The nexus of chromatin regulation and intermediary metabolism

Nature

The nexus of chromatin regulation and intermediary metabolism"


Play all audios:

    

ABSTRACT Living organisms and individual cells continuously adapt to changes in their environment. Those changes are particularly sensitive to fluctuations in the availability of energy


substrates. The cellular transcriptional machinery and its chromatin-associated proteins integrate environmental inputs to mediate homeostatic responses through gene regulation. Numerous


connections between products of intermediary metabolism and chromatin proteins have recently been identified. Chromatin modifications that occur in response to metabolic signals are dynamic


or stable and might even be inherited transgenerationally. These emerging concepts have biological relevance to tissue homeostasis, disease and ageing. Access through your institution Buy or


subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online


access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


THE EVOLVING METABOLIC LANDSCAPE OF CHROMATIN BIOLOGY AND EPIGENETICS Article 09 September 2020 HETEROCHROMATIN: AN EPIGENETIC POINT OF VIEW IN AGING Article Open access 04 September 2020


NUCLEAR METABOLISM AND THE REGULATION OF THE EPIGENOME Article 12 October 2020 CHANGE HISTORY * _ 10 DECEMBER 2013 The TCA cycle in Figure 2 has been corrected in the online version of this


Review. _ REFERENCES * Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. _Nature_ 447, 433–440 (2007). CAS  ADS  PubMed  Google Scholar  * Li, B., Carey, M. &


Workman, J. L. The role of chromatin during transcription. _Cell_ 128, 707–719 (2007). CAS  PubMed  Google Scholar  * Strahl, B. D. & Allis, C. D. The language of covalent histone


modifications. _Nature_ 403, 41–45 (2000). THIS LANDMARK REVIEW PROPOSES FOR THE FIRST TIME THE EXISTENCE OF A COMPLEX HISTONE CODE THAT ENCODES INFORMATION AS THE UNDERLYING LOGIC OF


EPIGENETIC TRANSCRIPTIONAL CONTROL. CAS  ADS  PubMed  Google Scholar  * Berger, S. L. The complex language of chromatin regulation during transcription. _Nature_ 447, 407–412 (2007). CAS 


ADS  PubMed  Google Scholar  * Jenuwein, T. & Allis, C. D. Translating the histone code. _Science_ 293, 1074–1080 (2001). CAS  PubMed  Google Scholar  * Kornberg, R. D. Structure of


chromatin. _Annu. Rev. Biochem._ 46, 931–954 (1977). CAS  PubMed  Google Scholar  * Bell, O., Tiwari, V. K., Thomä, N. H. & Schübeler, D. Determinants and dynamics of genome


accessibility. _Nature Rev. Genet._ 12, 554–564 (2011). CAS  PubMed  Google Scholar  * Musselman, C. A., Lalonde, M.-E., Cote, J. & Kutateladze, T. G. Perceiving the epigenetic landscape


through histone readers. _Nature Struct. Mol. Biol._ 19, 1218–1227 (2012). CAS  Google Scholar  * Kouzarides, T. Chromatin modifications and their function. _Cell_ 128, 693–705 (2007). CAS


  PubMed  Google Scholar  * Kaelin, W. G. & McKnight, S. L. Influence of metabolism on epigenetics and disease. _Cell_ 153, 56–69 (2013). CAS  PubMed  PubMed Central  Google Scholar  *


Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. _Cell Metab._ 16, 9–17 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Wellen, K. E. & Thompson, C. B. A two-way


street: reciprocal regulation of metabolism and signalling. _Nature Rev. Mol. Cell Biol._ 13, 270–276 (2012). CAS  Google Scholar  * Katada, S., Imhof, A. & Sassone-Corsi, P. Connecting


threads: epigenetics and metabolism. _Cell_ 148, 24–28 (2012). CAS  PubMed  Google Scholar  * Teperino, R., Schoonjans, K. & Auwerx, J. Histone methyl transferases and demethylases; can


they link metabolism and transcription? _Cell Metab._ 12, 321–327 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Bird, A. Perceptions of epigenetics. _Nature_ 447, 396–398 (2007).


