Strategies to determine the biological function of micrornas

Nature

Strategies to determine the biological function of micrornas"


Play all audios:

Loading...

ABSTRACT MicroRNAs (miRNAs) are regulators of gene expression that control many biological processes in development, differentiation, growth and metabolism. Their expression levels, small


size, abundance of repetitive copies in the genome and mode of action pose unique challenges in studies elucidating the function of miRNAs. New technologies for identification, expression


profiling and target gene validation, as well as manipulation of miRNA expression _in vivo_, will facilitate the study of their contribution to biological processes and disease. Such


information will be crucial to exploit the emerging knowledge of miRNAs for the development of new human therapeutic applications. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per


year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CHASING


NON-EXISTENT “MICRORNAS” IN CANCER Article Open access 18 April 2025 THE ROLES OF MICRORNAS IN MOUSE DEVELOPMENT Article 15 January 2021 MICRORNA-184 IN THE LANDSCAPE OF HUMAN MALIGNANCIES:


A REVIEW TO ROLES AND CLINICAL SIGNIFICANCE Article Open access 24 November 2023 REFERENCES * Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes


coding for small expressed RNAs. _Science_ 294, 853–858 (2001). Article  CAS  PubMed  Google Scholar  * Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny


RNAs with probable regulatory roles in _Caenorhabditis elegans_. _Science_ 294, 858–862 (2001). Article  CAS  PubMed  Google Scholar  * Lee, R.C. & Ambros, V. An extensive class of small


RNAs in _Caenorhabditis elegans_. _Science_ 294, 862–864 (2001). Article  CAS  PubMed  Google Scholar  * Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B. & Bartel, D.P.


MicroRNAs in plants. _Genes Dev._ 16, 1616–1626 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bentwich, I. et al. Identification of hundreds of conserved and nonconserved


human microRNAs. _Nat. Genet._ 37, 766–770 (2005). Article  CAS  PubMed  Google Scholar  * Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA


genes. _Cell_ 120, 21–24 (2005). Article  CAS  PubMed  Google Scholar  * Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. _EMBO J._ 23, 4051–4060 (2004). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. _Cell_ 116, 281–297 (2004). Article  CAS  PubMed  Google Scholar  * Kim, V.N.


MicroRNA biogenesis: coordinated cropping and dicing. _Nat. Rev. Mol. Cell Biol._ 6, 376–385 (2005). Article  CAS  PubMed  Google Scholar  * Lee, R.C., Feinbaum, R.L. & Ambros, V. The


_C. elegans_ heterochronic gene _lin-4_ encodes small RNAs with antisense complementarity to lin-14. _Cell_ 75, 843–854 (1993). Article  CAS  PubMed  Google Scholar  * Wightman, B., Ha, I.


& Ruvkun, G. Posttranscriptional regulation of the heterochronic gene _lin-14_ by _lin-4_ mediates temporal pattern formation in _C. elegans_. _Cell_ 75, 855–862 (1993). Article  CAS 


PubMed  Google Scholar  * Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B. & Cohen, S.M. _bantam_ encodes a developmentally regulated microRNA that controls cell proliferation and


regulates the proapoptotic gene _hid_ in _Drosophila_. _Cell_ 113, 25–36 (2003). Article  CAS  PubMed  Google Scholar  * Xu, P., Vernooy, S.Y., Guo, M. & Hay, B.A. The _Drosophila_


microRNA _Mir-14_ suppresses cell death and is required for normal fat metabolism. _Curr. Biol._ 13, 790–795 (2003). Article  CAS  PubMed  Google Scholar  * Giraldez, A.J. et al. MicroRNAs


regulate brain morphogenesis in zebrafish. _Science_ 308, 833–838 (2005). Article  CAS  PubMed  Google Scholar  * Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from


mouse. _Curr. Biol._ 12, 735–739 (2002). Article  CAS  PubMed  Google Scholar  * Ambros, V. & Lee, R.C. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning.


_Methods Mol. Biol._ 265, 131–158 (2004). CAS  PubMed  Google Scholar  * Berezikov, E., Cuppen, E. & Plasterk, R.H.A. Approaches to miRNA discovery. _Nat. Genet._ 38, S2–S7 (2006).


Article  CAS  PubMed  Google Scholar  * Baskerville, S. & Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. _RNA_ 11,


241–247 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Barad, O. et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression


profiling in human tissues. _Genome Res._ 14, 2486–2494 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nelson, P.T. et al. Microarray-based, high-throughput gene expression


profiling of microRNAs. _Nat. Methods_ 1, 155–161 (2004). Article  CAS  PubMed  Google Scholar  * Thomson, J.M., Parker, J., Perou, C.M. & Hammond, S.M. A custom microarray platform for


analysis of microRNA gene expression. _Nat. Methods_ 1, 47–53 (2004). Article  CAS  PubMed  Google Scholar  * Chen, J.F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle


proliferation and differentiation. _Nat. Genet._ 38, 228–233 (2006). Article  CAS  PubMed  Google Scholar  * Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a


muscle-specific microRNA that targets _Hand2_ during cardiogenesis. _Nature_ 436, 214–220 (2005). Article  CAS  PubMed  Google Scholar  * Esau, C. et al. MicroRNA-143 regulates adipocyte


differentiation. _J. Biol. Chem._ 279, 52361–52365 (2004). Article  CAS  PubMed  Google Scholar  * Calin, G.A. et al. Frequent deletions and down-regulation of micro-RNA genes _miR15_ and


