Gabaergic dysfunction in mood disorders

Nature

Gabaergic dysfunction in mood disorders"


Play all audios:

Loading...

ABSTRACT The authors review the available literature on the preclinical and clinical studies involving GABAergic neurotransmission in mood disorders. γ-Aminobutyric acid (GABA) is an


inhibitory neurotransmitter present almost exclusively in the central nervous system (CNS), distributed across almost all brain regions, and expressed in interneurons modulating local


circuits. The role of GABAergic _dysfunction_ in mood disorders was first proposed 20 years ago. Preclinical studies have suggested that GABA levels may be decreased in animal models of


depression, and clinical studies reported low plasma and CSF GABA levels in mood disorder patients. Also, antidepressants, mood stabilizers, electroconvulsive therapy, and GABA agonists have


been shown to reverse the depression-like behavior in animal models and to be effective in unipolar and bipolar patients by increasing brain GABAergic activity. The hypothesis of reduced


GABAergic activity in mood disorders may complement the monoaminergic and serotonergic theories, proposing that the balance between multiple neurotransmitter systems may be altered in these


disorders. However, low GABAergic cortical function may probably be a feature of a subset of mood disorder patients, representing a genetic susceptibility. In this paper, we discuss the


status of GABAergic hypothesis of mood disorders and suggest possible directions for future preclinical and clinical research in this area. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution RELEVANT ARTICLES Open Access articles citing this article. * ROUNDUP AND GLYPHOSATE’S IMPACT ON GABA TO ELICIT


EXTENDED PROCONVULSANT BEHAVIOR IN CAENORHABDITIS ELEGANS * Akshay S. Naraine * , Rebecca Aker *  … Ken Dawson-Scully _Scientific Reports_ Open Access 23 August 2022 * LITHIUM CAUSES


DIFFERENTIAL EFFECTS ON POSTSYNAPTIC STABILITY IN NORMAL AND DENERVATED NEUROMUSCULAR SYNAPSES * Diego Zelada * , Francisco J. Barrantes *  & Juan Pablo Henríquez _Scientific Reports_


Open Access 26 August 2021 * SUSCEPTIBILITY TO CHRONIC IMMOBILIZATION STRESS‐INDUCED DEPRESSIVE-LIKE BEHAVIOUR IN MIDDLE‐AGED FEMALE MICE AND ACCOMPANYING CHANGES IN DOPAMINE D1 AND GABAA


RECEPTORS IN RELATED BRAIN REGIONS * Guofen Cao * , Gaili Meng *  … Yongai Zhang _Behavioral and Brain Functions_ Open Access 16 April 2021 ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support REFERENCES * Zachmann M, Tocci P, Nyhan WL . The occurrence of gamma-aminobutyric acid in human tissues other than brain. _J Biol Chem_ 1966; 241: 1355–1358. Article


  CAS  PubMed  Google Scholar  * Otsuka M, Iversen LL, Hall ZW, Kravitz EA . Release of gamma-aminobutyric acid from inhibitory nerves of lobster. _Proc Natl Acad Sci USA_ 1966; 56:


1110–1115. Article  CAS  PubMed  PubMed Central  Google Scholar  * Meldrum B . Pharmacology of GABA. _Clin Neuropharmacol_ 1982; 5: 293–316. Article  CAS  PubMed  Google Scholar  * Guidotti


A, Corda MG, Wise BC, Vaccarino F, Costa E . GABAergic synapses. Supramolecular organization and biochemical regulation. _Neuropharmacology_ 1983; 22: 1471–1479. Article  CAS  PubMed  Google


Scholar  * Emrich HM, von Zerssen D, Kissling W, Moller HJ, Windorfer A . Effect of sodium valproate on mania. The GABA-hypothesis of affective disorders. _Archiv Psychiatrie


Nervenkrankheiten_ 1980; 229: 1–16. Article  CAS  Google Scholar  * Massat I, Sourey D, Papadimitriou GN, Mendlewicz J . The GABAergic hypothesis of mood disorders. In: Soares JC, Gershon S


(eds). _Bipolar Disorders, Basic Mechanisms and Therapeutic Implication_. Marcel Dekker: New York, 2000, pp. 143–165. Google Scholar  * Peng L, Hertz L, Huang R, Sonnewald U, Petersen SB,


Westergaard N _et al_. Utilization of glutamine and of TCA cycle constituents as precursors for transmitter glutamate and GABA. _Dev Neurosci_ 1993; 15: 367–377. Article  CAS  PubMed  Google


Scholar  * Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L _et al_. Glutamate and glutamine metabolism and compartmentation in astrocytes. _Dev Neurosci_ 1993; 15:


359–366. Article  CAS  PubMed  Google Scholar  * Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL . Localization of messenger RNAs encoding three GABA transporters in


rat brain: an _in situ_ hybridization study. _Brain Res Mol Brain Res_ 1995; 33: 7–21. Article  CAS  PubMed  Google Scholar  * Borden LA . GABA transporter heterogeneity: pharmacology and


cellular localization. _Neurochem Int_ 1996; 29: 335–356. Article  CAS  PubMed  Google Scholar  * Cherubini E, Conti F . Generating diversity at GABAergic synapses. _Trends Neurosci_ 2001;


24: 155–162. Article  CAS  PubMed  Google Scholar  * Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ . Two genes encode distinct glutamate decarboxylases. _Neuron_ 1991; 7:


91–100. Article  CAS  PubMed  Google Scholar  * Eder M, Rammes G, Zieglgansberger W, Dodt H-U . GABAA and GABAB receptors on neocortical neurons are differentialy distributed. _Eur J


Neurosci_ 2001; 13: 1065–1069. Article  CAS  PubMed  Google Scholar  * Costa E, Auta J, Grayson DR, Matsumoto K, Pappas GD, Zhang X _et al_. GABAA receptors and benzodiapines: a role for


dendritic resident subunit mRNAs. _Neuropharmacology_ 2002; 43: 925–937. Article  CAS  PubMed  Google Scholar  * Bormann J . Electrophysiology of GABAA and GABAB receptor subtypes. _Trends


Neurosci_ 1988; 11: 112–116. Article  CAS  PubMed  Google Scholar  * Macdonald RL, Twyman RE, Ryan-Jastrow T, Angelotti TP . Regulation of GABAA receptor channels by anticonvulsant and


convulsant drugs and by phosphorylation. _Epilepsy Res Suppl_ 1992; 9: 265–277. CAS  PubMed  Google Scholar  * Haefely W, Kulcsar A, Mohler H . Possible involvement of GABA in the central


actions of benzodiazepines. _Psychopharmacol Bull_ 1975; 11: 58–59. CAS  PubMed  Google Scholar  * Nicoll RA, Eccles JC, Oshima T, Rubia F . Prolongation of hippocampal inhibitory


postsynaptic potentials by barbiturates. _Nature_ 1975; 258: 625–627. Article  CAS  PubMed  Google Scholar  * Narahashi T, Arakawa O, Brunner EA, Nakahiro M, Nishio M, Ogata N _et al_.


Modulation of GABA receptor-channel complex by alcohols and general anesthetics. _Adv Biochem Psychopharmacol_ 1992; 47: 325–334. CAS  PubMed  Google Scholar  * Mhatre M, Ticku MK . Chronic


ethanol treatment upregulates the GABA receptor beta subunit expression. _Brain Res Mol Brain Res_ 1994; 23: 246–252. Article  CAS  PubMed  Google Scholar  * Curtis DR, Duggan AW, Felix D,


Johnston GA . Bicuculline and central GABA receptors. _Nature_ 1970; 228: 676–677. Article  CAS  PubMed  Google Scholar  * Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri


M _et al_. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. _Pharmacol Rev_ 2002; 54: 247–264. Article  CAS  PubMed 


Google Scholar  * Karbon EW, Duman RS, Enna SJ . GABAB receptors and norepinephrine-stimulated cAMP production in rat brain cortex. _Brain Res_ 1984; 306: 327–332. Article  CAS  PubMed 


Google Scholar  * Pycock CJ, Horton RW . Dopamine-dependent hyperactivity in the rat following manipulation of GABA mechanisms in the region of the nucleus accumbens. _J Neural Transm_ 1979;


45: 17–33. Article  CAS  PubMed  Google Scholar  * Jones MW, Kilpatrick IC, Phillipson OT . Dopamine function in the prefrontal cortex of the rat is sensitive to a reduction of tonic


GABA-mediated inhibition in the thalamic mediodorsal nucleus. _Exp Brain Res_ 1988; 69: 623–634. Article  CAS  PubMed  Google Scholar  * Reid M, Herrera-Marschitz M, Hokfelt T, Terenius L,


Ungerstedt U . Differential modulation of striatal dopamine release by intranigral injection of gamma-aminobutyric acid (GABA), dynorphin A and substance P. _Eur J Pharmacol_ 1988; 147:


411–420. Article  CAS  PubMed  Google Scholar  * Benes FM, Vincent SL, Molloy R . Dopamine-immunoreactive axon varicosities form nonrandom contacts with GABA-immunoreactive neurons of rat


medial prefrontal cortex. _Synapse_ 1993; 15: 285–295. Article  CAS  PubMed  Google Scholar  * Dewey SL, Smith GS, Logan J, Brodie JD, Yu DW, Ferrieri RA _et al_. GABAergic inhibition of


endogenous dopamine release measured _in vivo_ with 11C-raclopride and positron emission tomography. _J Neurosci_ 1992; 12: 3773–3780. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Schiffer WK, Gerasimov MR, Bermel RA, Brodie JD, Dewey SL . Stereoselective inhibition of dopaminergic activity by gamma vinyl-GABA following a nicotine or cocaine challenge: a