CAS  ADS  PubMed  Google Scholar  * Sasaki, H. & Matsui, Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. _Nature Rev. Genet._ 9, 129–140 (2008). CAS 


PubMed  Google Scholar  * Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. _Nature_ 447, 425–432 (2007). CAS  ADS  PubMed  Google Scholar  *


Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. _Nature_ 464, 121–125 (2010). CAS  ADS  PubMed  PubMed Central  Google Scholar 


* Newman, J. C., He, W. & Verdin, E. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. _J. Biol. Chem._ 287,


42436–42443 (2012). CAS  PubMed  PubMed Central  Google Scholar  * He, W., Newman, J. C., Wang, M. Z., Ho, L. & Verdin, E. Mitochondrial sirtuins: regulators of protein acylation and


metabolism. _Trends Endocrinol. Metab._ 23, 467–476 (2012). CAS  PubMed  Google Scholar  * Barski, A. et al. High-resolution profiling of histone methylations in the human genome. _Cell_


129, 823–837 (2007). CAS  PubMed  Google Scholar  * Forneris, F., Binda, C., Vanoni, M. A., Mattevi, A. & Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent


oxidative process. _FEBS Lett._ 579, 2203–2207 (2005). CAS  PubMed  Google Scholar  * Loenarz, C. & Schofield, C. J. Expanding chemical biology of 2-oxoglutarate oxygenases. _Nature


Chem. Biol._ 4, 152–156 (2008). CAS  Google Scholar  * Sakabe, K., Wang, Z. & Hart, G. W. β-_N_-acetylglucosamine (O-GlcNAc) is part of the histone code. _Proc. Natl Acad. Sci. USA_ 107,


19915–19920 (2010). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Hart, G. W. G., Housley, M. P. M. & Slawson, C. C. Cycling of O-linked β-_N_-acetylglucosamine on


nucleocytoplasmic proteins. _Nature_ 446, 1017–1022 (2007). CAS  ADS  PubMed  Google Scholar  * Hanover, J. A. J., Krause, M. W. M. & Love, D. C. D. Bittersweet memories: linking


metabolism to epigenetics through O-GlcNAcylation. _Nature Rev. Mol. Cell Biol._ 13, 312–321 (2012). CAS  Google Scholar  * Fong, J. J. et al. β-_N_-Acetylglucosamine (O-GlcNAc) is a novel


regulator of mitosis-specific phosphorylations on histone H3. _J. Biol. Chem._ 287, 12195–12203 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Rodgers, J. T. et al. Nutrient control


of glucose homeostasis through a complex of PGC-1α and SIRT1. _Nature_ 434, 113–118 (2005). CAS  ADS  PubMed  Google Scholar  * Bird, A. P. Functions for DNA methylation in vertebrates.


_Cold Spring Harb. Symp. Quant. Biol._ 58, 281–285 (1993). CAS  PubMed  Google Scholar  * Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. _Nature_ 502,


472–479 (2013). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Portela, A. & Esteller, M. Epigenetic modifications and human disease. _Nature Biotechnol._ 28, 1057–1068 (2010). CAS


  Google Scholar  * Kirchner, H., Osler, M. E., Krook, A. & Zierath, J. R. Epigenetic flexibility in metabolic regulation: disease cause and prevention? _Trends Cell Biol._ 23, 203–209


(2013). CAS  PubMed  Google Scholar  * Barrès, R. et al. Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density. _Cell Metab._ 10, 189–198 (2009). PubMed 


Google Scholar  * Barrès, R. et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. _Cell Rep._ 3, 1020–1027 (2013). PubMed  Google Scholar  *


Anderson, O. S., Sant, K. E. & Dolinoy, D. C. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. _J. Nutr. Biochem._ 23, 853–859


(2012). CAS  PubMed  PubMed Central  Google Scholar  * Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations


of FH and SDH tumor suppressors. _Genes Dev._ 26, 1326–1338 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Ladurner, A. G. Rheostat control of gene expression by metabolites. _Mol.


Cell_ 24, 1–11 (2006). CAS  PubMed  Google Scholar  * Shi, Y. & Shi, Y. Metabolic enzymes and coenzymes in transcription — a direct link between metabolism and transcription? _Trends


Genet._ 20, 445–452 (2004). CAS  PubMed  Google Scholar  * Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. _Nature_ 462, 739–744 (2009). THIS BREAKTHROUGH


ARTICLE DESCRIBES THE NEOMORPHIC ENZYME ACTIVITY OF CANCER-ASSOCIATED MUTANT IDH1 LEADING TO TISSUE ACCUMULATION OF THE ONCOMETABOLITE 2-HYDROXYGLUTARATE. CAS  ADS  PubMed  PubMed Central 


