroxylase-dependent regulation of the NF-κB pathway. _Biol. Chem._ 394, 479–493 (2013). Article  CAS  PubMed  Google


Scholar  * Corcoran, S. E. & O'Neill, L. A. HIF1α and metabolic reprogramming in inflammation. _J. Clin. Invest._ 126, 3699–3707 (2016). Article  PubMed  PubMed Central  Google


Scholar  * Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. _Cell_ 167, 457–470 (2016). Article  CAS  PubMed 


PubMed Central  Google Scholar  * O'Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. _Nat. Rev. Immunol._ 16553–16565 (2016). * Semenza, G.


L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. _J. Biol. Chem._ 269, 23757–23763 (1994). THIS


STUDY IDENTIFIES THE CONTROL OF GLYCOLYTIC METABOLISM BY THE HIF PATHWAY. CAS  PubMed  Google Scholar  * Halligan, D. N., Murphy, S. J. & Taylor, C. T. The hypoxia-inducible factor (HIF)


couples immunity with metabolism. _Semin. Immunol._ 28, 469–477 (2016). Article  CAS  PubMed  Google Scholar  * Michiels, C., Tellier, C. & Feron, O. Cycling hypoxia: a key feature of


the tumor microenvironment. _Biochim. Biophys. Acta_ 1866, 76–86 (2016). CAS  PubMed  Google Scholar  * Toffoli, S. & Michiels, C. Intermittent hypoxia is a key regulator of cancer cell


and endothelial cell interplay in tumours. _FEBS J._ 275, 2991–3002 (2008). Article  CAS  PubMed  Google Scholar  * Ryan, S., Taylor, C. T. & McNicholas, W. T. Selective activation of


inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. _Circulation_ 112, 2660–2667 (2005). Article  CAS  PubMed  Google Scholar  * Taylor, C. T., Kent, B. D.,


Crinion, S. J., McNicholas, W. T. & Ryan, S. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression.


_Biochem. Biophys. Res. Commun._ 447, 660–665 (2014). Article  CAS  PubMed  Google Scholar  * D'Ignazio, L., Bandarra, D. & Rocha, S. NF-κB and HIF crosstalk in immune responses.


_FEBS J._ 283, 413–424 (2016). Article  CAS  PubMed  Google Scholar  * Taylor, C. T. Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. _J.


Physiol._ 586, 4055–4059 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, inflammation, and immunity: a troika


governing cancer and its treatment. _Cell_ 166, 288–298 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shalapour, S. & Karin, M. Immunity, inflammation, and cancer: an


eternal fight between good and evil. _J. Clin. Invest._ 125, 3347–3355 (2015). Article  PubMed  PubMed Central  Google Scholar  * Frede, S., Stockmann, C., Freitag, P. & Fandrey, J.


Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. _Biochem. J._ 396, 517–527 (2006). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Pérez, S., Taléns-Visconti, R., Rius-Pérez, S., Finamor, I. & Sastre, J. Redox signaling in the gastrointestinal tract. _Free Radic. Biol. Med._ 104, 75–103 (2017). Article 


CAS  PubMed  Google Scholar  * Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of


O2 sensing. _J. Biol. Chem._ 275, 25130–25138 (2000). Article  CAS  PubMed  Google Scholar  * Masson, N. et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF


transcriptional activity. _EMBO Rep._ 13, 251–257 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hagen, T., Taylor, C. T., Lam, F. & Moncada, S. Redistribution of


intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. _Science_ 302, 1975–1978 (2003). THIS STUDY DEMONSTRATES THAT NITRIC OXIDE, A KEY MEDIATOR OF INFLAMMATION, CAN REGULATE


HIF STABILITY THROUGH THE CONTROL OF INTRACELLULAR OXYGEN AVAILABILITY. Article  CAS  PubMed  Google Scholar  * Lohninger, L. et al. Hydrogen sulphide induces HIF-1α and Nrf2 in THP-1


macrophages. _Biochimie_ 112, 187–195 (2015). Article  CAS  PubMed  Google Scholar  * Flannigan, K. L. et al. Proresolution effects of hydrogen sulfide during colitis are mediated through


hypoxia-inducible factor-1α. _FASEB J._ 29, 1591–1602 (2015). Article  CAS  PubMed  Google Scholar  * Wu, B., Teng, H., Yang, G., Wu, L. & Wang, R. Hydrogen sulfide inhibits the


translational expression of hypoxia-inducible factor-1α. _Br. J. Pharmacol._ 167, 1492–1505 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Eliasson, P. & Jönsson, J. I.


