Large-scale in silico modeling of metabolic interactions between cell types in the human brain

Nature

Large-scale in silico modeling of metabolic interactions between cell types in the human brain"

Play all audios:

    

ABSTRACT Metabolic interactions between multiple cell types are difficult to model using existing approaches. Here we present a workflow that integrates gene expression data, proteomics data


and literature-based manual curation to model human metabolism within and between different types of cells. Transport reactions are used to account for the transfer of metabolites between


models of different cell types via the interstitial fluid. We apply the method to create models of brain energy metabolism that recapitulate metabolic interactions between astrocytes and


various neuron types relevant to Alzheimer's disease. Analysis of the models identifies genes and pathways that may explain observed experimental phenomena, including the differential


effects of the disease on cell types and regions of the brain. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in the human


tissue microenvironment and provide detailed mechanistic insight into high-throughput data analysis. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PROBABILISTIC MODEL CHECKING OF CANCER


METABOLISM Article Open access 07 November 2022 SPATIAL MAPPING OF THE BRAIN METABOLOME LIPIDOME AND GLYCOME Article Open access 12 May 2025 INFERRING MITOCHONDRIAL AND CYTOSOLIC METABOLISM


BY COUPLING ISOTOPE TRACING AND DECONVOLUTION Article Open access 18 November 2023 REFERENCES * Feist, A.M. & Palsson, B.Ø. The growing scope of applications of genome-scale metabolic


reconstructions using _Escherichia coli_. _Nat. Biotechnol._ 26, 659–667 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Oberhardt, M.A., Palsson, B.Ø. & Papin, J.A.


Applications of genome-scale metabolic reconstructions. _Mol. Syst. Biol._ 5, 320 (2009). Article  PubMed  PubMed Central  Google Scholar  * Breitling, R., Vitkup, D. & Barrett, M.P. New


surveyor tools for charting microbial metabolic maps. _Nat. Rev. Microbiol._ 6, 156–161 (2008). Article  CAS  PubMed  Google Scholar  * Thiele, I. & Palsson, B.O. A protocol for


generating a high-quality genome-scale metabolic reconstruction. _Nat. Protoc._ 5, 93–121 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lewis, N.E., Jamshidi, N., Thiele,


I. & Palsson, B.Ø. in _Encyclopedia of Complexity and Systems Science (ed. Meyers, R.A.)_ 5535–5552 (Springer, New York, 2009). * Orth, J.D., Thiele, I. & Palsson, B.O. What is flux


balance analysis? _Nat. Biotechnol._ 28, 245–248 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Duarte, N.C. et al. Global reconstruction of the human metabolic network


based on genomic and bibliomic data. _Proc. Natl. Acad. Sci. USA_ 104, 1777–1782 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Becker, S.A. & Palsson, B.O.


Context-specific metabolic networks are consistent with experiments. _PLOS Comput. Biol._ 4, e1000082 (2008). Article  PubMed  PubMed Central  Google Scholar  * Shlomi, T., Cabili, M.N.,


Herrgard, M.J., Palsson, B.Ø. & Ruppin, E. Network-based prediction of human tissue–specific metabolism. _Nat. Biotechnol._ 26, 1003–1010 (2008). Article  CAS  PubMed  Google Scholar  *


Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. _Mol. Syst. Biol._ 6, 401 (2010). Article 


PubMed  PubMed Central  Google Scholar  * Ponten, F. et al. A global view of protein expression in human cells, tissues, and organs. _Mol. Syst. Biol._ 5, 337 (2009). Article  PubMed  PubMed


Central  Google Scholar  * Palsson, B.O. in _Systems Biology: Properties of Reconstructed Networks_ 322 (Cambridge University Press, Cambridge/New York, 2006). * Mishra, G.R. et al. Human


protein reference database–2006 update. _Nucleic Acids Res._ 34, D411–D414 (2006). Article  CAS  PubMed  Google Scholar  * Fujii, Y., Imanishi, T. & Gojobori, T. H-Invitational Database:


integrated database of human genes. _Tanpakushitsu Kakusan Koso_ 49, 1937–1943 (2004). CAS  PubMed  Google Scholar  * Reidegeld, K.A. et al. The power of cooperative investigation: summary


and comparison of the HUPO Brain Proteome Project pilot study results. _Proteomics_ 6, 4997–5014 (2006). Article  CAS  PubMed  Google Scholar  * Chatziioannou, A., Palaiologos, G. &