PET/microdialysis study. _Life Sci_ 2000; 66: L169–L173. Article  Google Scholar  * Ring HA, Trimble MR, Costa DC, George MS, Verhoeff P, Ell PJ . Effect of vigabatrin on striatal dopamine


receptors: evidence in humans for interactions of GABA and dopamine systems. _J Neurol Neurosurg Psychiatry_ 1992; 55: 758–761. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Garbutt JC, van Kammen DP . The interaction between GABA and dopamine: implications for schizophrenia. _Schizophr Bull_ 1983; 9: 336–353. Article  CAS  PubMed  Google Scholar  * Evangelista


S, Borsini F, Meli A . Evidence that muscimol acts in the forced swimming test by activating the rat dopaminergic system. _Life Sci_ 1987; 41: 2679–2684. Article  CAS  PubMed  Google Scholar


  * Bonanno G, Raiteri M . Coexistence of carriers for dopamine and GABA uptake on a same nerve terminal in the rat brain. _Br J Pharmacol_ 1987; 91: 237–243. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Retaux S, Besson MJ, Penit-Soria J . Opposing effects of dopamine D2 receptor stimulation on the spontaneous and the electrically evoked release of [3H]GABA on rat


prefrontal cortex slices. _Neuroscience_ 1991; 42: 61–71. Article  CAS  PubMed  Google Scholar  * Floran B, Floran L, Sierra A, Aceves J . D2 receptor-mediated inhibition of GABA release by


endogenous dopamine in the rat globus pallidus. _Neurosci Lett_ 1997; 237: 1–4. Article  CAS  PubMed  Google Scholar  * Grobin AC, Deutch AY . Dopaminergic regulation of extracellular


gamma-aminobutyric acid levels in the prefrontal cortex of the rat. _J Pharmacol Exp Ther_ 1998; 285: 350–357. CAS  PubMed  Google Scholar  * Harsing Jr LG, Zigmond MJ . Influence of


dopamine on GABA release in striatum: evidence for D1−D2 interactions and non-synaptic influences. _Neuroscience_ 1997; 77: 419–429. Article  CAS  PubMed  Google Scholar  * Seamans JK,


Gorelova N, Durstewitz D, Yang CR . Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. _J Neurosci_ 2001; 21: 3628–3638. Article  CAS  PubMed


  PubMed Central  Google Scholar  * Wang X, Zhong P, Yan Z . Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex. _J Neurosci_ 2002; 22: 9185–9193.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Cobb WS, Abercrombie ED . Distinct roles for nigral GABA and glutamate receptors in the regulation of dendritic dopamine release under


normal conditions and in response to systemic haloperidol. _J Neurosci_ 2002; 22: 1407–1413. Article  CAS  PubMed  PubMed Central  Google Scholar  * Biswas B, Carlsson A . The effect of


intracerebroventricularly administered GABA on brain monoamine metabolism. _Naunyn Schmiedebergs Arch Pharmacol_ 1977; 299: 41–46. Article  CAS  PubMed  Google Scholar  * Biswas B, Carlsson


A . The effect of intraperitoneally administered GABA on brain monoamine metabolism. _Naunyn Schmiedebergs Arch Pharmacol_ 1977; 299: 47–51. Article  CAS  PubMed  Google Scholar  * Scatton


B, Zivkovic B, Dedek J, Lloyd KG, Constantinidis J, Tissot R _et al_. Gamma-Aminobutyric acid (GABA) receptor stimulation. III. Effect of progabide (SL 76002) on norepinephrine, dopamine and


5-hydroxytryptamine turnover in rat brain areas. _J Pharmacol Exp Ther_ 1982; 220: 678–688. CAS  PubMed  Google Scholar  * Scatton B, Lloyd KG, Zivkovic B, Dennis T, Claustre Y, Dedek J _et


al_. Fengabine, a novel antidepressant GABAergic agent. II. Effect on cerebral noradrenergic, serotonergic and GABAergic transmission in the rat. _J Pharmacol Exp Ther_ 1987; 241: 251–257.


CAS  PubMed  Google Scholar  * Suzdak PD, Gianutsos G . Differential coupling of GABA-A and GABA-B receptors to the noradrenergic system. _J Neural Transm_ 1985; 62: 77–89. Article  CAS 


PubMed  Google Scholar  * Bonanno G, Raiteri M . Carriers for GABA and noradrenaline uptake coexist on the same nerve terminal in rat hippocampus. _Eur J Pharmacol_ 1987; 136: 303–310.


Article  CAS  PubMed  Google Scholar  * Bonanno G, Raiteri M . Release-regulating GABAA receptors are present on noradrenergic nerve terminals in selective areas of the rat brain. _Synapse_


1987; 1: 254–257. Article  CAS  PubMed  Google Scholar  * Suzdak PD, Gianutsos G . Parallel changes in the sensitivity of gamma-aminobutyric acid and noradrenergic receptors following


chronic administration of antidepressant and GABAergic drugs. A possible role in affective disorders. _Neuropharmacology_ 1985; 24: 217–222. Article  CAS  PubMed  Google Scholar  * Ferraro


L, Tanganelli S, Calo G, Antonelli T, Fabrizi A, Acciarri N _et al_. Noradrenergic modulation of gamma-aminobutyric acid outflow from the human cerebral cortex. _Brain Res_ 1993; 629:


103–108. Article  CAS  PubMed  Google Scholar  * Mitoma H, Konishi S . Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses. _Neuroscience_


1999; 88: 871–883. Article  CAS  PubMed  Google Scholar  * Nishikawa T, Scatton B . Evidence for a GABAergic inhibitory influence on serotonergic neurons originating from the dorsal raphe.


_Brain Res_ 1983; 279: 325–329. Article  CAS  PubMed  Google Scholar  * Nishikawa T, Tanaka M, Tsuda A, Kohno Y, Nagasaki N . Serotonergic−catecholaminergic interactions and foot


shock-induced jumping behavior in rats. _Eur J Pharmacol_ 1983; 94: 53–58. Article  CAS  PubMed  Google Scholar  * Nishikawa T, Scatton B . Inhibitory influence of GABA on central


serotonergic transmission. Raphe nuclei as the neuroanatomical site of the GABAergic inhibition of cerebral serotonergic neurons. _Brain Res_ 1985; 331: 91–103. Article  CAS  PubMed  Google


Scholar  * Francois-Bellan AM, Hery M, Faldon M, Hery F . Evidence for GABA on serotonin metabolism in the rat suprachiasmatic area. _Neurochem Int_ 1988; 134: 455–462. Article  Google


Scholar  * Bagdy E, Kiraly I, Harsing LG . Reciprocal innervation between serotonergic and GABAergic neurons in raphe nuclei of the rat. _Neurochem Res_ 2000; 25: 1465–1473. Article  CAS 


PubMed  Google Scholar  * Shen RY, Andrade R . 5-Hydroxytryptamine2 receptor facilitates GABAergic neurotransmission in rat hippocampus. _J Pharmacol Exp Ther_ 1998; 285: 805–812. CAS 


PubMed  Google Scholar  * Abi-Saab WM, Bubser M, Roth RH, Deutch AY . 5-HT2 receptor regulation of extracellular GABA levels in the prefrontal cortex. _Neuropsychopharmacology_ 1999; 20:


92–96. Article  CAS  PubMed  Google Scholar  * Liu R, Jolas T, Aghajanian G . Serotonin 5-HT(2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe


nucleus. _Brain Res_ 2000; 873: 34–45. Article  CAS  PubMed  Google Scholar  * Green AR, Johnson P, Mountford JA, Nimgaonkar VL . Some anticonvulsant drugs alter monoamine-mediated behaviour


in mice in ways similar to electroconvulsive shock; implications for antidepressant therapy. _Br J Pharmacol_ 1985; 84: 337–346. Article  CAS  PubMed  PubMed Central  Google Scholar  * Metz


A, Goodwin GM, Green AR . The administration of baclofen to mice increases 5-HT2-mediated head-twitch behaviour and 5-HT2 receptor number in frontal cortex. _Neuropharmacology_ 1985; 24:


357–360. Article  CAS  PubMed  Google Scholar  * Gray JA, Metz A, Goodwin GM, Green AR . The effects of the GABA-mimetic drugs, progabide and baclofen, on the biochemistry and function of


5-hydroxytryptamine and noradrenaline. _Neuropharmacology_ 1986; 25: 711–716. Article  CAS  PubMed  Google Scholar  * Sibille E, Pavlides C, Benke D, Toth M . Genetic inactivation of the


Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. _J Neurosci_


2000; 20: 2758–2765. Article  CAS  PubMed  PubMed Central  Google Scholar  * Maggi A, Perez J . Role of female gonadal hormones in the CNS: clinical and experimental aspects. _Life Sci_


1985; 37: 893–906. Article  CAS  PubMed  Google Scholar  * Perez J, Zucchi A, Maggi A . Sexual dimorphism in the response of the GABAergic system to estrogen administration. _J Neurochem_


1986; 47: 1798–1803. Article  CAS  PubMed  Google Scholar  * McEwen BS . Non-genomic and genomic effects of steroids on neural activity. _Trends Pharmacol Sci_ 1991; 12: 141–147. Article 


CAS  PubMed  Google Scholar  * van Broekhoven F, Verkes RJ . Neurosteroids in depression: a review. _Psychopharmacology_ 2003; 165: 97–110. Article  CAS  PubMed  Google Scholar  * Do-Rego


JL, Mensah-Nyagan GA, Beaujean D, Vaudry D, Sieghart W, Luu-The V _et al_. Gamma-Aminobutyric acid, acting through gamma-aminobutyric acid type A receptors, inhibits the biosynthesis of


neurosteroids in the frog hypothalamus. _Proc Natl Acad Sci USA_ 2000; 97: 13925–13930. Article  CAS  PubMed  PubMed Central  Google Scholar  * Haage D, Druzin M, Johansson S .


