Transmembrane crosstalk between the extracellular matrix and the cytoskeleton

Nature

Transmembrane crosstalk between the extracellular matrix and the cytoskeleton"


Play all audios:

Loading...

KEY POINTS * Cell adhesions represent the interaction interfaces between cells and the extracellular matrix. Their study provides exciting insights into the interplay between physical forces


and molecular signalling in cell regulation. * Cells use transmembrane actin–integrin adhesion complexes as mechanosensors to probe the rigidity of the extracellular environment, mediate


adhesion, trigger signalling, and remodel the extracellular matrix (ECM). * Local physical forces induce transitions in the types and functions of these cell–matrix adhesions: Focal


complexes transform into focal adhesions, which serve as the source of fibrillar adhesions. * Integrin translocation appears to stretch fibronectin molecules, exposing cryptic sites that


mediate matrix assembly into extracellular fibrils. * A key mechanism in these transitions appears to be conformational changes induced by force or a local reorganization of scaffold or


signalling molecules to promote multimolecular assembly. * Both intracellular molecular-complex formation at adhesion sites and ECM assembly are regulated by Rho-family GTPases. * The main


challenges for the future include:  The identification of the full repertoire of adhesion-associated molecules.  Comparison of the various 'focal complex'-like structures.  


Characterization of the molecular and cellular nature of the mechanosensors involved in cell–matrix adhesion.  Characterization of the regulation and functional integration of the various


forms of adhesions, which change depending on the state of differentiation, tissue location, and application of local forces.  Exploring the structure and function of cell–matrix adhesions


in three-dimensional microenvironments _in vivo_ and explaining the roles of complex carbohydrates in cell–matrix interactions. ABSTRACT Integrin-mediated cell adhesions provide dynamic,


bidirectional links between the extracellular matrix and the cytoskeleton. Besides having central roles in cell migration and morphogenesis, focal adhesions and related structures convey


information across the cell membrane, to regulate extracellular-matrix assembly, cell proliferation, differentiation, and death. This review describes integrin functions, mechanosensors,


molecular switches and signal-transduction pathways activated and integrated by adhesion, with a unifying theme being the importance of local physical forces. Access through your institution


Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and


online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes


which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS CANONICAL AND NON-CANONICAL INTEGRIN-BASED ADHESIONS DYNAMICALLY INTERCONVERT Article Open access 07 March 2024 ORGANIZATION, DYNAMICS AND MECHANOREGULATION OF INTEGRIN-MEDIATED


CELL–ECM ADHESIONS Article 27 September 2022 THE ROLE AND REGULATION OF INTEGRINS IN CELL MIGRATION AND INVASION Article 30 September 2024 REFERENCES * Gumbiner, B. M. Cell adhesion: the


molecular basis of tissue architecture and morphogenesis. _Cell_ 84, 345–357 (1996). CAS  PubMed  Google Scholar  * Giancotti, F. G. & Ruoslahti, E. Integrin signalling. _Science_ 285,


1028–1032 (1999). Article  CAS  PubMed  Google Scholar  * Curtis, A. & Wilkinson, C. New depths in cell behaviour: reactions of cells to nanotopography. _Biochem. Soc. Symp._ 65, 15–26


(1999). CAS  PubMed  Google Scholar  * Huang, S. & Ingber, D. E. The structural and mechanical complexity of cell-growth control. _Nature Cell Biol._ 1, E131–E138 (1999). CAS  PubMed 


Google Scholar  * Katz, B. Z. et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell–matrix adhesions. _Mol. Biol. Cell_ 11, 1047–1060


(2000). CAS  PubMed  PubMed Central  Google Scholar  * Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. _Biophys. J._ 79, 144–152


(2000). CAS  PubMed  PubMed Central  Google Scholar  * Abercrombie, M. & Dunn, G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection


microscopy. _Exp. Cell Res._ 92, 57–62 (1975). CAS  PubMed  Google Scholar  * Izzard, C. S. & Lochner, L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion


study with an evaluation of the technique. _J. Cell. Sci._ 21, 129–159 (1976). CAS  PubMed  Google Scholar  * Sastry, S. K. & Burridge, K. Focal adhesions: A nexus for intracellular


signaling and cytoskeletal dynamics. _Exp. Cell. Res._ 261, 25–36 (2000). CAS  PubMed  Google Scholar  * Zamir, E. & Geiger, B. Molecular diversity of actin–integrin adhesion complexes.