Google Scholar  * Albaugh, B. N., Arnold, K. M. & Denu, J. M. KAT(ching) metabolism by the tail: insight into the links between lysine acetyltransferases and metabolism. _ChemBioChem_


12, 290–298 (2011). CAS  PubMed  Google Scholar  * Rardin, M. J. et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic


pathways. _Proc. Natl Acad. Sci. USA_ 110, 6601–6606 (2013). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Hebert, A. S. et al. Calorie restriction and SIRT3 trigger global


reprogramming of the mitochondrial protein acetylome. _Mol. Cell_ 49, 186–199 (2012). PubMed  PubMed Central  Google Scholar  * Tu, B. P. & McKnight, S. L. Metabolic cycles as an


underlying basis of biological oscillations. _Nature Rev. Mol. Cell Biol._ 7, 696–701 (2006). CAS  Google Scholar  * Tu, B. P. et al. Cyclic changes in metabolic state during the life of a


yeast cell. _Proc. Natl Acad. Sci. USA_ 104, 16886–16891 (2007). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Berndsen, C. E. & Denu, J. M. Catalysis and substrate selection by


histone/protein lysine acetyltransferases. _Curr. Opin. Struct. Biol._ 18, 682–689 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Cai, L., Sutter, B. M., Li, B. & Tu, B. P.


Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. _Mol. Cell_ 42, 426–437 (2011). CAS  PubMed  PubMed Central  Google Scholar  *


Takahashi, H., McCaffery, J. M., Irizarry, R. A. & Boeke, J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. _Mol. Cell_ 23,


207–217 (2006). CAS  PubMed  Google Scholar  * Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. _Science_ 324, 1076–1080 (2009). REFERENCES 46 TO 48


SHOW THAT ACETYL-COA INCREASES HISTONE ACETYLATION IN YEAST AND MAMMALIAN CELLS WHEN ITS ABUNDANCE IS ENRICHED IN THE NUCLEOCYTOSOLIC COMPARTMENT OF A CELL. CAS  ADS  PubMed  PubMed Central


  Google Scholar  * Haigis, M. C. & Guarente, L. P. Mammalian sirtuins — emerging roles in physiology, aging, and calorie restriction. _Genes Dev._ 20, 2913–2921 (2006). CAS  PubMed 


Google Scholar  * Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. _Nature Rev. Mol. Cell Biol._ 13, 225–238 (2012). CAS  Google Scholar 


* Sassone-Corsi, P. NAD+, a circadian metabolite with an epigenetic twist. _Endocrinology_ 153, 1–5 (2012). CAS  PubMed  Google Scholar  * Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M.


& Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK–SIRT1. _Science_ 324, 654–657 (2009). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Nakahata, Y. et al.


The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. _Cell_ 134, 329–340 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Murayama,


A. et al. Epigenetic control of rDNA loci in response to intracellular energy status. _Cell_ 133, 627–639 (2008). CAS  PubMed  Google Scholar  * Michishita, E. et al. SIRT6 is a histone H3


lysine 9 deacetylase that modulates telomeric chromatin. _Nature_ 452, 492–496 (2008). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Kawahara, T. L. A. et al. SIRT6 links histone H3


lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. _Cell_ 136, 62–74 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Mostoslavsky, R. et al. Genomic


instability and aging-like phenotype in the absence of mammalian SIRT6. _Cell_ 124, 315–329 (2006). CAS  PubMed  Google Scholar  * Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in


male mice. _Nature_ 483, 218–221 (2012). CAS  ADS  PubMed  Google Scholar  * Veech, R. L. R., Eggleston, L. V. L. & Krebs, H. A. H. The redox state of free nicotinamide-adenine


dinucleotide phosphate in the cytoplasm of rat liver. _Biochem. J._ 115, 609–619 (1969). CAS  PubMed  PubMed Central  Google Scholar  * Gerhart-Hines, Z. et al. The cAMP/PKA pathway rapidly


activates SIRT1 to promote fatty acid oxidation independently of changes in NAD. _Mol. Cell_ 44, 851–863 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Cantó, C. et al. The NAD+


precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. _Cell Metab._ 15, 838–847 (2012). PubMed  PubMed Central  Google Scholar  *


Hubbard, B. P. et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. _Science_ 339, 1216–1219 (2013). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Gut,