The hematopoietic stem cell niche: low in oxygen but a nice place to be. _J. Cell. Physiol._ 222, 17–22 (2010). Article  CAS  PubMed  Google Scholar  * Parmar, K., Mauch, P., Vergilio, J.


A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. _Proc. Natl Acad. Sci. USA_ 104, 5431–5436 (2007). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Mortensen, B. T. et al. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats. _Br. J. Haematol._ 102,


458–464 (1998). Article  CAS  PubMed  Google Scholar  * Morikawa, T. & Takubo, K. Hypoxia regulates the hematopoietic stem cell niche. _Pflugers Arch._ 468, 13–22 (2015). Article  CAS 


PubMed  Google Scholar  * Forristal, C. E. et al. Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence _in vivo_ and accelerates blood recovery after severe


irradiation. _Blood_ 121, 759–769 (2013). Article  CAS  PubMed  Google Scholar  * Takubo, K. et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. _Cell Stem


Cell._ 7, 391–402 (2010). Article  CAS  PubMed  Google Scholar  * Forristal, C. E. & Levesque, J. P. Targeting the hypoxia-sensing pathway in clinical hematology. _Stem Cells Transl


Med._ 3, 135–140 (2014). Article  CAS  PubMed  Google Scholar  * Gezer, D., Vukovic, M., Soga, T., Pollard, P. J. & Kranc, K. R. Concise review: genetic dissection of hypoxia signaling


pathways in normal and leukemic stem cells. _Stem Cells_ 32, 1390–1397 (2014). Article  CAS  PubMed  Google Scholar  * Annese, V., Navarro-Guerrero, E., Rodríguez-Prieto, I. & Pardal, R.


Physiological plasticity of neural-crest-derived stem cells in the adult mammalian carotid body. _Cell Rep._ 19, 471–478 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Mazumdar, J. et al. O2 regulates stem cells through Wnt/β-catenin signalling. _Nat. Cell Biol._ 12, 1007–1013 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Simsek, T. et


al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. _Cell Stem Cell._ 7, 380–390 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Krock, B. L. et al. The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability. _Blood_ 125, 3263–3272 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Guitart, A. V. et al. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. _Blood_ 122, 1741–1745 (2013).


Article  CAS  PubMed  Google Scholar  * Abbott, R. K. et al. Germinal center hypoxia potentiates immunoglobulin class switch recombination. _J. Immunol._ 197, 4014–4020 (2016). REFERENCES 52


AND 92 DEMONSTRATE THAT PHYSIOLOGICAL HYPOXIA IN GCS PLAYS A KEY ROLE IN B CELL DEVELOPMENT. Article  CAS  PubMed  Google Scholar  * Kumpel, B. M. & Manoussaka, M. S. Placental


immunology and maternal alloimmune responses. _Vox Sang._ 102, 2–12 (2012). Article  CAS  PubMed  Google Scholar  * Fryer, B. H. & Simon, M. C. Hypoxia, HIF and the placenta. _Cell


Cycle_ 5, 495–498 (2006). Article  CAS  PubMed  Google Scholar  * Macklin, P. S., McAuliffe, J., Pugh, C. W. & Yamamoto, A. Hypoxia and HIF pathway in cancer and the placenta. _Placenta_


56, 8–13 (2017). Article  CAS  PubMed  Google Scholar  * Yaghi, L. et al. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia


response element located in exon 2. _Oncotarget_ 7, 63690–63707 (2016). Article  PubMed  PubMed Central  Google Scholar  * Barsoum, I. B., Smallwood, C. A., Siemens, D. R. & Graham, C.


H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. _Cancer Res._ 74, 665–674 (2014). Article  CAS  PubMed  Google Scholar  * Webster, W. S. & Abela, D. The


effect of hypoxia in development. _Birth Defects Res. C Embryo Today_ 81, 215–228 (2007). Article  CAS  PubMed  Google Scholar  * Filiano, A. J., Gadani, S. P. & Kipnis, J. Interactions


of innate and adaptive immunity in brain development and function. _Brain Res._ 1617, 18–27 (2015). Article  CAS  PubMed  Google Scholar  * Dowling, D. J. & Levy, O. Ontogeny of early


life immunity. _Trends Immunol._ 35, 299–310 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shepherd, A. P. Metabolic control of intestinal oxygenation and blood flow. _Fed.