_J. Cell Sci._ (in the press). * Kano, Y., Katoh, K., Masuda, M. & Fujiwara, K. Macromolecular composition of stress fiber-plasma membrane attachment sites in endothelial cells _in


situ_. _Circ. Res._ 79, 1000–1006 (1996). CAS  PubMed  Google Scholar  * Turner, C. E., Kramarcy, N., Sealock, R. & Burridge, K. Localization of paxillin, a focal adhesion protein, to


smooth muscle dense plaques, and the myotendinous and neuromuscular junctions of skeletal muscle. _Exp. Cell Res._ 192, 651–655 (1991). CAS  PubMed  Google Scholar  * Chen, W. T. &


Singer, S. J. Immunoelectron microscopic studies of the sites of cell-substratum and cell-cell contacts in cultured fibroblasts. _J. Cell Biol._ 95, 205–222 (1982). CAS  PubMed  Google


Scholar  * Zamir, E. et al. Molecular diversity of cell-matrix adhesions. _J. Cell Sci._ 112, 1655–1669 (1999). CAS  PubMed  Google Scholar  * Zamir, E. et al. Dynamics and segregation of


cell-matrix adhesions in cultured fibroblasts. _Nature Cell Biol._ 2, 191–196 (2000).THE DYNAMICS OF FOCAL ADHESIONS AND FIBRILLAR ADHESIONS AND FORMATION OF THE LATTER FROM THE FORMER WERE


SHOWN USING TIME-LAPSE MICROSCOPY OF GFP–PAXILLIN AND GFP–TENSIN. CAS  PubMed  Google Scholar  * Bershadsky, A. D., Tint, I. S., Neyfakh, A. A. Jr, & Vasiliev, J. M. Focal contacts of


normal and RSV-transformed quail cells. Hypothesis of the transformation-induced deficient maturation of focal contacts. _Exp. Cell Res._ 158, 433–444 (1985). CAS  PubMed  Google Scholar  *


Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. _Cell_ 81,


53–62 (1995). CAS  PubMed  Google Scholar  * Rottner, K., Hall, A. & Small, J. V. Interplay between rac and rho in the control of substrate contact dynamics. _Curr. Biol._ 9, 640–648


(1999).IN THIS STUDY AND IN REFERENCE 17 , DIFFERENTIAL SIGNALLING REQUIREMENTS FOR FOCAL ADHESIONS AND FOCAL COMPLEXES WERE ESTABLISHED. FOCAL COMPLEX FORMATION DEPENDS ON RAC ACTIVITY,


WHEREAS FOCAL ADHESIONS REQUIRE RHO AND RHO-KINASE ACTIVITY. CAS  PubMed  Google Scholar  * Tarone, G., Cirillo, D., Giancotti, F. G., Comoglio, P. M. & Marchisio, P. C. Rous sarcoma


virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. _Exp. Cell Res._ 159, 141–157 (1985). CAS  PubMed  Google Scholar  *


Zambonin-Zallone, A. et al. Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a β 3 integrin is colocalized with vinculin and talin in the podosomes of


osteoclastoma giant cells. _Exp. Cell Res._ 182, 645–652 (1989). CAS  PubMed  Google Scholar  * Gaidano, G. et al. Integrin distribution and cytoskeleton organization in normal and malignant


monocytes. _Leukemia_ 4, 682–687 (1990). CAS  PubMed  Google Scholar  * Chellaiah, M. et al. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. _J.


Cell Biol._ 148, 665–678 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Ochoa, G. C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. _J. Cell Biol._


150, 377–389 (2000).AN INTERESTING DISCOVERY OF DYNAMIN LOCALIZATION AT THE TUBULAR INVAGINATIONS OF THE PLASMA MEMBRANE IN PODOSOMES AND CHARACTERIZATION OF ITS INVOLVEMENT IN PODOSOME


FORMATION. CAS  PubMed  PubMed Central  Google Scholar  * Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development.


_Development_ 125, 327–337 (1998). CAS  PubMed  Google Scholar  * Sheppard, D. _In vivo_ functions of integrins: lessons from null mutations in mice. _Matrix Biol._ 19, 203–209 (2000). CAS 


PubMed  Google Scholar  * Liu, S., Calderwood, D. A. & Ginsberg, M. H. Integrin cytoplasmic domain-binding proteins. _J. Cell Sci._ 113, 3563–3571 (2000). CAS  PubMed  Google Scholar  *


Echtermeyer, F., Baciu, P. C., Saoncella, S., Ge, Y. & Goetinck, P. F. Syndecan-4 core protein is sufficient for the assembly of focal adhesions and actin stress fibers. _J. Cell Sci._


112, 3433–3441 (1999). CAS  PubMed  Google Scholar  * Bono, P., Rubin, K., Higgins, J. M. & Hynes, R. O. Layilin, a novel integral membrane protein, is a hyaluronan receptor. _Mol. Biol.


Cell_ 12, 891–900 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Wei, Y., Yang, X., Liu, Q., Wilkins, J. A. & Chapman, H. A. A role for caveolin and the urokinase receptor in


integrin-mediated adhesion and signaling. _J. Cell Biol._ 144, 1285–1294 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Prehoda, K. E., Scott, J. A., Mullins, R. D. & Lim, W. A.


Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. _Science_ 290, 801–806 (2000). CAS  PubMed  Google Scholar  * Raucher, D. et al.


Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. _Cell_ 100, 221–228 (2000).THIS STUDY DIRECTLY SHOWED PTDINS(4,5)P


2 -MEDIATED CONTROL OF PLASMA MEMBRANE INTERACTION WITH THE UNDERLYING CYTOSKELETON. CAS  PubMed  Google Scholar  * Fukami, K., Endo, T., Imamura, M. & Takenawa, T. α-actinin and


vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. _J. Biol. Chem._ 269, 1518–1522 (1994). CAS  PubMed  Google Scholar  * Tall, E. G., Spector, I., Pentyala, S. N.,


Bitter, I. & Rebecchi, M. J. Dynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures. _Curr. Biol._ 10, 743–746 (2000). CAS  PubMed  Google Scholar  * Serra-Pages, C.


et al. The LAR transmembrane protein tyrosine phosphatase and a coiled–coil LAR-interacting protein co-localize at focal adhesions. _EMBO J._ 14, 2827–2838 (1995). CAS  PubMed  PubMed


Central  Google Scholar  * Inagaki, K. et al. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. _EMBO J._ 19, 6721–6731 (2000). CAS  PubMed  PubMed Central 


Google Scholar  * Lin, S. & Lin, D. Mapping of actin, vinculin, and integrin binding domains suggests a direct role of tensin in actin–membrane association. _Mol. Biol. Cell_ 7, (suppl.)


389a (1996). Google Scholar  * Han, D. C., Rodriguez, L. G. & Guan, J. L. Identification of a novel interaction between integrin β1 and 14-3-3β. _Oncogene_ 20, 346–357 (2001). CAS 


PubMed  Google Scholar  * Liu, S. & Ginsberg, M. H. Paxillin binding to a conserved sequence motif in the α4 integrin cytoplasmic domain. _J. Biol. Chem._ 275, 22736–22742 (2000). CAS 


PubMed  Google Scholar  * Liu, S., Slepak, M. & Ginsberg, M. H. Direct binding of paxillin to the α9 integrin cytoplasmic domain inhibits cell spreading. _J. Biol. Chem._ 27, 37086–37092


(2001). Google Scholar  * Prasad, N., Topping, R. S. & Decker, S. J. SH2-containing inositol 5′-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular


adhesion and spreading. _Mol. Cell. Biol._ 21, 1416–1428 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal


and signaling molecules. _J. Cell Biol._ 131, 791–805 (1995). CAS  PubMed  Google Scholar  * Miyamoto, S., Akiyama, S. K. & Yamada, K. M. Synergistic roles for receptor occupancy and


aggregation in integrin transmembrane function. _Science_ 267, 883–885 (1995).THE LOCAL REACTION THAT IS INDUCED BY INTERACTIONS OF INTEGRINS WITH MATRIX PROTEINS WAS ANALYSED BY APPLICATION


OF MICRON-SIZED BEADS THAT WERE COVERED WITH A PROTEIN OF INTEREST TO THE CELL SURFACE. BOTH THE CLUSTERING OF INTEGRIN MOLECULES AND THEIR DIRECT INTERACTION WITH MATRIX PROTEINS THROUGH


THE RGD MOTIF (OCCUPANCY) WERE SHOWN TO BE NECESSARY FOR INDUCING RECRUITMENT OF THE APPROPRIATE CYTOPLASMIC PROTEINS TO THE ADHESION SITE. CAS  PubMed  Google Scholar  * Laukaitis, C. M.,


Webb, D. J., Donais, K. & Horwitz, A. F. Differential dynamics of α 5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. _J. Cell Biol._


153, 1427–1440 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal


adhesions. _J. Cell Biol._ 133, 1403–1415 (1996).THIS STUDY FIRST SHOWED THE ROLE OF MYOSIN II DOWNSTREAM OF RHO IN THE FORMATION OF FOCAL ADHESIONS. CAS  PubMed  Google Scholar  *


Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A. & Geiger, B. Involvement of microtubules in the control of adhesion-dependent signal transduction. _Curr. Biol._ 6, 1279–1289


(1996).THIS STUDY SHOWED THAT MICROTUBULE DISRUPTION INDUCES FORMATION OF FOCAL ADHESIONS THROUGH THE ACTIVATION OF MYOSIN II-DRIVEN CONTRACTILITY. CAS  PubMed  Google Scholar  * Riveline,


D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. _J. Cell Biol._


153, 1175–1186 (2001).THIS STUDY SHOWED THE INDUCTION OF FOCAL-ADHESION GROWTH BY LOCALLY APPLIED TENSION FORCE. APPLICATION OF EXTERNAL FORCE BYPASSES THE REQUIREMENTS FOR RHO KINASE (ROCK)


AND MYOSIN II-DEPENDENT CELL CONTRACTILITY FOR THE FORMATION OF FOCAL ADHESIONS, PROVIDED THAT ANOTHER TARGET OF RHO, MDIA1, IS ACTIVE. CAS  PubMed  PubMed Central  Google Scholar  *


Volberg, T., Geiger, B., Citi, S. & Bershadsky, A. D. Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system. _Cell


Motil. Cytoskel._ 29, 321–338 (1994). CAS  Google Scholar  * Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. _Nature_


389, 990–994 (1997). CAS  PubMed  Google Scholar  * Helfman, D. M. et al. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. _Mol. Biol.