Allopregnanolone modulates spontaneous GABA release via presynaptic Cl− permeability in rat preoptic nerve terminals. _Brain Res_ 2002; 958: 405–413. Article  CAS  PubMed  Google Scholar  *


McIntyre KL, Porter DM, Henderson LP . Anabolic androgenic steroids induce age-, sex-, and dose-dependent changes in GABAA receptor subunit mRNAs in the mouse forebrain. _Neuropharmacology_


2002; 43: 634–645. Article  CAS  PubMed  Google Scholar  * Porsolt RD, Anton G, Blavet N, Jalfre M . Behavioural despair in rats: a new model sensitive to antidepressant treatments. _Eur J


Pharmacol_ 1978; 47: 379–391. Article  CAS  PubMed  Google Scholar  * Mancinelli A, D'Aranno V, Borsini F, Meli A . Lack of relationship between effect of desipramine on forced swimming


test and brain levels of desipramine or its demethylated metabolite in rats. _Psychopharmacology_ 1987; 92: 441–443. Article  CAS  PubMed  Google Scholar  * Borsini F, Mancinelli A,


D'Aranno V, Evangelista S, Meli A . On the role of endogenous GABA in the forced swimming test in rats. _Pharmacol Biochem Behav_ 1987; 29: 275–279. Article  Google Scholar  * Poncelet


M, Martin P, Danti S, Simon P, Soubrie P . Noradrenergic rather than GABAergic processes as the common mediation of the antidepressant profile of GABA agonists and imipraminelike drugs in


animals. _Pharmacol Biochem Behav_ 1987; 28: 321–326. Article  CAS  PubMed  Google Scholar  * Seligman ME, Maier SF . Failure to escape traumatic shock. _J Exp Psychol_ 1967; 74: 1–9.


Article  CAS  PubMed  Google Scholar  * Sherman AD, Petty F . Neurochemical basis of the action of antidepressants on learned helplessness. _Behav Neural Biol_ 1980; 30: 119–134. Article 


CAS  PubMed  Google Scholar  * Petty F, Sherman AD . GABAergic modulation of learned helplessness. _Pharmacol Biochem Behav_ 1981; 15: 567–570. Article  CAS  PubMed  Google Scholar  *


Sherman AD, Petty F . Additivity of neurochemical changes in learned helplessness and imipramine. _Behav Neural Biol_ 1982; 35: 344–353. Article  CAS  PubMed  Google Scholar  * Lloyd KG,


Morselli PL, Depoortere H, Fournier V, Zivkovic B, Scatton B _et al_. The potential use of GABA agonists in psychiatric disorders: evidence from studies with progabide in animal models and


clinical trials. _Pharmacol Biochem Behav_ 1983; 18: 957–966. Article  CAS  PubMed  Google Scholar  * Drugan RC, Morrow AL, Weizman R, Weizman A, Deutsch SI, Crawley JN _et al_.


Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. _Brain Res_ 1989; 487:


45–51. Article  CAS  PubMed  Google Scholar  * Nakagawa Y, Ishima T, Ishibashi Y, Tsuji M, Takashima T . Involvement of GABAB receptor systems in experimental depression: baclofen but not


bicuculline exacerbates helplessness in rats. _Brain Res_ 1996; 741: 240–245. Article  PubMed  Google Scholar  * Nakagawa Y, Ishima T, Ishibashi Y, Tsuji M, Takashima T . Involvement of


GABAB receptor systems in action of antidepressants. II: Baclofen attenuates the effect of desipramine whereas muscimol has no effect in learned helplessness paradigm in rats. _Brain Res_


1996; 728: 225–230. Article  CAS  PubMed  Google Scholar  * Martin P, Pichat P, Massol J, Soubrie P, Lloyd KG, Puech AJ . Decreased GABA B receptors in helpless rats: reversal by tricyclic


antidepressants. _Neuropsychobiology_ 1989; 22: 220–224. Article  CAS  PubMed  Google Scholar  * Plaznik A, Tamborska E, Hauptmann M, Bidzinski A, Kostowski W . Brain neurotransmitter


systems mediating behavioral deficits produced by inescapable shock treatment in rats. _Brain Res_ 1988; 447: 122–132. Article  CAS  PubMed  Google Scholar  * Corda MG, Blaker WD, Mendelson


WB, Guidotti A, Costa E . beta-Carbolines enhance shock-induced suppression of drinking in rats. _Proc Natl Acad Sci USA_ 1983; 80: 2072–2076. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Drugan RC, Maier SF, Skolnick P, Paul SM, Crawley JN . An anxiogenic benzodiazepine receptor ligand induces learned helplessness. _Eur J Pharmacol_ 1985; 113: 453–457. Article 


CAS  PubMed  Google Scholar  * Guidotti A, Ferrero P, Costa E . On the brain endocoid for benzodiazepine recognition sites. _Prog Clin Biol Res_ 1985; 192: 477–484. CAS  PubMed  Google


Scholar  * Kelly JP, Wrynn AS, Leonard BE . The olfactory bulbectomized rat as a model of depression: an update. _Pharmacol Ther_ 1997; 74: 299–316. Article  CAS  PubMed  Google Scholar  *


Jancsar SM, Leonard BE . Changes in neurotransmitter metabolism following olfactory bulbectomy in the rat. _Prog Neuropsychopharmacol Biol Psychiatry_ 1984; 8: 263–269. Article  CAS  PubMed


  Google Scholar  * Lloyd KG, Pichat P . Decrease in GABAB binding to the frontal cortex of olfactory bulbectomized rats. _Br J Pharmacol_ 1986; 87: 36. Google Scholar  * Dennis T,


Beauchemin V, Lavoie N . Differential effects of olfactory bulbectomy on GABAA and GABAB receptors in the rat brain. _Pharmacol Biochem Behav_ 1993; 46: 77–82. Article  CAS  PubMed  Google


Scholar  * Joly D, Lloyd KG, Pichat P, Sanger DJ . Correlation between the behavioral effect of desipramine and GABAB receptor regulation in the olfactory bulbectomized rat. _Br J Pharmacol_


1987; 90: 125. Google Scholar  * Leonard BE, Tuite M . Anatomical, physiological, and behavioral aspects of olfactory bulbectomy in the rat. _Int Rev Neurobiol_ 1981; 22: 251–286. Article 


CAS  PubMed  Google Scholar  * Lloyd KG, Zivkovic B, Sanger D, Depoortere H, Bartholini G . Fengabine, a novel antidepressant GABAergic agent. I. Activity in models for antidepressant drugs


and psychopharmacological profile. _J Pharmacol Exp Ther_ 1987; 241: 245–250. CAS  PubMed  Google Scholar  * Grove J, Schechter PJ, Hanke NF, de Smet Y, Agid Y, Tell G _et al_. Concentration


gradients of free and total gamma-aminobutyric acid and homocarnosine in human CSF: comparison of suboccipital and lumbar sampling. _J Neurochem_ 1982; 39: 1618–1622. Article  CAS  PubMed 


Google Scholar  * Loscher W . Relationship between GABA concentrations in cerebrospinal fluid and seizure excitability. _J Neurochem_ 1982; 38: 293–295. Article  CAS  PubMed  Google Scholar


  * Gold BI, Bowers Jr MB, Roth RH, Sweeney DW . GABA levels in CSF of patients with psychiatric disorders. _Am J Psychiatry_ 1980; 137: 362–364. Article  CAS  PubMed  Google Scholar  * Kasa


K, Otsuki S, Yamamoto M, Sato M, Kuroda H, Ogawa N . Cerebrospinal fluid gamma-aminobutyric acid and homovanillic acid in depressive disorders. _Biol Psychiatry_ 1982; 17: 877–883. CAS 


PubMed  Google Scholar  * Berrettini WH, Nurnberger Jr JI, Hare TA, Simmons-Alling S, Gershon ES, Post RM . reduced plasma and CSF gamma-aminobutyric acid in affective illness: effect of


lithium carbonate. _Biol Psychiatry_ 1983; 18: 185–194. CAS  PubMed  Google Scholar  * Gerner RH, Hare TA . CSF GABA in normal subjects and patients with depression, schizophrenia, mania,


and anorexia nervosa. _Am J Psychiatry_ 1981; 138: 1098–1101. Article  CAS  PubMed  Google Scholar  * Gerner RH, Fairbanks L, Anderson GM, Young JG, Scheinin M, Linnoila M _et al_. CSF


neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls. _Am J Psychiatry_ 1984; 141: 1533–1540. Article  CAS  PubMed  Google Scholar  * Post RM,


Ballenger JC, Hare TA, Goodwin FK, Lake CR, Jimerson DC _et al_. Cerebrospinal fluid GABA in normals and patients with affective disorders. _Brain Res Bull_ 1980; 5 (Suppl 2): 755–759.


Article  Google Scholar  * Berrettini WH, Nurnberger Jr JI, Hare TA, Simmons-Alling S, Gershon ES . CSF GABA in euthymic manic-depressive patients and controls. _Biol Psychiatry_ 1986; 21:


844–846. Article  CAS  PubMed  Google Scholar  * Joffe R, Post R, Rubinow D, Berrettini W, Hare T, Ballenger J _et al_. Cerebrospinal fluid GABA in manic-depressive illness. In: Bartholini


G, Lloyd K, Morselli P (eds). _GABA and Mood Disorders: Experimental and Clinical Research_. Raven Press: New York, 1986. Google Scholar  * Petty F, Kramer G, Feldman M . Is plasma GABA of


peripheral origin? _Biol Psychiatry_ 1987; 22: 725–732. Article  CAS  PubMed  Google Scholar  * Petty F . Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: a blood


test for manic depressive disease? _Clin Chem_ 1994; 40: 296–302. Article  CAS  PubMed  Google Scholar  * Ferkany JW, Smith LA, Seifert WE, Caprioli RM, Enna SJ . Measurement of


gamma-aminobutyric acid (GABA) in blood. _Life Sci_ 1978; 22: 2121–2128. Article  CAS  PubMed  Google Scholar  * Bohlen P, Huot S, Palfreyman MG . The relationship between GABA


concentrations in brain and cerebrospinal fluid. _Brain Res_ 1979; 167: 297–305. Article  CAS  PubMed  Google Scholar  * Ferkany JW, Butler IJ, Enna SJ . Effect of drugs on rat brain,


cerebrospinal fluid and blood GABA content. _J Neurochem_ 1979; 33: 29–33. Article  CAS  PubMed  Google Scholar  * Loscher W . GABA in plasma and cerebrospinal fluid of different species.