Kolisis, F.N. Metabolic flux analysis as a tool for the elucidation of the metabolism of neurotransmitter glutamate. _Metab. Eng._ 5, 201–210 (2003). Article  CAS  PubMed  Google Scholar  *


Cakir, T., Alsan, S., Saybasili, H., Akin, A. & Ulgen, K.O. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral


hypoxia. _Theor. Biol. Med. Model._ 4, 48 (2007). Article  PubMed  Google Scholar  * Occhipinti, R., Puchowicz, M.A., LaManna, J.C., Somersalo, E. & Calvetti, D. Statistical analysis of


metabolic pathways of brain metabolism at steady state. _Ann. Biomed. Eng._ 35, 886–902 (2007). Article  CAS  PubMed  Google Scholar  * Reiman, E.M. et al. Functional brain abnormalities in


young adults at genetic risk for late-onset Alzheimer's dementia. _Proc. Natl. Acad. Sci. USA_ 101, 284–289 (2004). Article  CAS  PubMed  Google Scholar  * Ginsberg, S.D., Che, S.,


Counts, S.E. & Mufson, E.J. Single cell gene expression profiling in Alzheimer's disease. _NeuroRx_ 3, 302–318 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lai,


M.K.P., Ramirez, M.J., Tsang, S.W.Y. & Francis, P.T. Alzheimer's disease as a neurotransmitter disease in _Neurobiology of Alzheimer' Disease_ (eds. Dawbarn, D. & Allen,


S.J.) 245–281 (Oxford University Press, New York, 2007). * Fukui, H., Diaz, F., Garcia, S. & Moraes, C.T. Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and


amyloid formation in a mouse model of Alzheimer's disease. _Proc. Natl. Acad. Sci. USA_ 104, 14163–14168 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bubber, P.,


Haroutunian, V., Fisch, G., Blass, J.P. & Gibson, G.E. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. _Ann. Neurol._ 57, 695–703 (2005). Article  CAS  PubMed 


Google Scholar  * Gibson, G.E. et al. Alpha-ketoglutarate dehydrogenase in Alzheimer brains bearing the APP670/671 mutation. _Ann. Neurol._ 44, 676–681 (1998). Article  CAS  PubMed  Google


Scholar  * Casley, C.S., Canevari, L., Land, J.M., Clark, J.B. & Sharpe, M.A. Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. _J. Neurochem._ 80,


91–100 (2002). Article  CAS  PubMed  Google Scholar  * Hoshi, M. et al. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in


brain. _Proc. Natl. Acad. Sci. USA_ 93, 2719–2723 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gorman, A.M., Ceccatelli, S. & Orrenius, S. Role of mitochondria in


neuronal apoptosis. _Dev. Neurosci._ 22, 348–358 (2000). Article  CAS  PubMed  Google Scholar  * Santos, S.S. et al. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter


[1–13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons. _J. Neurosci. Res._ 83, 450–458 (2006). Article  CAS  PubMed  Google Scholar  * Hassel, B., Johannessen, C.U.,


Sonnewald, U. & Fonnum, F. Quantification of the GABA shunt and the importance of the GABA shunt versus the 2-oxoglutarate dehydrogenase pathway in GABAergic neurons. _J. Neurochem._ 71,


1511–1518 (1998). Article  CAS  PubMed  Google Scholar  * Liang, W.S. et al. Altered neuronal gene expression in brain regions differentially affected by Alzheimer's disease: a


reference data set. _Physiol. Genomics_ 33, 240–256 (2008). Article  CAS  PubMed  Google Scholar  * Stuhmer, T., Anderson, S.A., Ekker, M. & Rubenstein, J.L. Ectopic expression of the


Dlx genes induces glutamic acid decarboxylase and Dlx expression. _Development_ 129, 245–252 (2002). CAS  PubMed  Google Scholar  * Ibanez, V. et al. Regional glucose metabolic abnormalities


are not the result of atrophy in Alzheimer's disease. _Neurology_ 50, 1585–1593 (1998). Article  CAS  PubMed  Google Scholar  * Schramm, G. et al. PathWave: discovering patterns of


differentially regulated enzymes in metabolic pathways. _Bioinformatics_ 26, 1225–1231 (2010). Article  CAS  PubMed  Google Scholar  * Ragozzino, M.E., Pal, S.N., Unick, K., Stefani, M.R.