_miR16_ at 13q14 in chronic lymphocytic leukemia. _Proc. Natl. Acad. Sci. USA_ 99, 15524–15529 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Michael, M.Z. SM, O.C., van


Holst Pellekaan, N.G., Young, G.P. & James, R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. _Mol. Cancer Res._ 1, 882–891 (2003). CAS  PubMed  Google Scholar  *


Johnson, S.M. et al. _RAS_ is regulated by the _let-7_ microRNA family. _Cell_ 120, 635–647 (2005). Article  CAS  PubMed  Google Scholar  * Takamizawa, J. et al. Reduced expression of the


_let-7_ microRNAs in human lung cancers in association with shortened postoperative survival. _Cancer Res._ 64, 3753–3756 (2004). Article  CAS  PubMed  Google Scholar  * Eis, P.S. et al.


Accumulation of miR-155 and _BIC_ RNA in human B cell lymphomas. _Proc. Natl. Acad. Sci. USA_ 102, 3627–3632 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * He, L. et al. A


microRNA polycistron as a potential human oncogene. _Nature_ 435, 828–833 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Calin, G.A. et al. Human microRNA genes are


frequently located at fragile sites and genomic regions involved in cancers. _Proc. Natl. Acad. Sci. USA_ 101, 2999–3004 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lu,


J. et al. MicroRNA expression profiles classify human cancers. _Nature_ 435, 834–838 (2005). Article  CAS  PubMed  Google Scholar  * Johnson, S.M., Lin, S.Y. & Slack, F.J. The time of


appearance of the _C. elegans let-7_ microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. _Dev. Biol._ 259, 364–379 (2003). Article  CAS  PubMed


  Google Scholar  * Mansfield, J.H. et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression.


_Nat. Genet._ 36, 1079–1083 (2004). Article  CAS  PubMed  Google Scholar  * Kloosterman, W.P., Wienholds, E., de Bruijn, E., Kauppinen, S. & Plasterk, R.H. _In situ_ detection of miRNAs


in animal embryos using LNA-modified oligonucleotide probes. _Nat. Methods_ 3, 27–29 (2006). Article  CAS  PubMed  Google Scholar  * John, B. et al. Human MicroRNA targets. _PLoS Biol._ 2,


1862–1879 (2004). Article  CAS  Google Scholar  * Kiriakidou, M. et al. A combined computational-experimental approach predicts human microRNA targets. _Genes Dev._ 18, 1165–1178 (2004).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Krek, A. et al. Combinatorial microRNA target predictions. _Nat. Genet._ 37, 495–500 (2005). Article  CAS  PubMed  Google Scholar  *


Rajewsky, N. microRNA target predictions in animals. _Nat. Genet._ 38, S8–S13 (2006). Article  CAS  PubMed  Google Scholar  * Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. &


Burge, C.B. Prediction of mammalian microRNA targets. _Cell_ 115, 787–798 (2003). Article  CAS  PubMed  Google Scholar  * Krutzfeldt, J. et al. Silencing of microRNAs _in vivo_ with


'antagomirs'. _Nature_ 438, 685–689 (2005). Article  PubMed  Google Scholar  * Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution.


_Science_ 310, 1817–1821 (2005). Article  CAS  PubMed  Google Scholar  * Poy, M.N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. _Nature_ 432, 226–230 (2004).


Article  CAS  PubMed  Google Scholar  * Schratt, G.M. et al. A brain-specific microRNA regulates dendritic spine development. _Nature_ 439, 283–289 (2006). Article  CAS  PubMed  Google


Scholar  * Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. _Nature_ 433, 769–773 (2005). Article  CAS  PubMed  Google Scholar  *


Chen, C.Z., Li, L., Lodish, H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. _Science_ 303, 83–86 (2004). Article  CAS  PubMed  Google Scholar  * Hayashita,


Y. et al. A polycistronic microRNA cluster, _miR-17–92_, is overexpressed in human lung cancers and enhances cell proliferation. _Cancer Res._ 65, 9628–9632 (2005). Article  CAS  PubMed 


Google Scholar  * Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. _Genes Dev._ 19, 489–501 (2005). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Harfe, B.D., McManus, M.T., Mansfield, J.H., Hornstein, E. & Tabin, C.J. The RNaseIII enzyme Dicer is required for morphogenesis but not


patterning of the vertebrate limb. _Proc. Natl. Acad. Sci. USA_ 102, 10898–10903 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Harris, K.S., Zhang, Z., McManus, M.T.,