Effects of gamma-acetylenic GABA, gamma-vinyl GABA and sodium valproate. _J Neurochem_ 1979; 32: 1587–1591. Article  CAS  PubMed  Google Scholar  * Apud JA, Racagni G, Iuliano E, Cocchi D,


Casanueva F, Muller EE . Role of central nervous system-derived or circulating gamma-aminobutyric acid on prolactin secretion in the rat. _Endocrinology_ 1981; 108: 1505–1510. Article  CAS 


PubMed  Google Scholar  * Loscher W, Frey HH . Transport of GABA at the blood−CSF interface. _J Neurochem_ 1982; 38: 1072–1079. Article  CAS  PubMed  Google Scholar  * Uhlhaas S, Lange H,


Wappenschmidt J, Olek K . Free and conjugated CSF and plasma GABA in Huntington's chorea. _Acta Neurol Scand_ 1986; 74: 261–265. Article  CAS  PubMed  Google Scholar  * Loscher W,


Rating D, Siemes H . GABA in cerebrospinal fluid of children with febrile convulsions. _Epilepsia_ 1981; 22: 697–702. Article  CAS  PubMed  Google Scholar  * Schmidt D, Loscher W . Plasma


and cerebrospinal fluid gamma-aminobutyric acid in neurological disorders. _J Neurol Neurosurg Psychiatry_ 1982; 45: 931–935. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Berrettini WH, Nurnberger Jr JI, Hare T, Gershon ES, Post RM . Plasma and CSF GABA in affective illness. _Br J Psychiatry_ 1982; 141: 483–487. Article  CAS  PubMed  Google Scholar  * Petty


F, Schlesser MA . Plasma GABA in affective illness. A preliminary investigation. _J Affect Disord_ 1981; 3: 339–343. Article  CAS  PubMed  Google Scholar  * Petty F, Sherman AD . Plasma GABA


levels in psychiatric illness. _J Affect Disord_ 1984; 6: 131–138. Article  CAS  PubMed  Google Scholar  * Petty F, Kramer GL, Dunnam D, Rush AJ . Plasma GABA in mood disorders.


_Psychopharmacol Bull_ 1990; 26: 157–161. CAS  PubMed  Google Scholar  * Petty F, Kramer GL, Gullion CM, Rush AJ . Low plasma gamma-aminobutyric acid levels in male patients with depression.


_Biol Psychiatry_ 1992; 32: 354–363. Article  CAS  PubMed  Google Scholar  * Petty F, Kramer GL, Fulton M, Moeller FG, Rush AJ . Low plasma GABA is a trait-like marker for bipolar illness.


_Neuropsychopharmacol_ 1993; 9: 125–132. Article  CAS  Google Scholar  * Petty F, Steinberg J, Kramer GL, Fulton M, Moeller FG . Desipramine does not alter plasma GABA in patients with major


depression. _J Affect Disord_ 1993; 29: 53–56. Article  CAS  PubMed  Google Scholar  * Petty F, Kramer GL, Fulton M, Davis L, Rush AJ . Stability of plasma GABA at four-year follow-up in


patients with primary unipolar depression. _Biol Psychiatry_ 1995; 37: 806–810. Article  CAS  PubMed  Google Scholar  * Prosser J, Hughes CW, Sheikha S, Kowatch RA, Kramer GL, Rosenbarger N


_et al_. Plasma GABA in children and adolescents with mood, behavior, and comorbid mood and behavior disorders: a preliminary study. _J Child Adolesc Psychopharmacol_ 1997; 7: 181–199.


Article  CAS  PubMed  Google Scholar  * Petty F, Kramer G . Stability of plasma gamma-aminobutyric acid with time in healthy controls. _Biol Psychiatry_ 1992; 31: 743–745. Article  CAS 


PubMed  Google Scholar  * Schulz P, Lustenberger S, Degli Agosti R, Rivest RW . Plasma concentration of nine hormones and neurotransmitters during usual activities or constant bed rest for


34 H. _Chronobiol Int_ 1994; 11: 367–380. Article  CAS  PubMed  Google Scholar  * Schulz P, Lloyd KG, Voltz C, Lustenberger S, Agosti RD . The plasma concentration of GABA shows no evidence


of a circadian rhythm and is stable over weeks in normal males. _Biol Rhythm Res_ 1994; 25: 291–300. Article  CAS  Google Scholar  * Berrettini WH, Umberkoman-Wiita B, Nurnberger Jr. JI,


Vogel WH, Gershon ES, Post RM . Platelet GABA-transaminase in affective illness. _Psychiatry Res_ 1982; 7: 255–260. Article  CAS  PubMed  Google Scholar  * Kaiya H, Namba M, Yoshida H,


Nakamura S . Plasma glutamate decarboxylase activity in neuropsychiatry. _Psychiatry Res_ 1982; 6: 335–343. Article  CAS  PubMed  Google Scholar  * Nurnberger Jr. JI, Berrettini WH,


Simmons-Alling S, Guroff JJ, Gershon ES . Intravenous GABA administration is anxiogenic in man. _Psychiatry Res_ 1986; 19: 113–117. Article  PubMed  Google Scholar  * Devanand DP, Shapira B,


Petty F, Kramer G, Fitzsimons L, Lerer B _et al_. Effects of electroconvulsive therapy on plasma GABA. _Convuls Ther_ 1995; 11: 3–13. CAS  PubMed  Google Scholar  * Petty F, Rush AJ, Davis


JM, Calabrese JR, Kimmel SE, Kramer GL _et al_. Plasma GABA predicts acute response to divalproex in mania. _Biol Psychiatry_ 1996; 39: 278–284. Article  CAS  PubMed  Google Scholar  * Rode


A, Bidzinski A, Puzynski S . GABA levels in the plasma of patients with endogenous depression and during the treatment with thymoleptics. _Psychiatr Pol_ 1991; 25: 4–7. CAS  PubMed  Google


Scholar  * Petty F, Fulton M, Moeller FG, Kramer G, Wilson L, Fraser K _et al_. Plasma gamma-aminobutyric acid (GABA) is low in alcoholics. _Psychopharmacol Bull_ 1993; 29: 277–281. CAS 


PubMed  Google Scholar  * Halbreich U, Petty F, Yonkers K, Kramer GL, Rush AJ, Bibi KW . Low plasma gamma-aminobutyric acid levels during the late luteal phase of women with premenstrual


dysphoric disorder. _Am J Psychiatry_ 1996; 153: 718–720. Article  CAS  PubMed  Google Scholar  * Yonkers KA . The association between premenstrual dysphoric disorder and other mood


disorders. _J Clin Psychiatry_ 1997; 58 (Suppl 15): 19–25. PubMed  Google Scholar  * Roy A, DeJong J, Lamparski D, George T, Linnoila M . Depression among alcoholics. Relationship to


clinical and cerebrospinal fluid variables. _Arch Gen Psychiatry_ 1991; 48: 428–432. Article  CAS  PubMed  Google Scholar  * Goddard AW, Narayan M, Woods SW, Germine M, Kramer GL, Davis LL


_et al_. Plasma levels of gamma-aminobutyric acid and panic disorder. _Psychiatry Res_ 1996; 63: 223–225. Article  CAS  PubMed  Google Scholar  * Gerner RH, Cohen DJ, Fairbanks L, Anderson


GM, Young JG, Scheinin M _et al_. CSF neurochemistry of women with anorexia nervosa and normal women. _Am J Psychiatry_ 1984; 141: 1441–1444. Article  CAS  PubMed  Google Scholar  * Bjork


JM, Moeller FG, Kramer GL, Kram M, Suris A, Rush AJ _et al_. Plasma GABA levels correlate with aggressiveness in relatives of patients with unipolar depressive disorder. _Psychiatry Res_


2001; 101: 131–136. Article  CAS  PubMed  Google Scholar  * Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE . Neurotransmitter enzyme abnormalities in senile dementia. Choline


acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. _J Neurol Sci_ 1977; 34: 247–265. Article  CAS  PubMed  Google Scholar  * Cheetham SC, Crompton MR,


Katona CLE, Horton RW . Brain 5-HT2 receptor binding sites in depressed suicide victims. _Brain Res_ 1988; 443: 272–280. Article  CAS  PubMed  Google Scholar  * Cross JA, Cheetham SC,


Crompton MR, Katona CL, Horton RW . Brain GABAB binding sites in depressed suicide victims. _Psychiatry Res_ 1988; 26: 119–129. Article  CAS  PubMed  Google Scholar  * Arranz B, Cowburn R,


Eriksson A, Vestling M, Marcusson J . Gamma-aminobutyric acid-B (GABAB) binding sites in postmortem suicide brains. _Neuropsychobiology_ 1992; 26: 33–36. Article  CAS  PubMed  Google Scholar


  * Stocks GM, Cheetham SC, Crompton MR, Katona CL, Horton RW . Benzodiazepine binding sites in amygdala and hippocampus of depressed suicide victims. _J Affect Disord_ 1990; 18: 11–15.