P. & Verdin, E. Rejuvenating SIRT1 activators. _Cell Metab._ 17, 635–637 (2013). CAS  PubMed  Google Scholar  * Hardie, D. G. D., Ross, F. A. F. & Hawley, S. A. S. AMPK: a nutrient


and energy sensor that maintains energy homeostasis. _Nature Rev. Mol. Cell Biol._ 13, 251–262 (2012). CAS  Google Scholar  * Bungard, D. et al. Signaling kinase AMPK activates


stress-promoted transcription via histone H2B phosphorylation. _Science_ 329, 1201–1205 (2010). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Takahashi, K. & Yamanaka, S. Induction


of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. _Cell_ 126, 663–676 (2006). CAS  PubMed  Google Scholar  * Hanna, J. H., Saha, K. &


Jaenisch, R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. _Cell_ 143, 508–525 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Apostolou, E. &


Hochedlinger, K. Chromatin dynamics during cellular reprogramming. _Nature_ 502, 462–471 (2013). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Wang, J. et al. Dependence of mouse


embryonic stem cells on threonine catabolism. _Science_ 325, 435–439 (2009). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Shyh-Chang, N. et al. Influence of threonine metabolism on


_S_-adenosylmethionine and histone methylation. _Science_ 339, 222–226 (2013). REFERENCES 69 AND 70 DESCRIBE THE DEPENDENCE OF PLURIPOTENCY ON THE GENERATION OF _S_ -ADENOSYLMETHIONINE BY


THREONINE CATABOLISM IN EMBRYONIC STEM CELLS. ADS  PubMed  Google Scholar  * Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational


implications. _Nature Rev. Cancer_ 11, 726–734 (2011). CAS  Google Scholar  * Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic


requirements of cell proliferation. _Science_ 324, 1029–1033 (2009). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Vander Heiden, M. G. et al. Evidence for an alternative glycolytic


pathway in rapidly proliferating cells. _Science_ 329, 1492–1499 (2010). CAS  ADS  PubMed  Google Scholar  * Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic


and biological subgroups of glioblastoma. _Cancer Cell_ 22, 425–437 (2012). CAS  PubMed  Google Scholar  * Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma


hypermethylator phenotype. _Nature_ 483, 479–483 (2012). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Dang, L., Jin, S. & Su, S. M. IDH mutations in glioma and acute myeloid


leukemia. _Trends Mol. Med._ 16, 387–397 (2010). CAS  PubMed  Google Scholar  * Waldecker, M., Kautenburger, T., Daumann, H., Busch, C. & Schrenk, D. Inhibition of histone-deacetylase


activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. _J. Nutr. Biochem._ 19, 587–593 (2008). CAS  PubMed  Google Scholar  * Roediger, W. E. Utilization of


nutrients by isolated epithelial cells of the rat colon. _Gastroenterology_ 83, 424–429 (1982). CAS  PubMed  Google Scholar  * Kim, Y. S. & Milner, J. A. Dietary modulation of colon


cancer risk. _J. Nutr._ 137, 2576S–2579S (2007). PubMed  Google Scholar  * Donohoe, D. R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell


proliferation. _Mol. Cell_ 48, 612–626 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Comalada, M. et al. The effects of short-chain fatty acids on colon epithelial proliferation and


survival depend on the cellular phenotype. _J. Cancer Res. Clin. Oncol._ 132, 487–497 (2006). CAS  PubMed  Google Scholar  * Cahill, G. F. Fuel metabolism in starvation. _Annu. Rev. Nutr._


26, 1–22 (2006). CAS  PubMed  Google Scholar  * Kashiwaya, Y. et al. D-β-hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease. _Proc. Natl Acad. Sci.


USA_ 97, 5440–5444 (2000). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Maalouf, M., Rho, J. M. & Mattson, M. P. The neuroprotective properties of calorie restriction, the


ketogenic diet, and ketone bodies. _Brain Res. Rev._ 59, 293–315 (2009). CAS  PubMed  Google Scholar  * Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous


histone deacetylase inhibitor. _Science_ 339, 211–214 (2013). THIS STUDY IDENTIFIES THE KETONE BODY Β-HYDROXYBUTYRATE AS AN ENDOGENOUS INHIBITOR OF HDACS AND PROTECTIVE AGENT AGAINST


OXIDATIVE DAMAGE. CAS  ADS  PubMed  Google Scholar  * Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation.