Harfe, B.D. & Sun, X. Dicer function is essential for lung epithelium morphogenesis. _Proc. Natl. Acad. Sci. USA_ 103, 2208–2213 (2006). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Ying, S.Y. & Lin, S.L. MicroRNA: fine-tunes the function of genes in zebrafish. _Biochem. Biophys. Res. Commun._ 335, 1–4 (2005). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. _RNA_ 10, 544–550 (2004). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Hutvagner, G., Simard, M.J., Mello, C.C. & Zamore, P.D. Sequence-specific inhibition of small RNA function. _PLoS Biol._ 2, E98 (2004). Article 


PubMed  PubMed Central  Google Scholar  * Leaman, D. et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in _Drosophila_ development. _Cell_ 121,


1097–1108 (2005). Article  CAS  PubMed  Google Scholar  * Esau, C. et al. _miR-122_ regulation of lipid metabolism revealed by _in vivo_ antisense targeting. _Cell Metab._ 3, 87–98 (2006).


Article  CAS  PubMed  Google Scholar  * Bagga, S. et al. Regulation by _let-7_ and _lin-4_ miRNAs results in target mRNA degradation. _Cell_ 122, 553–563 (2005). Article  CAS  PubMed  Google


Scholar  * Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. _Nature_ 432, 173–178 (2004). Article  CAS  PubMed  Google Scholar


  * Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. _Cell_ 123, 819–831 (2005). Article  CAS  PubMed


  Google Scholar  * O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. & Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. _Nature_ 435, 839–843 (2005).


Article  CAS  PubMed  Google Scholar  * Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. _Proc. Natl. Acad. Sci. USA_ 102, 16426–16431


(2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Conaco, C., Otto, S., Han, J.J. & Mandel, G. Reciprocal actions of REST and a microRNA promote neuronal identity. _Proc.


Natl. Acad. Sci. USA_ 103, 2422–2427 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, J. et al. A role for the P-body component GW182 in microRNA function. _Nat. Cell


Biol._ 7, 1161–1166 (2005). Article  CAS  Google Scholar  * Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian


P-bodies. _Nat. Cell Biol._ 7, 719–723 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by


ADAR deaminases. _Nat. Struct. Mol. Biol._ 13, 13–21 (2006). Article  CAS  PubMed  Google Scholar  Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Laboratory of Metabolic


Diseases, The Rockefeller University, 1230 York Avenue, New York, 10021, New York, USA Jan Krützfeldt, Matthew N Poy & Markus Stoffel Authors * Jan Krützfeldt View author publications


You can also search for this author inPubMed Google Scholar * Matthew N Poy View author publications You can also search for this author inPubMed Google Scholar * Markus Stoffel View author


publications You can also search for this author inPubMed Google Scholar ETHICS DECLARATIONS COMPETING INTERESTS M.S. is a member of the Scientific Advisory Board of Aluylam Pharmaceuticals.


RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Krützfeldt, J., Poy, M. & Stoffel, M. Strategies to determine the biological function of microRNAs.


_Nat Genet_ 38 (Suppl 6), S14–S19 (2006). https://doi.org/10.1038/ng1799 Download citation * Published: 30 May 2006 * Issue Date: June 2006 * DOI: https://doi.org/10.1038/ng1799 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

Association of post-diagnostic use of cholera vaccine with survival outcome in breast cancer patients

ABSTRACT BACKGROUND Expensive cancer treatment calls for alternative ways such as drug repurposing to develop effective ...

Wardrobe do-overs for midwinter fashion blues

Memorial Day Sale! Join AARP for just $11 per year with a 5-year membership Join now and get a FREE gift. Expires 6/4  G...

What boris johnson's election victory means for british travellers

Nick Trend Senior Travel Writer 13 December 2019 12:24pm GMT The biggest impact that the general election result will ha...

Studies of endotoxin (lps) induced human macrophage (mø) products which induce poly- morphonuclear leukocyte (pmnl) recruitment during inflammation

ABSTRACT Previously we reported that LPS induced rabbit Møs release protein factors which recruit PMNLs into rabbit skin...

Article 50 can be revoked: here’s what it means for brexit

Article 50 of the Treaty on European Union can be divided into two parts. The first recognises the right of a member sta...

Latests News

Strategies to determine the biological function of micrornas

ABSTRACT MicroRNAs (miRNAs) are regulators of gene expression that control many biological processes in development, dif...

Structural basis for oligoclonal t cell recognition of a shared p53 cancer neoantigen

ABSTRACT Adoptive cell therapy (ACT) with tumor-specific T cells can mediate cancer regression. The main target of tumor...

Finance bill 2021: committee of the whole house

Policy paper FINANCE BILL 2021: COMMITTEE OF THE WHOLE HOUSE Explanatory Notes for government amendments in Committee of...

low-cost plastic sensor to monitor brain health developed

Become a MemberDark ModeBecome a MemberOperation SindoorRaghav's TakeState of EducationUncovering HateQisse KahaniyaanCl...

Seven arrested for irregularities in on-going jee examination

NEW DELHI, SEP 4: The Central Bureau of Investigation has arrested seven people, including two directors and four employ...

Top