Article  CAS  PubMed  Google Scholar  * Sundman I, Allard P, Eriksson A, Marcusson J . GABA uptake sites in frontal cortex from suicide victims and in aging. _Neuropsychobiology_ 1997; 35:


11–15. Article  CAS  PubMed  Google Scholar  * Korpi ER, Kleinman JE, Wyatt RJ . GABA concentrations in forebrain areas of suicide victims. _Biol Psychiatry_ 1988; 23: 109–114. Article  CAS


  PubMed  Google Scholar  * Benes FM, Todtenkopf MS, Logiotatos P, Williams M . Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and


bipolar brain. _J Chem Neuroanat_ 2000; 20: 259–269. Article  CAS  PubMed  Google Scholar  * Guidotti A, Auta J, Davis JM, DiGiorgi Gerevini V, Dwivedi Y, Grayson DR _et al_. Decrease in


reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. _Arch Gen Psychiatry_ 2000; 57: 1061–1069. Article  CAS  PubMed  Google Scholar  * Cotter


D, Landau S, Beasley C, Stevenson R, Chana G, MacMillan L _et al_. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior


cingulate cortex in major depressive, disorder, bipolar disorder and schizophrenia. _Biol Psychiatry_ 2002; 51: 377–386. Article  CAS  PubMed  Google Scholar  * Heckers S, Stone D, Walsh J,


Shick J, Koul P, Benes F . Differential expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. _Arch Gen Psychiatry_ 2002; 59: 521–529.


Article  CAS  PubMed  Google Scholar  * Honig A, Bartlett JR, Bouras N, Bridges PK . Amino acid levels in depression: a preliminary investigation. _J Psychiatric Res_ 1988; 22: 159–164.


Article  CAS  Google Scholar  * Northoff G, Steinke R, Czcervenka C, Krause R, Ulrich S, Danos P _et al_. Decreased density of GABA-A receptors in the left sensorimotor cortex in akinetic


catatonia: investigation of _in vivo_ benzodiazepine receptor binding. _J Neurol Neurosurg Psychiatry_ 1999; 67: 445–450. Article  CAS  PubMed  PubMed Central  Google Scholar  * Sanacora G,


Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OA _et al_. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. _Arch


Gen Psychiatry_ 1999; 56: 1043–1047. Article  CAS  PubMed  Google Scholar  * Sanacora G, Mason GF, Rothman DL, Krystal JH . Increased occipital cortex GABA concentrations in depressed


patients after therapy with selective serotonin reuptake inhibitors. _Am J Psychiatry_ 2002; 159: 663–665. Article  PubMed  Google Scholar  * Epperson CN, Haga K, Mason GF, Sellers E,


Gueorguieva R, Zhang W _et al_. Cortical _γ_-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder. _Arch Gen Psychiatry_ 2002;


59: 851–858. Article  CAS  PubMed  Google Scholar  * Soares JC, Mann JJ . The anatomy of mood disorders−review of structural neuroimaging studies. _Biol Psychiatry_ 1997; 41: 86–106. Article


  CAS  PubMed  Google Scholar  * Brambilla P, Barale F, Caverzasi E, Soares JC . Anatomical MRI findings in mood and anxiety disorders. _Epidemiol Psychiatr Soc_ 2002; 11: 88–99. Article 


Google Scholar  * Gamse R, Vaccaro DE, Gamse G, DiPace M, Fox TO, Leeman SE . Release of immunoreactive somatostatin from hypothalamic cells in culture: inhibition by gamma-aminobutyric


acid. _Proc Natl Acad Sci USA_ 1980; 77: 5552–5556. Article  CAS  PubMed  PubMed Central  Google Scholar  * Racagni G, Apud JA, Civati C, Cocchi D, Casanueva F, Locatelli V _et al_.


Neurochemical aspects of GABA and glutamate in the hypothalamo-pituitary system. _Adv Biochem Psychopharmacol_ 1981; 26: 261–271. CAS  PubMed  Google Scholar  * Koulu M, Lammintausta R,


Dahlstrom S . Stimulatory effect of acute baclofen administration on human growth hormone secretion. _J Clin Endocrinol Metab_ 1979; 48: 1038–1040. Article  CAS  PubMed  Google Scholar  *


Shiah I-S, Yatham LN, Lam R, Tam EM, Zis PA . Growth hormone response to baclofen in patients with mania: a pilot study. _Psychopharmacology_ 1999; 147: 280–284. Article  CAS  PubMed  Google


Scholar  * Shiah I-S, Robertson HA, Lam R, Yatham LN, Tam EM, Zis PA . Growth hormone response to baclofen in patients with seasonal affective disorder: effects of light therapy.


_Psychoneuroendocrinology_ 1999; 24: 143–153. Article  CAS  PubMed  Google Scholar  * Marchesi C, Chiodera P, De Ferri A, De Risio C, Dasso L, Menozzi P _et al_. Reduction of GH response to


the GABA-B agonist baclofen in patients with major depression. _Psychoneuroendocrinology_ 1991; 16: 475–479. Article  CAS  PubMed  Google Scholar  * O'Flynn K, Dinan TG .


Baclofen-induced growth hormone release in major depression: relationship to dexamethasone suppression test result. _Am J Psychiatry_ 1993; 150: 1728–1730. Article  CAS  PubMed  Google


Scholar  * Monteleone P, Maj M, Iovino M, Steardo L . GABA, depression and the mechanism of action of antidepressant drugs: a neuroendocrine approach. _J Affect Disord_ 1990; 20: 1–5.


Article  CAS  PubMed  Google Scholar  * Davis LL, Trivedi M, Choate A, Kramer GL, Petty F . Growth hormone response to the GABAB agonist baclofen in major depressive disorder.


_Psychoneuroendocrinology_ 1997; 22: 129–140. Article  CAS  PubMed  Google Scholar  * Heninger C, Saito N, Tallman JF, Garrett KM, Vitek MP, Duman RS _et al_. Effects of continuous diazepam


administration on GABAA subunit mRNA in rat brain. _J Mol Neurosci_ 1990; 2: 101–107. Article  CAS  PubMed  Google Scholar  * Kang I, Miller LG . Decreased GABAA receptor subunit mRNA


concentrations following chronic lorazepam administration. _Br J Pharmacol_ 1991; 103: 1285–1287. Article  CAS  PubMed  PubMed Central  Google Scholar  * Primus RJ, Gallager DW . GABAA


receptor subunit mRNA levels are differentially influenced by chronic FG 7142 and diazepam exposure. _Eur J Pharmacol_ 1992; 226: 21–28. Article  CAS  PubMed  Google Scholar  * Holt RA,


Bateson AN, Martin IL . Chronic treatment with diazepam or abecarnil differently affects the expression of GABAA receptor subunit mRNAs in the rat cortex. _Neuropharmacology_ 1996; 35:


1457–1463. Article  CAS  PubMed  Google Scholar  * Tanay VA, Glencorse TA, Greenshaw AJ, Baker GB, Bateson AN . Chronic administration of antipanic drugs alters rat brainstem GABAA receptor


subunit mRNA levels. _Neuropharmacology_ 1996; 35: 1475–1482. Article  CAS  PubMed  Google Scholar  * Wang J-F, Sun X, Chen B, Young LT . Lamotrigine increases gene expression of GABAA


receptor _β_3 subunit in primary cultured rat hippocampus cells. _Neuropsychopharmacology_ 2002; 26: 415–421. Article  CAS  PubMed  Google Scholar  * Lloyd KG, Thuret F, Pilc A .


Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. _J


Pharmacol Exp Ther_ 1985; 235: 191–199. CAS  PubMed  Google Scholar  * Motohashi N, Ikawa K, Kariya T . GABAB receptors are up-regulated by chronic treatment with lithium or carbamazepine.


GABA hypothesis of affective disorders? _Eur J Pharmacol_ 1989; 166: 95–99. Article  CAS  PubMed  Google Scholar  * Motohashi N . GABA receptor alterations after chronic lithium


administration. Comparison with carbamazepine and sodium valproate. _Prog Neuropsychopharmacol Biol Psychiatry_ 1992; 16: 571–579. Article  CAS  PubMed  Google Scholar  * Mendlewicz J .


Population and family studies in depression and mania. _Br J Psychiatry_ 1988; 1539Suppl 3): 16–25. Article  Google Scholar  * Oruc L, Verheyen GR, Furac I, Ivezic S, Jakovljevic M,


Raeymaekers P _et al_. Positive association between the GABRA5 gene and unipolar recurrent major depression. _Neuropsychobiology_ 1997; 36: 62–64. Article  CAS  PubMed  Google Scholar  *


Papadimitriou GN, Dikeos DG, Karadima G, Avramopoulos D, Daskalopoulou EG, Vassilopoulos D _et al_. Association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) and bipolar


affective disorder. _Am J Med Genet_ 1998; 81: 73–80. Article  CAS  PubMed  Google Scholar  * Massat I, Souery D, Del-Favero J, Van Gestel S, Van Broeckhoven C, Mendlewicz J . GABRA1


receptor polymorphism and unipolar affective disorder: evidence for a protective gene in a European multicenter association study of affective disorders. _Eur Neuropsychopharmacol_ 2001;


11(Suppl 1): 19. Google Scholar  * Massat I, Souery D, Del-Favero J, Oruc L, Noethen MM, Blackwood D _et al_. Excess of allel1 for 3 subunit GABA receptor gene (GABRA3) in bipolar patients:


a multicentric association study. _Mol Psychiatry_ 2002; 7: 201–207. Article  CAS  PubMed  Google Scholar  * De Bruyn A, Sourey D, Mendelbaum K, Mendlewicz J, Van Broeckhoven C . A linkage


study between bipolar disorder and genes involved in dopaminergic and GABAergic neurotransmission. _Psychiatr Genet_ 1996; 6: 67–73. Article  CAS  PubMed  Google Scholar  * Ewald H, Mors O,


Flint T, Kruse TA . Linkage analysis between manic-depressive illness and the region on chromosome 15q involved in Prader-Willi syndrome, including two GABA A receptor subtype genes. _Human


Hered_ 1994; 44: 287–294. Article  CAS  Google Scholar  * Walsh C, Hicks A, Sham P . GABAA receptor subunit genes as candidate genes for bipolar affective disorder: an association analysis.