_Science_ 319, 1827–1830 (2008). CAS  ADS  PubMed  Google Scholar  * Fraga, M. F. M. et al. Epigenetic differences arise during the lifetime of monozygotic twins. _Proc. Natl Acad. Sci. USA_


102, 10604–10609 (2005). THIS STUDY IN HUMANS SHOWS THAT EPIGENETIC MARKS INCREASINGLY DIFFER DURING ADULT LIFE OF MONOZYGOTIC TWINS. CAS  ADS  PubMed  PubMed Central  Google Scholar  *


Feil, R. & Fraga, M. F. Epigenetics and the environment: emerging patterns and implications. _Nature Rev. Genet._ 13, 97–109 (2011). Google Scholar  * Nathan, D. M. et al. Intensive


diabetes treatment and cardiovascular disease in patients with type 1 diabetes. _N. Engl. J. Med._ 353, 2643–2653 (2005). PubMed  Google Scholar  * Patel, A. et al. Intensive blood glucose


control and vascular outcomes in patients with type 2 diabetes. _N. Engl. J. Med._ 358, 2560–2572 (2008). CAS  PubMed  Google Scholar  * El-Osta, A. Glycemic memory. _Curr. Opin. Lipidol._


23, 24–29 (2012). CAS  PubMed  Google Scholar  * Pirola, L. et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. _Genome Res._


21, 1601–1615 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Villeneuve, L. M. et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of


vascular smooth muscle cells in diabetes. _Proc. Natl Acad. Sci. USA_ 105, 9047–9052 (2008). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Brasacchio, D. et al. Hyperglycemia induces a


dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. _Diabetes_ 58, 1229–1236 (2009). CAS 


PubMed  PubMed Central  Google Scholar  * Patti, M.-E. Intergenerational programming of metabolic disease: evidence from human populations and experimental animal models. _Cell. Mol. Life


Sci._ 70, 1597–1608 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Stein, A. D. et al. Anthropometric measures in middle age after exposure to famine during gestation: evidence from


the Dutch famine. _Am. J. Clin. Nutr._ 85, 869–876 (2007). CAS  PubMed  Google Scholar  * Kaati, G., Bygren, L. O., Pembrey, M. & Sjöström, M. Transgenerational response to nutrition,


early life circumstances and longevity. _Eur. J. Hum. Genet._ 15, 784–790 (2007). REFERENCES 96 AND 97 ARE CLASSIC EPIDEMIOLOGICAL STUDIES THAT SHOW A RELATIONSHIP BETWEEN NUTRITIONAL STATUS


OF MOTHERS AND CARDIOVASCULAR AND METABOLIC DISEASE RISK IN THE FOLLOWING GENERATIONS. CAS  PubMed  Google Scholar  * Anderson, L. M. et al. Preconceptional fasting of fathers alters serum


glucose in offspring of mice. _Nutrition_ 22, 327–331 (2006). CAS  PubMed  Google Scholar  * Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of


metabolic gene expression in mammals. _Cell_ 143, 1084–1096 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Kersten, S. et al. Peroxisome proliferator-activated receptor α mediates


the adaptive response to fasting. _J. Clin. Invest._ 103, 1489–1498 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Ng, S.-F. et al. Chronic high-fat diet in fathers programs β-cell


dysfunction in female rat offspring. _Nature_ 467, 963–966 (2010). CAS  ADS  PubMed  Google Scholar  * ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human


genome. _Nature_ 489, 57–74 (2012). * Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. _Cell_ 148, 46–57 (2012). CAS  PubMed 


PubMed Central  Google Scholar  * Olshansky, S. J. et al. A potential decline in life expectancy in the United States in the 21st century. _N. Engl. J. Med._ 352, 1138–1145 (2005). CAS 


PubMed  Google Scholar  * Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. _Nature Rev. Drug Discov._


11, 384–400 (2012). CAS  Google Scholar  * Helin, K. & Dhanak, D. Chromatin proteins and modifications as drug targets. _Nature_ 502, 480–488 (2013). CAS  ADS  PubMed  Google Scholar  *


Zhang, Q., Piston, D. W. & Goodman, R. H. Regulation of corepressor function by nuclear NADH. _Science_ 295, 1895–1897 (2002). CAS  ADS  PubMed  Google Scholar  * Paige, J. S.,


Nguyen-Duc, T., Song, W. & Jaffrey, S. R. Fluorescence imaging of cellular metabolites with RNA. _Science_ 335, 1194 (2012). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Ellis, J.