Cell_ 10, 3097–3112 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Geiger, B. & Bershadsky, A. Assembly and mechanosensory function of focal contacts. _Curr. Opin. Cell Biol._


13, 584–592 (2001). CAS  PubMed  Google Scholar  * Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization.


_Nature Cell Biol._ 1, 136–143 (1999). CAS  PubMed  Google Scholar  * Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of


integrin-cytoskeleton linkages. _Cell_ 88, 39–48 (1997).THE SIMULATION OF ECM RIGIDITY BY TRAPPING ECM-COATED BEADS BY LASER TWEEZERS LEADS TO A LOCAL INCREASE IN ACTOMYOSIN-MEDIATED FORCE


APPLIED TO THE TRAPPED BEAD BY THE CELL. THIS INDICATES THAT ISOMETRIC FORCE APPLIED TO AN INTEGRIN-MEDIATED ADHESION SITE INDUCES LOCAL REINFORCEMENT OF ASSOCIATION OF THIS SITE WITH THE


ACTIN CYTOSKELETON. CAS  PubMed  Google Scholar  * Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of


strong propulsive forces in migrating fibroblasts. _J. Cell Biol._ 153, 881–888 (2001).THIS STUDY SHOWED THAT LOCOMOTING CELLS APPLY THE STRONGEST FORCES TO SMALL ZYXIN-CONTAINING FOCAL


COMPLEXES AT THE LEADING EDGE. CAS  PubMed  PubMed Central  Google Scholar  * Harris, A. K., Wild, P. & Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell


locomotion. _Science_ 208, 177–179 (1980).THIS STUDY SHOWED FOR THE FIRST TIME THAT THE CELL APPLIES MECHANICAL FORCE TO THE SUBSTRATE TO WHICH IT ADHERES. CAS  PubMed  Google Scholar  *


Burton, K., Park, J. H. & Taylor, D. L. Keratocytes generate traction forces in two phases. _Mol. Biol. Cell_ 10, 3745–3769 (1999). CAS  PubMed  PubMed Central  Google Scholar  *


Galbraith, C. G. & Sheetz, M. P. A micromachined device provides a new bend on fibroblast traction forces. _Proc. Natl Acad. Sci. USA_ 94, 9114–9118 (1997). CAS  PubMed  PubMed Central 


Google Scholar  * Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. _Biophys. J._ 76, 2307–2316 (1999). CAS  PubMed  PubMed Central 


Google Scholar  * Munevar, S., Wang, Y. & Dembo, M. Traction force microscopy of migrating normal and h-ras transformed 3t3 fibroblasts. _Biophys. J._ 80, 1744–1757 (2001). CAS  PubMed 


PubMed Central  Google Scholar  * Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. _Nature Cell Biol._ 3,


466–472 (2001).THIS STUDY USED MICROPATTERNED ELASTOMER SUBSTRATE AND FLUORESCENCE IMAGING OF FOCAL ADHESIONS IN LIVE CELLS, WHICH SHOWED A STRONG CORRELATION BETWEEN FOCAL-ADHESION SIZE AND


LOCAL FORCES THAT ARE APPLIED BY THE CELL AT THESE SITES. THE SIZE OF THE FOCAL CONTACTS DECREASED RAPIDLY IN PROPORTION TO A DECREASE OF THESE FORCES THAT WERE INDUCED BY BDM TREATMENT.


CAS  PubMed  Google Scholar  * Kornberg, L., Earp, H. S., Parsons, J. T., Schaller, M. & Juliano, R. L. Cell adhesion or integrin clustering increases phosphorylation of a focal


adhesion-associated tyrosine kinase. _J. Biol. Chem._ 267, 23439–23442 (1992). CAS  PubMed  Google Scholar  * Burridge, K., Turner, C. E. & Romer, L. H. Tyrosine phosphorylation of


paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. _J. Cell Biol._ 119, 893–903 (1992).THIS AND THE PREVIOUS STUDY INITIATED A CASCADE


OF PUBLICATIONS SHOWING THAT THE FORMATION OF FOCAL ADHESIONS IS ACCOMPANIED BY TYROSINE PHOSPHORYLATION OF THEIR MAIN COMPONENTS. CAS  PubMed  Google Scholar  * Rankin, S. & Rozengurt,


E. Platelet-derived growth factor modulation of focal adhesion kinase (p125FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells. Bell-shaped dose response and cross-talk with


bombesin. _J. Biol. Chem._ 269, 704–710 (1994). CAS  PubMed  Google Scholar  * Casamassima, A. & Rozengurt, E. Insulin-like growth factor I stimulates tyrosine phosphorylation of


p130(Cas), focal adhesion kinase, and paxillin. Role of phosphatidylinositol 3'-kinase and formation of a p130(Cas). Crk complex. _J. Biol. Chem._ 273, 26149–26156 (1998). CAS  PubMed 


Google Scholar  * Li, S. et al. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. _J. Biol. Chem._ 272, 30455–30462 (1997). CAS  PubMed 


Google Scholar  * Yano, Y., Geibel, J. & Sumpio, B. E. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. _Am. J. Physiol._ 271,


C635–C649 (1996). * Sai, X., Naruse, K. & Sokabe, M. Activation of pp60(src) is critical for stretch-induced orienting response in fibroblasts. _J. Cell Sci._ 112, 1365–1373 (1999). CAS


  PubMed  Google Scholar  * Parsons, J. T., Martin, K. H., Slack, J. K., Taylor, J. M. & Weed, S. A. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement.