_Psychiatr Genet_ 1992; 2: 239–247. Article  Google Scholar  * Puertollano R, Visedo G, Saiz-Ruiz J, Llinares C, Fernandez-Piqueras J . Lack of association between manic-depressive illness


and a highly polymorphic marker from GABRA3 gene. _Am J Med Genet_ 1995; 60: 434–435. Article  CAS  PubMed  Google Scholar  * Duffy A, Turecki G, Grof P, Cavazzoni P, Grof E, Joober R _et


al_. Association and linkage studies of candidate genes involved in GABAergic neurotransmission in lithium-responsive bipolar disorder. _J Psychiatry Neurosci_ 2000; 25: 353–358. CAS  PubMed


  PubMed Central  Google Scholar  * Coon H, Hicks AA, Bailey ME, Hoff M, Holik J, Harvey RJ _et al_. Analysis of GABAA receptor subunit genes in multiplex pedigrees with manic depression.


_Psychiatr Genet_ 1994; 4: 185–191. Article  CAS  PubMed  Google Scholar  * Papadimitriou GN, Dikeos DG, Karadima G, Avramopoulos D, Daskalopoulou EG, Stefanis CN . GABA-A receptor β3 and α5


subunit gene cluster on chromosome 15q11−q13 and bipolar disorder: a genetic association study. _Am J Med Genetics_ 2001; 105: 317–320. Article  CAS  Google Scholar  * Oruc L, Furac I,


Croux C, Jakovljevic M, Kracun I, Folnegovic V _et al_. Association study between bipolar disorder and candidate genes involved in dopamine−serotonin metabolism and GABAergic


neurotransmission: a preliminary report. _Psychiatr Genet_ 1996; 6: 213–217. Article  CAS  PubMed  Google Scholar  * Puertollano R, Visedo G, Zapata C, Fernandez-Piqueras J . A study of


genetic association between manic-depressive illness and a highly polymorphic marker from the GABR_β_-1 gene. _Am J Med Gen_ 1997; 74: 342–344. Article  CAS  Google Scholar  * Bernasconi R .


The GABA hypothesis of affective illness: influence of clinically effective antimanic drugs on GABA turnover. In: Emrich HD, Aldenhoff HD, Lux HD (eds). _Excerpta Medica_. Amsterdam, 1982,


pp. 183–191. Google Scholar  * Loscher W . Valproate enhances GABA turnover in the substantia nigra. _Brain Res_ 1989; 501: 198–203. Article  CAS  PubMed  Google Scholar  * Cunningham MO,


Jones RS . The anticonvulsant lamotrigine decreases spontaneous gluatamate release but increases spontaneous GABA release in the rat enthorinal cortex _in vitro_. _Neuropharmacology_ 2000;


39: 2139–2146. Article  CAS  PubMed  Google Scholar  * Hassel B, Tauboll E, Gjerstad L . Chronic lamotrigine treatment increases rat hippocampal GABA shunt activity and elevates cerebral


taurine levels. _Epilepsy Res_ 2001; 43: 153–163. Article  CAS  PubMed  Google Scholar  * Otero Losada ME, Rubio MC . Acute and chronic effects of lithium chloride on GABA-ergic function in


the rat corpus striatum and frontal cerebral cortex. _Naunyn Schmiedebergs Arch Pharmacol_ 1986; 332: 169–172. Article  CAS  PubMed  Google Scholar  * Ahluwalia P, Grewaal DS, Singhal RL .


Brain GABAergic and dopaminergic systems following lithium treatment and withdrawal. _Prog Neuropsychopharmacol_ 1981; 5: 527–530. Article  CAS  PubMed  Google Scholar  * Gottesfeld Z .


Effect of lithium and other alkali metals on brain chemistry and behavior. I. Glutamic acid and GABA in brain regions. _Psychopharmacologia_ 1976; 45: 239–242. Article  CAS  PubMed  Google


Scholar  * Weiss S, Kemp DE, Bauce L, Tse FW . Kainate receptors coupled to the evoked release of [3H]-gamma-aminobutyric acid from striatal neurons in primary culture: potentiation by


lithium ions. _Mol Pharmacol_ 1990; 38: 229–236. CAS  PubMed  Google Scholar  * Maggi A, Enna SJ . Regional alterations in rat brain neurotransmitter systems following chronic lithium


treatment. _J Neurochem_ 1980; 34: 888–892. Article  CAS  PubMed  Google Scholar  * Vargas C, Tannhauser M, Barros HM . Dissimilar effects of lithium and valproic acid on GABA and glutamine


concentrations in rat cerebrospinal fluid. _Gen Pharmacol_ 1998; 30: 601–604. Article  CAS  PubMed  Google Scholar  * Iadarola MJ, Raines A, Gale K . Differential effects of


_n_-dipropylacetate and amino-oxyacetic acid on gamma-aminobutyric acid levels in discrete areas of rat brain. _J Neurochem_ 1979; 33: 1119–1123. Article  CAS  PubMed  Google Scholar  *


Loscher W, Vetter M . _In vivo_ effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat. Correlation to


pharmacological activities. _Biochem Pharmacol_ 1985; 34: 1747–1756. Article  CAS  PubMed  Google Scholar  * Loscher W, Horstermann D . Differential effects of vigabatrin, gamma-acetylenic


GABA, aminooxyacetic acid, and valproate on levels of various amino acids in rat brain regions and plasma. _Naunyn Schmiedebergs Arch Pharmacol_ 1994; 349: 270–278. Article  CAS  PubMed 


Google Scholar  * Gram L, Larsson OM, Johnsen AH, Schousboe A . Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons.


_Epilepsy Res_ 1988; 2: 87–95. Article  CAS  PubMed  Google Scholar  * Phillips NI, Fowler LJ . The effects of sodium valproate on gamma-aminobutyrate metabolism and behaviour in naive and


ethanolamine-O-sulphate pretreated rats and mice. _Biochem Pharmacol_ 1982; 31: 2257–2261. Article  CAS  PubMed  Google Scholar  * Macdonald RL, Bergey GK . Valproic acid augments


GABA-mediated postsynaptic inhibition in cultured mammalian neurons. _Brain Res_ 1979; 170: 558–562. Article  CAS  PubMed  Google Scholar  * Loscher W . Effect of inhibitors of GABA


transaminase on the synthesis, binding, uptake, and metabolism of GABA. _J Neurochem_ 1980; 34: 1603–1608. Article  CAS  PubMed  Google Scholar  * Larsson OM, Gram L, Schousboe I, Schousboe


A . Differential effect of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurones and astrocytes. _Neuropharmacology_ 1986; 25: 617–625. Article  CAS  PubMed  Google


Scholar  * Loscher W, Schmidt D . Increase of human plasma GABA by sodium valproate. _Epilepsia_ 1980; 21: 611–615. Article  CAS  PubMed  Google Scholar  * Loscher W, Schmidt D . Plasma GABA


levels in neurological patients under treatment with valproic acid. _Life Sci_ 1981; 28: 283–288. Article  CAS  PubMed  Google Scholar  * Shiah IS, Yatham LN, Baker GB . Divalproex sodium


increases plasma GABA levels in healthy volunteers. _Int Clin Psychopharmacol_ 2000; 15: 221–225. Article  CAS  PubMed  Google Scholar  * Post RM, Ballenger JC, Hare TA, Bunney Jr WE . Lack


of effect of carbamazepine on gamma-aminobutyric acid in cerebrospinal fluid. _Neurology_ 1980; 30: 1008–1011. Article  CAS  PubMed  Google Scholar  * Prevett MC, Lammertsma AA, Brooks DJ,


Bartenstein PA, Patsalos PN, Fish DR _et al_. Benzodiazepine-GABAA receptors in idiopathic generalized epilepsy measured with [11C]flumazenil and positron emission tomography. _Epilepsia_


1995; 36: 113–121. Article  CAS  PubMed  Google Scholar  * Petroff OA, Rothman DL, Behar KL, Lamoureux D, Mattson RH . The effect of gabapentin on brain gamma-aminobutyric acid in patients


with epilepsy. _Ann Neurol_ 1996; 39: 95–99. Article  CAS  PubMed  Google Scholar  * Kuzniecky R, Hetherington H, Ho S, Pan J, Martin R, Gilliam F _et al_. Topiramate increases cerebral GABA


in healthy humans. _Neurology_ 1998; 51: 627–629. Article  CAS  PubMed  Google Scholar  * Verhoeff NP, Petroff OA, Hyder F, Zoghbi SS, Fujita M, Rajeevan N _et al_. Effects of vigabatrin on


the GABAergic system as determined by [123I]iomazenil SPECT and GABA MRS. _Epilepsia_ 1999; 40: 1433–1438. Article  CAS  PubMed  Google Scholar  * Brambilla P, Barale F, Soares JC .


Perspectives on the use of anticonvulsants in the treatment of bipolar disorder. _Int J Neuropsychopharmacol_ 2001; 4: 421–446. Article  CAS  PubMed  Google Scholar  * Shiah IS, Yatham LN,


Lam RW, Zis AP . Divalproex sodium attenuates growth hormone response to baclofen in healthy human males. _Neuropsychopharmacology_ 1998; 18: 370–376. Article  CAS  PubMed  Google Scholar  *


Serretti A, Lilli R, Lorenzi C, Franchini L, Di Bella D, Catalano M _et al_. Dopamine receptor D2 and D4 genes, GABA(A) alpha-1 subunit genes and response to lithium prophylaxis in mood


disorders. _Psychiatry Res_ 1999; 87: 7–19. Article  CAS  PubMed  Google Scholar  * Suranyi-Cadotte BE, Dam TV, Quirion R . Antidepressant-−anxiolytic interaction: decreased density of


benzodiazepine receptors in rat brain following chronic administration of antidepressants. _Eur J Pharmacol_ 1984; 106: 673–675. Article  CAS  PubMed  Google Scholar  * Barbaccia ML, Ravizza


L, Costa E . Maprotiline. An antidepressant with an unusual pharmacological profile. _J Pharmacol Exp Ther_ 1986; 236: 307–312. CAS  PubMed  Google Scholar  * Bouthillier A, de Montigny C .