Proc._ 41, 2084–2089 (1982). CAS  PubMed  Google Scholar  * Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. _J. Clin. Invest._ 114,


1098–1106 (2004). THIS STUDY IDENTIFIES A PROTECTIVE ROLE FOR THE HIF PATHWAY IN INTESTINAL INFLAMMATION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Evans, S. M. et al.


Detection of hypoxia in human squamous cell carcinoma by EF5 binding. _Cancer Res._ 60, 2018–2024 (2000). CAS  PubMed  Google Scholar  * Albenberg, L. et al. Correlation between intraluminal


oxygen gradient and radial partitioning of intestinal microbiota. _Gastroenterology_ 147, 1055–1063 (2014). Article  PubMed  Google Scholar  * Goda, F. et al. _In vivo_ oximetry using EPR


and India ink. _Magn. Reson. Med._ 33, 237–245 (1995). Article  CAS  PubMed  Google Scholar  * He, G. et al. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the


gastrointestinal tract of living mice with spatial and spectral EPR imaging. _Proc. Natl Acad. Sci. USA_ 96, 4586–4591 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Labiano, S., Palazon, A. & Melero, I. Immune response regulation in the tumor microenvironment by hypoxia. _Semin. Oncol._ 42, 378–386 (2015). Article  CAS  PubMed  Google Scholar  *


Unwith, S., Zhao, H., Hennah, L. & Ma, D. The potential role of HIF on tumour progression and dissemination. _Int. J. Cancer._ 136, 2491–2503 (2015). Article  CAS  PubMed  Google Scholar


  * Courtnay, R. et al. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. _Mol. Biol. Rep._ 42, 841–851 (2015). Article  CAS  PubMed  Google Scholar  * Miller, J. F.


& Sadelain, M. The journey from discoveries in fundamental immunology to cancer immunotherapy. _Cancer Cell_ 27, 439–449 (2015). Article  CAS  PubMed  Google Scholar  * Maus, M. V. et


al. Adoptive immunotherapy for cancer or viruses. _Annu. Rev. Immunol._ 32, 189–225 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Corzo, C. A. et al. HIF-1α regulates


function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. _J. Exp. Med._ 207, 2439–2453 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Williams, A. E. & Chambers, R. C. The mercurial nature of neutrophils: still an enigma in ARDS? _Am. J. Physiol. Lung Cell. Mol. Physiol._ 306, L217–L230 (2014). Article  CAS  PubMed 


Google Scholar  * Liu, Z. et al. AMP-activated protein kinase and Glycogen Synthase Kinase 3β modulate the severity of sepsis-induced lung injury. _Mol. Med._ 21, 937–950 (2015). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Campbell, E. L. et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution


of inflammation. _Immunity_ 40, 66–77 (2014). THIS STUDY IDENTIFIES THAT THE NEUTROPHIL OXIDATIVE BURST IS A KEY CAUSE OF MUCOSAL HYPOXIA IN INFLAMMATORY DISEASE OF THE INTESTINE. Article 


CAS  PubMed  PubMed Central  Google Scholar  * Huang, J. S. et al. Chronic granulomatous disease caused by a deficiency in p47(phox) mimicking Crohn's disease. _Clin. Gastroenterol.


Hepatol._ 2, 690–695 (2004). Article  CAS  PubMed  Google Scholar  * Manresa, M. C., Godson, C. & Taylor, C. T. Hypoxia-sensitive pathways in inflammation-driven fibrosis. _Am. J.


Physiol. Regul. Integr. Comp. Physiol._ 307, R1369–R1380 (2014). Article  CAS  PubMed  Google Scholar  * Devraj, G., Beerlage, C., Brüne, B. & Kempf, V. A. Hypoxia and HIF-1 activation


in bacterial infections. _Microbes Infect._ 19, 144–156 (2017). Article  CAS  PubMed  Google Scholar  * Werth, N. et al. Activation of hypoxia inducible factor 1 is a general phenomenon in


infections with human pathogens. _PLoS ONE._ 5, e11576 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schaffer, K. & Taylor, C. T. The impact of hypoxia on bacterial


infection. _FEBS J._ 282, 2260–2266 (2015). Article  CAS  PubMed  Google Scholar  * Worlitzsch, D. et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of