_Oncogene_ 19, 5606–5613 (2000). CAS  PubMed  Google Scholar  * Kaplan, K. B. et al. Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is


regulated by phosphorylation of tyrosine 527. _EMBO J._ 13, 4745–4756 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Kaplan, K. B., Swedlow, J. R., Morgan, D. O. & Varmus, H. E.


c-Src enhances the spreading of _src_−/− fibroblasts on fibronectin by a kinase-independent mechanism. _Genes Dev._ 9, 1505–1517 (1995).THIS STUDY FIRST SHOWED THE INVOLVMENT OF PP60C-SRC IN


THE REGULATION OF CELL–MATRIX ADHESION. CAS  PubMed  Google Scholar  * Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R. & Sheetz, M. P. Selective regulation of


integrin–cytoskeleton interactions by the tyrosine kinase Src. _Nature Cell Biol._ 1, 200–206 (1999). CAS  PubMed  Google Scholar  * Volberg, T., Romer, L., Zamir, E. & Geiger, B.


pp60(c-src) and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions. _J. Cell Sci._ 114, 2279–2289 (2001). CAS  PubMed  Google Scholar  * Ilic, D. et al.


Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. _Nature_ 377, 539–544 (1995). CAS  PubMed  Google Scholar  * Schwartzberg, P. L. et al.


Rescue of osteoclast function by transgenic expression of kinase-deficient Src in _src_−/− mutant mice. _Genes Dev._ 11, 2835–2844 (1997). CAS  PubMed  PubMed Central  Google Scholar  *


Arthur, W. T., Petch, L. A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. _Curr. Biol._ 10, 719–722 (2000). CAS  PubMed  Google Scholar  *


Ren, X. D. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. _J. Cell Sci._ 113, 3673–3678 (2000). CAS  PubMed  Google Scholar  * Stephens, L. E. et


al. Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. _Genes Dev._ 9, 1883–1895 (1995). CAS  PubMed  Google Scholar  * Henry, M. D. &


Campbell, K. P. A role for dystroglycan in basement membrane assembly. _Cell_ 95, 859–870 (1998). CAS  PubMed  Google Scholar  * Colognato, H., Winkelmann, D. A. & Yurchenco, P. D.


Laminin polymerization induces a receptor-cytoskeleton network. _J. Cell Biol._ 145, 619–631 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Avnur, Z. & Geiger, B. The removal of


extracellular fibronectin from areas of cell-substrate contact. _Cell_ 25, 121–132 (1981). CAS  PubMed  Google Scholar  * Pankov, R. et al. Integrin dynamics and matrix assembly:


tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis. _J. Cell Biol._ 148, 1075–1090 (2000).DIRECT DEMONSTRATION OF THE SPECIFIC TRANSLOCATION OF Α 5 Β


1 INTEGRIN FROM FOCAL ADHESIONS TO, AND ALONG, FIBRILLAR ADHESIONS THAT DRIVE THE FORMATION OF FIBRONECTIN MATRIX. CAS  PubMed  PubMed Central  Google Scholar  * McDonald, J. A., Kelley, D.


G. & Broekelmann, T. J. Role of fibronectin in collagen deposition: Fab′ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast


extracellular matrix. _J. Cell Biol._ 92, 485–492 (1982). CAS  PubMed  Google Scholar  * Akiyama, S. K., Yamada, S. S., Chen, W. T. & Yamada, K. M. Analysis of fibronectin receptor


function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. _J. Cell Biol._ 109, 863–875 (1989). CAS  PubMed  Google Scholar  *


Harris, A. K., Stopak, D. & Wild, P. Fibroblast traction as a mechanism for collagen morphogenesis. _Nature_ 290, 249–251 (1981). CAS  PubMed  Google Scholar  * Mosher, D. F. (ed.) in


_Fibronectin_. (Academic, San Diego, 1989). Google Scholar  * Hynes, R. O. in _Fibronectins_. (Springer, New York, 1990). Google Scholar  * Yamada, K. M. & Clark, R. A. F. in _The


Molecular and Cellular Biology of Wound Repair_ (ed. Clark, R. A. F.) 51–93 (Plenum, New York, 1996). Google Scholar  * Wennerberg, K. et al. β1 integrin-dependent and-independent


polymerization of fibronectin. _J. Cell Biol._ 132, 227–238 (1996). CAS  PubMed  Google Scholar  * Yang, J. T. & Hynes, R. O. Fibronectin receptor functions in embryonic cells deficient


in α5 β1 integrin can be replaced by αV integrins. _Mol. Biol. Cell_ 7, 1737–1748 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Sechler, J. L., Cumiskey, A. M., Gazzola, D. M. &