Long-term antidepressant treatment reduces neuronal responsiveness to flurazepam: an electrophysiological study in the rat. _Neurosci Lett_ 1987; 73: 271–275. Article  CAS  PubMed  Google


Scholar  * Pilc A, Lloyd KG . Chronic antidepressants and GABA receptors: a GABA hypothesis of antidepressant drug action. _Life Sci_ 1984; 35: 2149–2254. Article  CAS  PubMed  Google


Scholar  * Kimber JR,, Cross JA, Horton RW . Benzodiazepine and GABAA receptors in rat brain following chronic antidepressant drug administration. _Biochem Pharmacol_ 1987; 36: 4173–4175.


Article  CAS  PubMed  Google Scholar  * McKenna KF, McManus DJ, Baker GB, Coutts RT . Chronic administration of the antidepressant phenelzine and its _N_-acetyl analogue: effects on


GABAergic function. _J Neural Transm Suppl_ 1994; 41: 115–122. CAS  PubMed  Google Scholar  * Todd KG, McManus DJ, Baker GB . Chronic administration of the antidepressants phenelzine,


desipramine, clomipramine, or maprotiline decreases binding to 5-hydroxytryptamine2A receptors without affecting benzodiazepine binding sites in rat brain. _Cell Mol Neurobiol_ 1995; 15:


361–370. Article  CAS  PubMed  Google Scholar  * Suzdak PD, Gianutsos G . Effect of chronic imipramine or baclofen on GABA-B binding and cyclic AMP production in cerebral cortex. _Eur J


Pharmacol_ 1986; 131: 129–133. Article  CAS  PubMed  Google Scholar  * Pratt GD, Bowery NG . Repeated administration of desipramine and a GABAB receptor antagonist, CGP 36742, discretely


up-regulates GABAB receptor binding sites in rat frontal cortex. _Br J Pharmacol_ 1993; 110: 724–735. Article  CAS  PubMed  PubMed Central  Google Scholar  * Szekely AM, Barbaccia ML, Costa


E . Effect of a protracted antidepressant treatment on signal transduction and [3H](-)-baclofen binding at GABAB receptors. _J Pharmacol Exp Ther_ 1987; 243: 155–159. CAS  PubMed  Google


Scholar  * Cross JA, Horton RW . Are increases in GABAB receptors consistent findings following chronic antidepressant administration? _Eur J Pharmacol_ 1987; 141: 159–162. Article  CAS 


PubMed  Google Scholar  * McManus DJ, Greenshaw AJ . Differential effects of antidepressants on GABAB and beta-adrenergic receptors in rat cerebral cortex. _Biochem Pharmacol_ 1991; 42:


1525–1528. Article  CAS  PubMed  Google Scholar  * Engelbrecht AH, Russell VA, Taljaard JJ . Lack of effect of bilateral locus coeruleus lesion and antidepressant treatment on


gamma-aminobutyric acidB receptors in the rat frontal cortex. _Neurochem Res_ 1994; 19: 1119–1123. Article  CAS  PubMed  Google Scholar  * Gray JA, Green AR . Increased GABAB receptor


function in mouse frontal cortex after repeated administration of antidepressant drugs or electroconvulsive shocks. _Br J Pharmacol_ 1987; 92: 357–362. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Gray JA, Green AR . GABAB-receptor mediated inhibition of potassium-evoked release of endogenous 5-hydroxytryptamine from mouse frontal cortex. _Br J Pharmacol_ 1987; 91:


517–522. Article  CAS  PubMed  PubMed Central  Google Scholar  * Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J _et al_. (-)Baclofen decreases neurotransmitter release in the


mammalian CNS by an action at a novel GABA receptor. _Nature_ 1980; 283: 92–94. Article  CAS  PubMed  Google Scholar  * Borsini F, Giuliani S, Meli A . Functional evidence for altered


activity of GABAergic receptors following chronic desipramine treatment in rats. _J Pharm Pharmacol_ 1986; 38: 934–935. Article  CAS  PubMed  Google Scholar  * McManus DJ, Greenshaw AJ .


Differential effects of chronic antidepressants in behavioural tests of beta-adrenergic and GABAB receptor function. _Psychopharmacology_ 1991; 103: 204–208. Article  CAS  PubMed  Google


Scholar  * Baker GB, Wong JT, Yeung JM, Coutts RT . Effects of the antidepressant phenelzine on brain levels of gamma-aminobutyric acid (GABA). _J Affect Disord_ 1991; 21: 207–211. Article 


CAS  PubMed  Google Scholar  * McManus DJ, Baker GB, Martin IL, Greenshaw AJ, McKenna KF . Effects of the antidepressant/antipanic drug phenelzine on GABA concentrations and


GABA-transaminase activity in rat brain. _Biochem Pharmacol_ 1992; 43: 2486–2489. Article  CAS  PubMed  Google Scholar  * Paslawski TM, Sloley BD, Baker GB . Effects of the MAO inhibitor


phenelzine on glutamine and GABA concentrations in rat brain. _Prog Brain Res_ 1995; 106: 181–186. Article  CAS  PubMed  Google Scholar  * Parent M, Habib MK, Baker GB . Time-dependent


changes in brain monoamine oxidase activity and in brain levels of monoamines and amino acids following acute administration of the antidepressant/antipanic drug phenelzine. _Biochem


Pharmacol_ 2000; 59: 1253–1263. Article  CAS  PubMed  Google Scholar  * Lai CT, Tanay VA, Charrois GJ, Baker GB, Bateson AN . Effects of phenelzine and imipramine on the steady-state levels


of mRNAs that encode glutamic acid decarboxylase (GAD67 and GAD65), the GABA transporter GAT-1 and GABA transaminase in rat cortex. _Naunyn Schmiedebergs Arch Pharmacol_ 1998; 357: 32–38.


Article  CAS  PubMed  Google Scholar  * Korf J, Venema K . Desmethylimipramine enhances the release of endogenous GABA and other neurotransmitter amino acids from the rat thalamus. _J


Neurochem_ 1983; 40: 946–950. Article  CAS  PubMed  Google Scholar  * Giardino L, Zanni M, Bettelli C, Savina MA, Calza L . Regulation of glutamic acid decarboxylase mRNA expression in rat


brain after sertraline treatment. _Eur J Pharmacol_ 1996; 312: 183–187. Article  CAS  PubMed  Google Scholar  * Herman JP, Renda A, Bodie B . Norepinephrine–gamma-aminobutyric acid (GABA)


interaction in limbic stress circuits: effects of reboxetine on GABAergic neurons. _Biol Psychiatry_ 2003; 53: 166–174. Article  CAS  PubMed  Google Scholar  * Linde K, Ramirez G, Mulrow CD,


Pauls A, Weidenhammer W, Melchart D . St John's Wort for depression—an overview and meta-analysis of randomised clinical trials. _BMJ_ 1996; 313: 253–258. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Wonnemann M, Singer A, Muller WE . Inhibition of synaptosomal uptake of 3H-L-glutamate and 3H-GABA by hyperforin, a major constituent of St. John's Wort: the


role of amiloride sensitive sodium conductive pathways. _Neuropsychopharmacology_ 2000; 23: 188–197. Article  CAS  PubMed  Google Scholar  * Griffin LD, Mellon SH . Selective serotonin


reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. _Proc Natl Acad Sci USA_. 1999; 96: 13512–13517. Article  CAS  PubMed  PubMed Central  Google Scholar  * Khisti RT,


Chopde CT . Serotonergic agents modulate antidepressant-like effect on the neurosteroid 3 alpha-hydroxy-5 alpha-pregnan-20-one in mice. _Brain Res_ 2000; 865: 291–300. Article  CAS  PubMed


  Google Scholar  * Khisti RT, Chopde CT, Jain SP . Antidepressant-like effect of the neurosteroid 3 alpha-hydroxy-5 alpha-pregnan-20-one in mice forced swim test. _Pharmacol Biochem Behav_


2000; 67: 137–143. Article  CAS  PubMed  Google Scholar  * Romeo E, Strohle A, Spalletta G, di Michele F, Hermann B, Holsboer F _et al_. Effects of antidepressant treatment on neuroactive


steroids in major depression. _Am J Psychiatry_ 1998; 155: 910–913. Article  CAS  PubMed  Google Scholar  * Strohle A, Romeo E, Hermann B, Pasini A, Spalletta G, di Michele F _et al_.


Concentrations of 3 alpha-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. _Biol Psychiatry_ 1999; 45: 274–277.


Article  CAS  PubMed  Google Scholar  * Strohle A, Pasini A, Romeo E, Hermann B, Spalletta G, di Michele F _et al_. Fluoxetine decreases concentrations of 3 alpha, 5


alpha-tetrahydrodeoxy-corticosterone (THDOC) in major depression. _J Psychiatr Res_ 2000; 34: 183–186. Article  CAS  PubMed  Google Scholar  * Monteleone P, Steardo L, Tanzillo C, Maj M .