cystic fibrosis patients. _J. Clin. Invest._ 109, 317–325 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schaible, B., Schaffer, K. & Taylor, C. T. Hypoxia, innate


immunity and infection in the lung. _Respir. Physiol. Neurobiol._ 174, 235–243 (2010). Article  CAS  PubMed  Google Scholar  * Schaible, B. et al. Hypoxia modulates infection of epithelial


cells by _Pseudomonas aeruginosa_. _PLoS ONE._ 8, e56491 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schaible, B., Taylor, C. T. & Schaffer, K. Hypoxia increases


antibiotic resistance in _Pseudomonas aeruginosa_ through altering the composition of multidrug efflux pumps. _Antimicrob. Agents Chemother._ 56, 2114–2118 (2012). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Schaible, B. et al. Hypoxia reduces the pathogenicity of _Pseudomonas aeruginosa_ by decreasing the expression of multiple virulence factors. _J. Infect.


Dis._ 215, 1459–1467 (2017). Article  CAS  PubMed  Google Scholar  * Koh, H. S. et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. _Nat. Commun._


6, 6340 (2015). Article  CAS  PubMed  Google Scholar  * Zhang, J. et al. Hypoxia-Inducible Factor-2α limits natural killer T cell cytotoxicity in renal ischemia/reperfusion injury. _J. Am.


Soc. Nephrol._ 27, 92–106 (2016). Article  CAS  PubMed  Google Scholar  * Luo, L. et al. The role of HIF-1 in up-regulating MICA expression on human renal proximal tubular epithelial cells


during hypoxia/reoxygenation. _BMC Cell Biol._ 11, 91 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chan, M. C., Holt-Martyn, J. P., Schofield, C. J. & Ratcliffe, P. J.


Pharmacological targeting of the HIF hydroxylases—a new field in medicine 1development. _Mol. Aspects Med._ 47–48, 54–75 (2016). Article  CAS  PubMed  Google Scholar  * Muchnik, E. &


Kaplan, J. HIF prolyl hydroxylase inhibitors for anemia. _Expert Opin. Investig. Drugs_ 20, 645–656 (2011). Article  CAS  PubMed  Google Scholar  * Maxwell, P. H. & Eckardt, K. U. HIF


prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. _Nat. Rev. Nephrol._ 12, 157–168 (2016). Article  CAS  PubMed  Google Scholar  * Cho, H. et al. On-target


efficacy of a HIF-2α antagonist in preclinical kidney cancer models. _Nature._ 539, 107–111 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, W. et al. Targeting renal


cell carcinoma with a HIF-2 antagonist. _Nature_ 539, 112–117 (2016). REFERENCES 132 AND 133 DEMONSTRATE THAT SELECTIVE TARGETING OF THE HIF2 PATHWAY MAY BE OF CLINICAL BENEFIT IN KIDNEY


CANCER. Article  CAS  PubMed  PubMed Central  Google Scholar  * Cummins, E. P., Doherty, G. A. & Taylor, C. T. Hydroxylases as therapeutic targets in inflammatory bowel disease. _Lab.


Invest._ 93, 378–383 (2013). Article  CAS  PubMed  Google Scholar  * Hams, E. et al. The hydroxylase inhibitor dimethyloxallyl glycine attenuates endotoxic shock via alternative activation


of macrophages and IL-10 production by B1 cells. _Shock_ 36, 295–302 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Provenzano, R. et al. Oral hypoxia-inducible factor


prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. _Clin. J. Am. Soc. Nephrol._ 11, 982–991 (2016). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Brigandi, R. A. et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: 28 day, phase 2A randomized trial. _Am. J. Kidney Dis._


67, 861–871 (2016). Article  CAS  PubMed  Google Scholar  * Pergola, P. E., Spinowitz, B. S., Hartman, C. S., Maroni, B. J. & Haase, V. H. Vadadustat, a novel oral HIF stabilizer,


provides effective anemia treatment in nondialysis-dependent chronic kidney disease. _Kidney Int._ 90, 1115–1122 (2016). Article  CAS  PubMed  Google Scholar  * Tambuwala, M. M. et al.


Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. _J. Control. Release_ 217, 221–227 (2015). Article


  CAS  PubMed  Google Scholar  * Maxwell, P. H. et al. Sites of erythropoietin production. _Kidney Int._ 51, 393–401 (1997). Article  CAS  PubMed  Google Scholar  * Spencer, J. A. et al.