Schwarzbauer, J. E. A novel RGD-independent fibronectin assembly pathway initiated by α4β1 integrin binding to the alternatively spliced V region. _J. Cell Sci._ 113, 1491–1498 (2000). CAS


  PubMed  Google Scholar  * Zhang, Q. & Mosher, D. F. Cross-linking of the NH2-terminal region of fibronectin to molecules of large apparent molecular mass. Characterization of


fibronectin assembly sites induced by the treatment of fibroblasts with lysophosphatidic acid. _J. Biol. Chem._ 271, 33284–33292 (1996). CAS  PubMed  Google Scholar  * Schwarzbauer, J. E.


& Sechler, J. L. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. _Curr. Opin. Cell Biol._ 11, 622–627 (1999). CAS  PubMed  Google Scholar  * Erickson, H. P.


Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. _Proc. Natl Acad. Sci. USA_ 91,


10114–10118 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Hocking, D. C., Smith, R. K. & McKeown-Longo, P. J. A novel role for the integrin-binding III-10 module in fibronectin


matrix assembly. _J. Cell Biol._ 133, 431–444 (1996). CAS  PubMed  Google Scholar  * Wu, C., Keivens, V. M., O'Toole, T. E., McDonald, J. A. & Ginsberg, M. H. Integrin activation


and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. _Cell_ 83, 715–724 (1995). CAS  PubMed  Google Scholar  * Halliday, N. L. & Tomasek, J. J. Mechanical


properties of the extracellular matrix influence fibronectin fibril assembly _in vitro_. _Exp. Cell Res._ 217, 109–117 (1995). CAS  PubMed  Google Scholar  * Zhong, C. et al. Rho-mediated


contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. _J. Cell Biol._ 141, 539–551 (1998).THIS PAPER LINKS CELL CONTRACTILITY REGULATED BY RHO AND


STRETCH-INDUCED EXPOSURE OF CRYPTIC ASSEMBLY SITES IN FIBRONECTIN TO PROVIDE MECHANISTIC INSIGHT INTO MATRIX ASSEMBLY. CAS  PubMed  PubMed Central  Google Scholar  * Sechler, M. S. et al. A


novel fibronectin binding site required for fibronectin fibril growth during matrix assembly. _J. Cell Biol._ 154, 1081–1088 (2001).THE LATEST PUBLICATION IN ONGOING STUDIES TO IDENTIFY THE


KEY BINDING SITES IN FIBRONECTIN, WHICH POINTS TO REPEATING UNIT III 2 AS PARTICULARLY IMPORTANT FOR MATRIX ASSEMBLY. CAS  PubMed  PubMed Central  Google Scholar  * Ohashi, T., Kiehart, D.


P. & Erickson, H. P. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. _Proc. Natl Acad. Sci. USA_ 96,


2153–2158 (1999).THE FIRST PAPER TO DOCUMENT STRETCHING OF FIBRONECTIN IN LIVING CELLS USING GREEN FLUORESCENT PROTEIN (GFP). CAS  PubMed  PubMed Central  Google Scholar  * Finer, J. T.,


Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. _Nature_ 368, 113–119 (1994). CAS  PubMed  Google Scholar  * Smilenov, L. B.,


Mikhailov, A., Pelham, R. J., Marcantonio, E. E. & Gundersen, G. G. Focal adhesion motility revealed in stationary fibroblasts. _Science_ 286, 1172–1174 (1999). CAS  PubMed  Google


Scholar  * Selve, N. & Wegner, A. Rate of treadmilling of actin filaments _in vitro_. _J. Mol. Biol._ 187, 627–631 (1986). CAS  PubMed  Google Scholar  * Waterman-Storer, C. M., Desai,


A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. _Curr. Biol._ 8, 1227–1230 (1998). CAS 


PubMed  Google Scholar  * Small, J. V., Rottner, K., Kaverina, I. & Anderson, K. I. Assembling an actin cytoskeleton for cell attachment and movement. _Biochim. Biophys. Acta_ 1404,


271–281 (1998). CAS  PubMed  Google Scholar  * Lo, S. H., Janmey, P. A., Hartwig, J. H. & Chen, L. B. Interactions of tensin with actin and identification of its three distinct


actin-binding domains. _J. Cell Biol._ 125, 1067–1075 (1994). CAS  PubMed  Google Scholar  * Craig, D., Krammer, A., Schulten, K. & Vogel, V. Comparison of the early stages of forced


unfolding for fibronectin type III modules. _Proc. Natl Acad. Sci. USA_ 98, 5590–5595 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Krammer, A., Lu, H., Isralewitz, B., Schulten, K.