M. & Wolfgang, M. J. A genetically encoded metabolite sensor for malonyl-CoA. _Chem. Biol._ 19, 1333–1339 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Tsou, P., Bin, B.,


Zheng, Hsu, C.-H., Sasaki, A. T. & Cantley, L. C. A fluorescent reporter of AMPK activity and cellular energy stress. _Cell Metab._ 13, 476–486 (2011). CAS  PubMed  PubMed Central 


Google Scholar  * Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. _Nature_ 459,


996–999 (2009). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Kenyon, C. J. The genetics of ageing. _Nature_ 464, 504–512 (2010). CAS  ADS  PubMed  Google Scholar  * Han, S. &


Brunet, A. Histone methylation makes its mark on longevity. _Trends Cell Biol._ 22, 42–49 (2012). PubMed  Google Scholar  * Greer, E. L. et al. Transgenerational epigenetic inheritance of


longevity in _Caenorhabditis elegans_. _Nature_ 479, 365–371 (2011). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life


span — from yeast to humans. _Science_ 328, 321–326 (2010). CAS  ADS  PubMed  PubMed Central  Google Scholar  * Bordone, L. & Guarente, L. Calorie restriction, SIRT1 and metabolism:


understanding longevity. _Nature Rev. Mol. Cell Biol._ 6, 298–305 (2005). CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank J. Carroll for graphics, G. Howard and A.-L.


Lucido for editorial assistance, V. Fonseca and P. Cruz for administrative assistance. The authors are supported by funds from the Gladstone Institutes. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Gladstone Institutes, University of California, San Francisco, 94941, California, USA Philipp Gut & Eric Verdin Authors * Philipp Gut View author publications You can also


search for this author inPubMed Google Scholar * Eric Verdin View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Eric


Verdin. ETHICS DECLARATIONS COMPETING INTERESTS E.V. is a member of the scientific advisory board of SIRTRIS/GSK ADDITIONAL INFORMATION Reprints and permissions information is available at


www.nature.com/reprints. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Gut, P., Verdin, E. The nexus of chromatin regulation and intermediary


metabolism. _Nature_ 502, 489–498 (2013). https://doi.org/10.1038/nature12752 Download citation * Received: 15 March 2013 * Accepted: 16 August 2013 * Published: 23 October 2013 * Issue


Date: 24 October 2013 * DOI: https://doi.org/10.1038/nature12752 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


Trending News

DNA Special: Remembering Chaudhary Charan Singh's contribution towards farmers

Chaudhary Charan Singh did not agree with India's first PM Nehru's viewpoints when it came to farmers and opposed the sa...

Bombardier Dash 8 Q400, G-FLBE, 25 November 2010 - GOV.UK

During the approach, the flight crew observed an indication that the right main landing gear was not in the ‘down and lo...

[Withdrawn] Help the government increase coronavirus (COVID-19) testing capacity - GOV.UK

This guidance is out of date. See current information on coronavirus (COVID-19).On 2 April 2020, the government announce...

‘the crucible’ with ben whishaw, saoirse ronan & sophie okonedo bewitches on broadway – review

Arthur Miller’s 1953 drama _The Crucible_ is a big play — big ideas, big cast, big emotions. In a season of multiple Mil...

Clean and pure

डाउन टू अर्थPrint EditionSubscribeHealthAgricultureWaterWasteClimateAirAfricaData CentreVideoGalleryYoungEnvironmentalis...

Latests News

The nexus of chromatin regulation and intermediary metabolism

ABSTRACT Living organisms and individual cells continuously adapt to changes in their environment. Those changes are par...

Pensions Investment Review: Unlocking the UK pensions market for growth - GOV.UK

The response sets out the government’s final policy positions, building on the feedback provided to the consultation. Le...

ITV Emmerdale's Natalie Ann Jamieson's life outside of the Dales after heartbreaking death confirmed - Manchester Evening News

ITV Emmerdale's Natalie Ann Jamieson's life outside of the Dales after heartbreaking death confirmedAmy Barton was the t...

''His lips were blue... something has gone badly wrong" - Manchester Evening News

''His lips were blue... something has gone badly wrong"Bosses have now apologisedNewsEthan Davies Local Democracy Report...

First dates' fred sirieix admits to arguing with wife over huge issue at home

EXCLUSIVE: FIRST DATES STAR FRED SIRIEIX MARRIED HIS FIANCÉ OF FIVE YEARS EARLIER THIS YEAR IN A JAMAICAN ROMANTIC CEREM...

Top