Direct measurement of local oxygen concentration in the bone marrow of live animals. _Nature_ 508, 269–273 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Grimm, C. &


Willmann, G. Hypoxia in the eye: a two-sided coin. _High Alt. Med. Biol._ 13169–13175 (2012). * Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving


insight into hypoxia-induced NFkappaB activity. _Proc. Natl Acad. Sci. USA_ 103, 18154–18159 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cockman, M. E. et al.


Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). _Proc. Natl Acad. Sci.


USA_; 103, 14767–1 4772. REFERENCES 143 AND 144 DEMONSTRATE THAT COMPONENTS OF THE NF-ΚB PATHWAY ARE TARGETS FOR HYDROXYLATION. Article  CAS  Google Scholar  * Ghosh, S., Paul, A. & Sen,


E. Tumor necrosis factor α-induced hypoxia-inducible factor 1α-β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. _Mol. Cell.


Biol._ 33, 2718–2731 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dang, E. V. et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. _Cell_ 146, 772–784


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Clambey, E. T. et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and


function during inflammatory hypoxia of the mucosa. _Proc. Natl Acad. Sci. USA_ 109, E2784–E2793 (2012). Article  PubMed  PubMed Central  Google Scholar  * Cummins, E. P. et al. The


hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. _Gastroenterology_ 134, 156–165 (2008). Article  CAS  PubMed  Google Scholar  * Hindryckx, P. et al.


Longitudinal quantification of inflammation in the murine dextran sodium sulfate-induced colitis model using muPET/CT. _Inflamm. Bowel Dis._ 17, 2058–2064 (2011). Article  CAS  PubMed 


Google Scholar  * Cosin-Roger, J. et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. _Nat. Commun._ 8, 98 (2017). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. _Gastroenterology_ 134, 145–155 (2008). REFERENCES


148 AND 151 DEMONSTRATE THAT PHARMACOLOGICAL HYDROXYLASE INHIBITION IS PROTECTIVE IN COLITIS. Article  CAS  PubMed  Google Scholar  * Hindryckx, P. et al. Hydroxylase inhibition abrogates


TNF-alpha-induced intestinal epithelial damage by hypoxia-inducible factor-1-dependent repression of FADD. _J. Immunol._ 185, 6306–6316 (2010). Article  CAS  PubMed  Google Scholar  *


Hirota, S. A. et al. Hypoxia-inducible factor signaling provides protection in _Clostridium difficile_-induced intestinal injury. _Gastroenterology_ 139, 259–269 (2010). Article  CAS  PubMed


  Google Scholar  * Hart, M. L. et al. Hypoxia-inducible factor-1 alpha dependent protection from intestinal ischemia/reperfusion injury involves ecto-5′-nucleotidase (CD73) and the A2B


adenosine receptor. _J. Immunol._ 186, 4367–4374 (2011). Article  CAS  PubMed  Google Scholar  * Marchbank, T., Mahmood, A., Harten, S., Maxwell, P. H. & Playford, R. J.


Dimethyloxalyglycine stimulates the early stages of gastrointestinal repair processes through VEGF-dependent mechanisms. _Lab. Invest._ 91, 1684–1694 (2011). Article  CAS  PubMed  Google


Scholar  * Keely, S. et al. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. _Mucosal Immunol._ 7, 114–123


(2014). Article  CAS  PubMed  Google Scholar  * Marks, E. et al. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis.


_Inflamm. Bowel Dis._ 21, 267–275 (2015). Article  PubMed  Google Scholar  * Taniguchi, C. M. et al. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity


via HIF2. _Sci. Transl Med._ 6, 236ra64 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jeong, S. et al. Lipophilic modification enhances anti-colitic properties of


rosmarinic acid by potentiating its HIF-prolyl hydroxylases inhibitory activity. _Eur. J. Pharmacol._ 747, 114–122 (2015). Article  CAS  PubMed  Google Scholar  * Gupta, R. et al.


Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates murine colitis. _Clin. Exp. Gastroenterol._ 7, 13–23 (2014). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Jamadarkhana, P. et al. Treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates ischemic acute kidney injury. _Am. J.