& Vogel, V. Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. _Proc. Natl Acad. Sci. USA_ 96, 1351–1356 (1999). CAS  PubMed  PubMed


Central  Google Scholar  * McKeown-Longo, P. J. & Mosher, D. F. Binding of plasma fibronectin to cell layers of human skin fibroblasts. _J. Cell Biol._ 97, 466–472 (1983). CAS  PubMed 


Google Scholar  * Langenbach, K. J. & Sottile, J. Identification of protein-disulfide isomerase activity in fibronectin. _J. Biol. Chem._ 274, 7032–7038 (1999). CAS  PubMed  Google


Scholar  * Teti, A., Marchisio, P. C. & Zallone, A. Z. Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity. _Am. J. Physiol._ 261, C1–C7 (1991).


CAS  PubMed  Google Scholar  * Danen, E. H., Sonneveld, P., Sonnenberg, A. & Yamada, K. M. Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to


fibronectin supports growth factor–stimulated cell cycle progression. _J. Cell Biol._ 151, 1413–1422 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Davies, P. F., Robotewskyj, A.


& Griem, M. L. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. _J. Clin. Invest._ 93, 2031–2038 (1994). CAS


  PubMed  PubMed Central  Google Scholar  * Chen, K. D. et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. _J. Biol. Chem._ 274,


18393–18400 (1999). CAS  PubMed  Google Scholar  * Jalali, S. et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands.


_Proc. Natl Acad. Sci. USA_ 98, 1042–1046 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells.


_Physiol. Rev._ 81, 685–740 (2001). CAS  PubMed  Google Scholar  * Muller, U. & Littlewood-Evans, A. Mechanisms that regulate mechanosensory hair cell differentiation. _Trends Cell


Biol._ 11, 334–342 (2001). CAS  PubMed  Google Scholar  * Nicklas, R. B., Campbell, M. S., Ward, S. C. & Gorbsky, G. J. Tension-sensitive kinetochore phosphorylation _in vitro_. _J. Cell


Sci._ 111, 3189–3196 (1998). CAS  PubMed  Google Scholar  * Bjorge, J. D., Jakymiw, A. & Fujita, D. J. Selected glimpses into the activation and function of Src kinase. _Oncogene_ 19,


5620–5635 (2000). CAS  PubMed  Google Scholar  * Ishikawa, H. et al. Structural conversion between open and closed forms of radixin: low-angle shadowing electron microscopy. _J. Mol. Biol._


310, 973–978 (2001). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS Figure 1a and b were kindly provided by E. Zamir, figure 1c by I. Grosheva and Figure 1d by J. Blair.


B.G. is the incumbent of the E. Neter Chair in Cell and Tumor Biology, A.B. holds the J. Moss Chair of Biomedical Research. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of


Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel Benjamin Geiger & Alexander Bershadsky * Craniofacial Developmental Biology and Regeneration Branch,


National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, 20892, MD, USA Roumen Pankov & Kenneth M. Yamada Authors * Benjamin Geiger View author


publications You can also search for this author inPubMed Google Scholar * Alexander Bershadsky View author publications You can also search for this author inPubMed Google Scholar * Roumen


Pankov View author publications You can also search for this author inPubMed Google Scholar * Kenneth M. Yamada View author publications You can also search for this author inPubMed Google


Scholar CORRESPONDING AUTHOR Correspondence to Benjamin Geiger. RELATED LINKS RELATED LINKS DATABASES INTERPRO: SH2 domain  LOCUSLINK: 14-3-3-β α-actinin ASAP1 calpain II caveolin dynamin


fibronectin filamin ILK α4 integrin α9 integrin LAR mDia1 PAK PI3K ponsin ROCK tensin uPAR VASP/Ena  SWISS-PROT: caldesmon DOCK180 DRAL dystroglycan gelsolin GRAF α3 integrin α5 integrin α6


integrin αv integrin β1 integrin β3 integrin layilin paxillin SHIP-2 SHPS-1 SHP-2 syndecan-4 talin vinculin vinexin vitronectin GLOSSARY * INTEGRINS A group of heterodimeric transmembrane


adhesion receptors for extracellular-matrix proteins such as fibronectin and vitronectin. * BASEMENT MEMBRANE A dense, sheet-like, laminated extracellular matrix that separates epithelia,


muscle, or other tissues from connective tissue. * LAMELLIPODIUM A thin, flat extension at the cell periphery, which is filled with a branching meshwork of actin filaments. * RHO-FAMILY


GTPASES A family of monomeric G proteins — comprising Rho, Rac and Cdc42 — that are homologous to Ras. These are important molecular switches, which control cytoskeletal assembly and


contraction. * MACROPHAGE A white blood cell that is specialized for phagocytosis. * OSTEOCLAST A specialized cell that is involved in active bone resorption. * FIBRONECTIN MODULES Subunits


of fibronectin are comprised of repeating structural modules of three types (I, II, III). Each module is encoded by one or two exons with introns that precisely separate repeats. There are


12 type I modules, each around 45 amino-acids long and clustered into three groups; two type 2 modules, each 60 amino acids-long; and 15–17 type III repeats, each about 90 amino-acids long