& Gold, P.E. Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. _J. Neurosci._ 18, 1595–1601 (1998). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Watson, G.S. & Craft, S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. _Eur. J.


Pharmacol._ 490, 97–113 (2004). Article  CAS  PubMed  Google Scholar  * Cooper, J.R. Unsolved problems in the cholinergic nervous system. _J. Neurochem._ 63, 395–399 (1994). Article  CAS 


PubMed  Google Scholar  * Karczmar, A.G. Cholinergic cells and pathways in _Exploring the Vertebrate Cholinergic Nervous System_ 686 (Springer, New York, 2006). * Gibson, G.E., Jope, R.


& Blass, J.P. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. _Biochem. J._ 148, 17–23 (1975). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Abbott, N.J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. _Nat. Rev. Neurosci._ 7, 41–53 (2006). Article  CAS 


PubMed  Google Scholar  * Thompson, M.D., Knee, K. & Golden, C.J. Olfaction in persons with Alzheimer's disease. _Neuropsychol. Rev._ 8, 11–23 (1998). Article  CAS  PubMed  Google


Scholar  * Schryer, D.W., Peterson, P., Paalme, T. & Vendelin, M. Bidirectionality and compartmentation of metabolic fluxes are revealed in the dynamics of isotopomer networks. _Int. J.


Mol. Sci._ 10, 1697–1718 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Serres, S., Raffard, G., Franconi, J.M. & Merle, M. Close coupling between astrocytic and


neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. _J. Cereb. Blood Flow Metab._ 28, 712–724 (2008). Article  CAS  PubMed  Google Scholar  * Bordbar, A. et al.


Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. _Mol. Syst. Biol._ 6, 422 (2010). Article  PubMed  PubMed Central  Google Scholar  *


Drug off-target effects predicted using structural analysis in the context of a metabolic network model. _PLoS. Comput. Biol._ 6, e1000938 (2010). * Lee, D.S. et al. The implications of


human metabolic network topology for disease comorbidity. _Proc. Natl. Acad. Sci. USA_ 105, 9880–9885 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Palsson, B.O. &


Zengler, K. The challenges of integrating multi-omics data sets. _Nat. Chem. Biol._ 6, 787–789 (2010). Article  PubMed  Google Scholar  * Lying-Tunell, U., Lindblad, B.S., Malmlund, H.O.


& Persson, B. Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids. _Acta Neurol. Scand._ 62, 265–275 (1980). Article  CAS  PubMed


  Google Scholar  * Lying-Tunell, U., Lindblad, B.S., Malmlund, H.O. & Persson, B. Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino


acids. _Acta Neurol. Scand._ 63, 337–350 (1981). Article  CAS  PubMed  Google Scholar  * Tischfield, M.A. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and


axon guidance. _Cell_ 140, 74–87 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, K.K., Adelstein, R.S. & Kawamoto, S. Identification of neuronal nuclei (NeuN) as


Fox-3, a new member of the Fox-1 gene family of splicing factors. _J. Biol. Chem._ 284, 31052–31061 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * De Camilli, P., Cameron,


R. & Greengard, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by


immunofluorescence in frozen and plastic sections. _J. Cell Biol._ 96, 1337–1354 (1983). Article  CAS  PubMed  Google Scholar  * Olave, I., Wang, W., Xue, Y., Kuo, A. & Crabtree, G.R.