Chronic antidepressant drug treatment does not affect GH response to baclofen in depressed subjects. _J Neural Transm Gen Sect_ 1990; 82: 147–152. Article  CAS  PubMed  Google Scholar  *


Lavoie AM, Twyman RE . Direct evidence for diazepam modulation of GABAA receptor microscopic affinity. _Neuropharmacology_ 1996; 35: 1383–1392. Article  CAS  PubMed  Google Scholar  * Obata


T, Morelli M, Concas A, Serra M, Yamamura HI . Modulation of GABA-stimulated chloride influx into membrane vesicles from rat cerebral cortex by benzodiazepines and nonbenzodiazepines. _Adv


Biochem Psychopharmacol_ 1988; 45: 175–187. CAS  PubMed  Google Scholar  * Loscher W, Schmidt D . Diazepam increases gamma-aminobutyric acid in human cerebrospinal fluid. _J Neurochem_ 1987;


49: 152–157. Article  CAS  PubMed  Google Scholar  * Roy-Byrne PP, Cowley DS, Hommer D, Greenblatt DJ, Kramer GL, Petty F . Effect of acute and chronic benzodiazepines on plasma GABA in


anxious patients and controls. _Psychopharmacology_ 1992; 109: 153–156. Article  CAS  PubMed  Google Scholar  * de Wit H, Metz J, Wagner N, Cooper M . Effects of diazepam on cerebral


metabolism and mood in normal volunteers. _Neuropsychopharmacology_. 1991; 5: 33–41. CAS  PubMed  Google Scholar  * Matthew E, Andreason P, Pettigrew K, Carson RE, Herscovitch P, Cohen R _et


al_. Benzodiazepine receptors mediate regional blood flow changes in the living human brain. _Proc Natl Acad Sci USA_ 1995; 92: 2775–2779. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Fujita M, Woods SW, Verhoeff NP, Abi-Dargham A, Baldwin RM, Zoghbi SS _et al_. Changes of benzodiazepine receptors during chronic benzodiazepine administration in humans. _Eur J


Pharmacol_ 1999; 368: 161–172. Article  CAS  PubMed  Google Scholar  * Wang GJ, Volkow ND, Overall J, Hitzemann RJ, Pappas N, Pascani K _et al_. Reproducibility of regional brain metabolic


responses to lorazepam. _J Nucl Med_ 1996; 37: 1609–1613. CAS  PubMed  Google Scholar  * Brambilla P, Soares JC . The pharmacological treatment of acute mania. In: Dunner DL, Rosenbaum J


(eds). _Psychiatric Clinics of North America: Annual of Drug Therapy_. W.B. Saunders Company: Philadelphia, PA, 2001, Vol. 8, pp. 155–180. Google Scholar  * Kishimoto A, Kamata K, Sugihara


T, Ishiguro S, Hazama H, Mizukawa R _et al_. Treatment of depression with clonazepam. _Acta Psychiatr Scand_ 1988; 77: 81–86. Article  CAS  PubMed  Google Scholar  * Rush AJ, Schlesser MA,


Erman M, Fairchild C . Alprazolam in bipolar-I depressions. _Pharmacotherapy_ 1984; 4: 40–42. Article  CAS  PubMed  Google Scholar  * Dunner D, Myers J, Khan A, Avery D, Ishiki D, Pyke R .


Adinazolam-a new antidepressant: findings of a placebo-controlled, double-blind study in outpatients with major depression. _J Clin Psychopharmacol_ 1987; 7: 170–172. Article  CAS  PubMed 


Google Scholar  * Jonas JM, Cohon MS . A comparison of the safety and efficacy of alprazolam versus other agents in the treatment of anxiety, panic, and depression: a review of the


literature. _J Clin Psychiatry_ 1993; 54 (Supp 2): 25–45. PubMed  Google Scholar  * Farnbach-Pralong D, Bradbury R, Copolov D, Dean B . Clozapine and olanzapine treatment decreases rat


cortical and limbic GABA(A) receptors. _Eur J Pharmacol_ 1998; 349: R7–R8. Article  CAS  PubMed  Google Scholar  * Bourdelais AJ, Deutch AY . The effects of haloperidol and clozapine on


extracellular GABA levels in the prefrontal cortex of the rat: an _in vivo_ microdialysis study. _Cerebr Cort_ 1994; 4: 69–77. Article  CAS  Google Scholar  * See RF, Berglind WJ, Krentz L,


Meshul CK . Convergent evidence from microdialysis and presynaptic immunolabeling for the regulation of gamma-aminobutyric acid release in the globus pallidus following acute clozapine or


haloperidol administration in rats. _J Neurochem_ 2002; 82: 172–180. Article  CAS  PubMed  Google Scholar  * Brambilla, Barale F, Soares JC . Atypical antipsychotics and mood stabilization


in bipolar disorder. _Psychopharmacology_ 2003; 166: 315–332. Article  CAS  PubMed  Google Scholar  * Fink M . Convulsive therapy: a review of the first 55 years. _J Affect Disord_ 2001; 63:


1–15. Article  CAS  PubMed  Google Scholar  * Wielosz M, Stelmasiak M, Ossowska G, Kleinrok Z . Effects of electroconvulsive shock on central GABA-ergic mechanisms. _Pol J Pharmacol Pharm_


1985; 37: 113–122. CAS  PubMed  Google Scholar  * Green AR, Metz A, Minchin MC, Vincent ND . Inhibition of the rate of GABA synthesis in regions of rat brain following a convulsion. _Br J


Pharmacol_ 1987; 92: 5–11. Article  CAS  PubMed  PubMed Central  Google Scholar  * Bowdler JM, Green AR, Minchin MC, Nutt DJ . Regional GABA concentration and [3H]-diazepam binding in rat


brain following repeated electroconvulsive shock. _J Neural Transm_ 1983; 56: 3–12. Article  CAS  PubMed  Google Scholar  * Green AR, Vincent ND . The effect of repeated electroconvulsive


shock on GABA synthesis and release in regions of rat brain. _Br J Pharmacol_ 1987; 92: 19–24. Article  CAS  PubMed  PubMed Central  Google Scholar  * Chabannes J, Baro P, Lambert P, Decade


P, Musch B . Antidepressant activity of fengabide (SL 79229): results from an open pilot study. In: Bartholini G, Lloyd K, Morselli P (eds). _GABA and Mood Disorders: Experimental and


Clinical Research_. Raven Press: New York, 1986. Google Scholar  * Mendlewicz J, Linkowski P, Coupez-Lopinot R . Treatment of depressed patients with fengabide (SL 79229): preliminary


results. In: Bartholini G, Lloyd K, Morselli P (eds). _GABA and Mood Disorders: Experimental and Clinical Research_. Raven Press: New York, 1986. Google Scholar  * Muscettola G, Casiello M,


Giannini C, Bossi L . Pilot study of progabide in depression. In: Bartholini G, Lloyd K, Morselli P (eds). _GABA and Mood Disorders: Experimental and Clinical Research_. Raven Press: New


York, 1986. Google Scholar  * Perris C, Tjallden G, Bossi L, Perris H . Progabide versus nortriptiline in depression: a controlled trial. In: Bartholini G, Lloyd K, Morselli P (eds). _GABA


and Mood Disorders: Experimental and Clinical Research_. Raven Press: New York, 1986. Google Scholar  * Weiss E, Brunner H, Clerc G, Guibert M, Orofiamma B, Pagot R _et al_. Multicenter


double-blind study of progabide in depressed patients. In: Bartholini G, Lloyd K, Morselli P (eds). _GABA and Mood Disorders: Experimental and Clinical Research_. Raven Press: New York,


1986. Google Scholar  * Nielsen NP, Cesana B, Zizolfi S, Ascalone V, Priore P, Morselli PL . Therapeutic effects of fengabine, a new GABAergic agent, in depressed outpatients: a double-blind


study versus clomipramine. _Acta Psychiatr Scand_ 1990; 82: 366–371. Article  CAS  PubMed  Google Scholar  * Petty F, Trivedi MH, Fulton M, Rush AJ . Benzodiazepines as antidepressants:


does GABA play a role in depression? _Biol Psychiatry_ 1995; 38: 578–591. Article  CAS  PubMed  Google Scholar  * Blum BP, Mann JJ . The GABAergic system in schizophrenia. _Int J


Neuropsychopharmacol_ 2002; 5: 159–179. Article  CAS  PubMed  Google Scholar  * Malizia AL, Cunningham VJ, Bell CJ, Liddle PF, Jones T, Nutt DJ . Decreased brain GABA(A) −benzodiazepine


receptor binding in panic disorder: preliminary results from a quantitative PET study. _Arch Gen Psychiatry_ 1998; 55: 715–720. Article  CAS  PubMed  Google Scholar  * Bremner JD, Innis RB,


White T, Fujita M, Silbersweig D, Goddard AW _et al_. SPECT [I-123]iomazenil measurement of the benzodiazepine receptor in panic disorder. _Biol Psychiatry_ 2000; 47: 96–106. Article  CAS 


PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS This work was partly supported by the National Institute of Mental Health (MH 01736), NARSAD, and the Veterans Administration. Dr


Brambilla was supported by grants from the University of Pavia and from the Fatebenefratelli-Brescia (Ministry of Health). We thank A Mangiò ([email protected]) for great help with the


figure. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Biological Psychiatry Unit, IRCCS S Giovanni di Dio, Fatebenefratelli, Brescia, Italy P Brambilla & J Perez * Department of


Psychiatry, IRCCS S Matteo, University of Pavia, Italy F Barale * Advanced Biotechnology Center, University of Genova, Italy G Schettini * Department of Psychiatry, The University of Texas


Health Sciences Center, San Antonio, TX, USA J C Soares * Audie Murphy Division, South Texas VA Health Care System, San Antonio, TX, USA J C Soares Authors * P Brambilla View author


publications You can also search for this author inPubMed Google Scholar * J Perez View author publications You can also search for this author inPubMed Google Scholar * F Barale View author


publications You can also search for this author inPubMed Google Scholar * G Schettini View author publications You can also search for this author inPubMed Google Scholar * J C Soares View


author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to P Brambilla. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT


THIS ARTICLE CITE THIS ARTICLE Brambilla, P., Perez, J., Barale, F. _et al._ GABAergic dysfunction in mood disorders. _Mol Psychiatry_ 8, 721–737 (2003).


https://doi.org/10.1038/sj.mp.4001362 Download citation * Received: 09 January 2003 * Revised: 11 April 2003 * Accepted: 16 April 2003 * Published: 30 July 2003 * Issue Date: 01 August 2003


* DOI: https://doi.org/10.1038/sj.mp.4001362 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * GABA * bipolar disorder * unipolar disorder * mood


disorders * antidepressants * mood stabilizers


Trending News

Gabaergic dysfunction in mood disorders

ABSTRACT The authors review the available literature on the preclinical and clinical studies involving GABAergic neurotr...

Latests News

Gabaergic dysfunction in mood disorders

ABSTRACT The authors review the available literature on the preclinical and clinical studies involving GABAergic neurotr...

Top