(see Fig. 6). * BDM (2,3-Butanedione monoxime) An inhibitor of myosin ATPase. * ML-7 (1-(5-iodonaphthalene-1-sulphonyl)-1-H-hexahydro-1, 4-diazepine) A kinase inhibitor thought to be


relatively specific for myosin light-chain kinase. * H-7 (1-(5-isoquinolinylsulphonyl)-2-methylpiperazine) A broad-spectrum serine–threonine kinase inhibitor that blocks myosin light-chain


kinase, Rho kinase and certain other kinases. * LASER TWEEZERS Microscope-based device that traps micron-sized particles in a focused laser beam. Can be used to move or to stop such


particles. * LEADING EDGE The leading region of the advancing lamellipodium in a motile cell. * CELL-INDUCED SUBSTRATE WRINKLING An approach for visualizing cellular contractility that is


based on wrinkling of a thin and flexible silicone rubber film on which the cell is cultured. * MICRO-CANTILEVER TILTING DEVICE A microscopic device in which cells are attached to a surface


that consists of arrays of cantilevers. Local forces that are applied to this surface induce tilting of these cantilevers, which can be measured. * DEFORMATION OF ELASTIC GELS Polymeric


elastic gels that either contain impregnated beads or are surface micro-patterned are used as substrates for cultured cells. Local forces that are applied to these substrates can be


measured, based on the distortion of these patterns. * CONNECTIVE TISSUES Tissues that form the architectural framework of the vertebrate body. In these tissues, the extracellular matrix is


plentiful and cells are sparsely distributed within it. * GRANULATION TISSUE A contractile, myofibroblast-containing tissue formed in wounds. * ISOMETRIC TENSION A condition in which


contraction of muscle, non-muscle cells or the actomyosin network is opposed by an equal load that prevents net shortening, even though tension increases. * LATRUNCULIN-A A macrolide that is


derived from the Red Sea sponge _Latrunculia magnifica_, which binds and sequesters actin molecules, and thereby prevents the assembly of actin filaments. * TREADMILLING A special state in


polymer dynamics, when monomer addition at one end occurs at the same rate as monomer dissociation at the other end, which keeps the polymer length unchanged. * BARBED END The


fast-polymerizing end of actin filaments (defined by the arrowhead-shaped decoration of actin filaments with myosin fragments). * STEERED MOLECULAR DYNAMICS SIMULATION A computer simulation


method for studying force-induced reactions in biopolymers. * RGD ADHESION SEQUENCE The primary adhesive motif in many extracellular matrix molecules, which contains the amino-acid triplet,


Arg–Gly–Asp. * TRANSGLUTAMINASE An enzyme (such as factor XIIIa) that helps to crosslink fibronectin and other molecules through isopeptide linkages. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Geiger, B., Bershadsky, A., Pankov, R. _et al._ Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. _Nat Rev Mol


Cell Biol_ 2, 793–805 (2001). https://doi.org/10.1038/35099066 Download citation * Issue Date: 01 November 2001 * DOI: https://doi.org/10.1038/35099066 SHARE THIS ARTICLE Anyone you share


the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative


Trending News

7 Questions on the Daily Impact of the Coronavirus

From how we work, socialize, and even pray, the coronavirus has upturned American life. The Pew Research Center’s Claudi...

Little-known spanish city on top of huge mountain with panoramic views

PERCHED ON THE EDGE OF A CANYON, THIS HISTORIC TOWN IS STEEPED IN HISTORICAL SIGNIFICANCE AND KNOWN FOR ITS HIGH-ALTITUD...

Plant Pathology | Nature

ABSTRACT MR. F. T. BROOKS'S presidential address to Section K (Botany) discusses certain aspects of recent investig...

Past rates: 2023 va dic rates for spouses and dependents | veterans affairs

------------------------- HOW DIC MAY AFFECT YOUR VA SURVIVORS PENSION OR SURVIVOR BENEFIT PLAN HOW DO MY PAYMENTS FOR D...

6 conspiracy theories that prove osho’s death was as controversial as his life - scoopwhoop

Netflix’s _Wild Wild Country___ is absolutely blowing up. While the documentary on controversial guru Osho told the stor...

Latests News

Transmembrane crosstalk between the extracellular matrix and the cytoskeleton

KEY POINTS * Cell adhesions represent the interaction interfaces between cells and the extracellular matrix. Their study...

Rab35-regulated lipid turnover by myotubularins represses mtorc1 activity and controls myelin growth

ABSTRACT Inherited peripheral neuropathies (IPNs) represent a broad group of disorders including Charcot-Marie-Tooth (CM...

Kkr criticises ‘ad hoc’ new rain rule in ipl 2025 - the statesman

Frustrated by the IPL Governing Council’s recent decision to amend playing conditions, allowing an additional 120 minute...

How girls who code founder reshma saujani is closing the gender gap in technology

For Girls Who Code founder Reshma Saujani, her non-profit organization is about more than just bridging the gender gap i...

Erratum: microrna-mediated switching of chromatin-remodelling complexes in neural development

_Nature_ 460, 642–646 (2009) In the print issue of this Letter, Fig. 3 was incorrectly printed as a black and white imag...

Top