Nephrol._ 36, 208–218 (2012). Article  CAS  PubMed  Google Scholar  * Bernhardt, W. M. et al. Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival


in an allogenic kidney transplant model. _Proc. Natl Acad. Sci. USA_ 106, 21276–21281 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Manresa, M. C. et al. Hydroxylase


inhibition regulates inflammation-induced intestinal fibrosis through the suppression of ERK-mediated TGF-β1 signaling [corrected]. _Am. J. Physiol. Gastrointest. Liver Physiol._ 311,


G1076–G1090 (2016). Article  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS Work from the authors' laboratories is funded through research grants from Science Foundation


Ireland, the European Union and the US National Institutes of Health. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * UCD Conway Institute, Systems Biology Ireland and the School of Medicine,


University College Dublin, Belfield, 4, Dublin, Ireland Cormac T. Taylor * Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora,


80045, Colorado, USA Sean P. Colgan Authors * Cormac T. Taylor View author publications You can also search for this author inPubMed Google Scholar * Sean P. Colgan View author publications


You can also search for this author inPubMed Google Scholar CONTRIBUTIONS C.T.T. and S.P.C. both contributed to discussions of the content and the writing, review and editing of this


manuscript CORRESPONDING AUTHOR Correspondence to Cormac T. Taylor. ETHICS DECLARATIONS COMPETING INTERESTS C.T.T. and S.P.C. are members of the Scientific Advisory Board of Akebia


Therapeutics. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR TABLE 1 GLOSSARY * Microenvironmental features


Physiochemical conditions found within a specific niche or tissue. * Hypoxia The condition that arises when cellular oxygen demand exceeds supply. * Electron transport chain (ETC). Primary


eukaryotic system for the reduction of molecular oxygen and the generation of ATP. Located within mitochondria. * Oxidative phosphorylation (OXPHOS). The generation of cellular ATP using


energy derived from electron transport during aerobic respiration. * Lysosomal degradation pathway A mechanism of intracellular protein degradation that involves proteolysis in lysosomal


compartments. * Glycolysis The utilization of glucose to generate ATP. * Physiological angiogenesis The normal growth of blood vessels in healthy tissues. * Carotid body Small organelle


situated at the bifurcation of the carotid artery responsible for sensing blood oxygen levels and regulating the respiratory rate. * Semi-allogeneic trophoblasts Fetal cells that express


both maternal and paternal surface antigens. * Crypt–villus axis Structure at the mucosal surface of the small intestine. * Erythropoiesis The process by which red blood cell production is


controlled. Involves the release of erythropoietin from cells of the kidney and liver. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Taylor, C.,


Colgan, S. Regulation of immunity and inflammation by hypoxia in immunological niches. _Nat Rev Immunol_ 17, 774–785 (2017). https://doi.org/10.1038/nri.2017.103 Download citation *


Published: 03 October 2017 * Issue Date: December 2017 * DOI: https://doi.org/10.1038/nri.2017.103 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

🎯 dart (dartlang) introduction: getting started with dart/flutter

DART TUTORIALS: BASICS FLUTTER IS A FRAMEWORK WRITTEN IN DART LANGUAGE FOR BUILDING NATIVE APPLICATIONS FOR IOS AND ANDR...

Your key to success in 2023, says attention expert: the difference between 'habits' and 'routines'

Your New Year's resolution this year might never become a true "habit" — but that's probably OK, acc...

Cbo reports health care bill unaffordable for older americans

A new analysis of the American Health Care Act passed by the House of Representatives estimates that 23 million people w...

In their own words: americans depend on social security

Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4  G...

Boris johnson battles to keep boosterism at bay

It feels like a very long time since I’ve been able to start this email with anything which could be described as good n...

Latests News

Regulation of immunity and inflammation by hypoxia in immunological niches

KEY POINTS * Hypoxia and inflammation are frequently co-incidental microenvironmental features of sites of concentrated ...

Microsoft No Longer Sees Cortana as a Competitor to Alexa or Google Assistant

Microsoft seems to be giving up on its ambitions to dominate the voice-powered virtual assistant arena and will reported...

Vital signs: nbn’s new price plans are too little, too late

This week NBN Co announced pricing changes for the National Broadband Network. It includes a new plan boasting a downloa...

Two jhqvamc use cases win in robots with benefits competition | va mountain home health care | veterans affairs

Mountain Home , TN — Two JHQVAMC robotic use case submissions won separate categories in the Robots with Benefits virtua...

FICTION - Los Angeles Times

NEXT OF KIN _ by Marianne Langer Zeitlin (Zephyr Press: $18.95; 188 pp.)_ . After the death of her sister Esther by a dr...

Top