Identification of a polymorphic, neuron-specific chromatin remodeling complex. _Genes Dev._ 16, 2509–2517 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Benjamini, Y. &


Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. _Ann. Stat._ 29, 1165–1188 (2001). Article  Google Scholar  Download references ACKNOWLEDGEMENTS


The authors thank G. Gibson at Cornell University, I. Thiele at the University of Iceland and M. Abrams, M. Mo and C. Barrett at UCSD for suggestions pertaining to this work. This work was


funded in part by a Fulbright fellowship, a National Science Foundation IGERT Plant Systems Biology training grant (no. DGE-0504645), US National Institutes of Health grants


2R01GM068837_05A1 and RO1 GM071808 and the Helmholtz Alliance on Systems Biology and the BMBF by the NGFN+ neuroblastoma project ENGINE. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


Department of Bioengineering, University of California, San Diego, La Jolla, California, USA., Nathan E Lewis, Aarash Bordbar, Michael P Andersen, Jeffrey K Cheng, Nilam Patel, Alex Yee 


& Bernhard Ø Palsson * Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg, Germany


Gunnar Schramm, Roland Eils & Rainer König * Bioinformatics Program, University of California, San Diego, La Jolla, California, USA., Jan Schellenberger * Department of Economics,


Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Randall A Lewis * Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany


Gunnar Schramm, Roland Eils & Rainer König Authors * Nathan E Lewis View author publications You can also search for this author inPubMed Google Scholar * Gunnar Schramm View author


publications You can also search for this author inPubMed Google Scholar * Aarash Bordbar View author publications You can also search for this author inPubMed Google Scholar * Jan


Schellenberger View author publications You can also search for this author inPubMed Google Scholar * Michael P Andersen View author publications You can also search for this author inPubMed


 Google Scholar * Jeffrey K Cheng View author publications You can also search for this author inPubMed Google Scholar * Nilam Patel View author publications You can also search for this


author inPubMed Google Scholar * Alex Yee View author publications You can also search for this author inPubMed Google Scholar * Randall A Lewis View author publications You can also search


for this author inPubMed Google Scholar * Roland Eils View author publications You can also search for this author inPubMed Google Scholar * Rainer König View author publications You can


also search for this author inPubMed Google Scholar * Bernhard Ø Palsson View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS N.E.L., J.K.C.,


A.Y., N.P., M.P.A. and B.O.P. conceived and designed the model. N.E.L., J.K.C., G.S., R.K., R.E., J.S., A.B. and R.A.L. performed data analyses. The manuscript was written by N.E.L., G.S.,


J.S., A.B. and B.O.P. CORRESPONDING AUTHOR Correspondence to Bernhard Ø Palsson. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY


INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Notes (PDF 1971 kb) SUPPLEMENTARY MODEL 1 All neuron types normal (ZIP 72 kb) SUPPLEMENTARY MODEL 2 All neuron types normal elderly


(ZIP 72 kb) SUPPLEMENTARY MODEL 3 All neuron types Alzheimer's (ZIP 72 kb) SUPPLEMENTARY TABLE 1 Model rxns (XLS 317 kb) SUPPLEMENTARY TABLE 2 Model metabolites (XLS 109 kb)


SUPPLEMENTARY TABLE 3 Model genes (XLS 50 kb) SUPPLEMENTARY TABLE 4 Model S. matrix (ZIP 904 kb) SUPPLEMENTARY TABLE 5 Model parameters (XLS 24 kb) SUPPLEMENTARY TABLE 6 Significant Pathwave


pathways (XLS 25 kb) SUPPLEMENTARY TABLE 7 Protein data accession numbers (XLS 18 kb) SUPPLEMENTARY TABLE 8 Comparison with other models (XLS 18 kb) SUPPLEMENTARY TABLE 9 Pathwave pathway


classes (XLS 42 kb) SUPPLEMENTARY TABLE 10 Pathwave exception metabolites (XLS 15 kb) SUPPLEMENTARY TABLE 11 Significant Pathwave features (XLS 168 kb) RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lewis, N., Schramm, G., Bordbar, A. _et al._ Large-scale _in silico_ modeling of metabolic interactions between cell types in the human


brain. _Nat Biotechnol_ 28, 1279–1285 (2010). https://doi.org/10.1038/nbt.1711 Download citation * Published: 21 November 2010 * Issue Date: December 2010 * DOI:


https://doi.org/10.1038/nbt.1711 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Top